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I. INTRODUCTION

According to the density functional theory, the physical
and chemical properties of atoms and molecules can be
described in principle by means of functionals of the position
electron density ρ(�r) and/or functionals of the momentum
electron density γ ( �p) [1–3]. Moreover, the qualitative and
quantitative understanding of the electronic structure of atoms
and molecules requires in practice the knowledge of the
expressions of the position and momentum-space represen-
tations of the relevant physicochemical quantities of these
systems [4,5]. These quantities can be fully determined by the
position ordinary and frequency or entropic moments which
for d-dimensional systems are given by

〈rk〉 =
∫
Rd

rkρ(�r) ddr, (1)

Wq[ρ] =
∫
Rd

ρq(�r) ddr, (2)

respectively, under certain conditions. A similar statement
can be said for the momentum density γ ( �p) in terms of
the corresponding momentum moments 〈pk〉 and Zq[γ ]. The
notations r = |�r| and p = | �p| are used throughout the paper.

The connections between these moments in the two con-
jugate position and momentum spaces are very important for
both fundamental and practical reasons. Indeed, the position-
momentum uncertainty principle for quantum systems
that generalizes the seminal variance-based formulation of
Heisenberg can be expressed in a more accurate and useful
manner by use of ordinary moments of order higher than
2 [6–10] and/or by means of entropic moments [11]. On
the other hand, numerous physical and chemical properties
can be expressed in terms of some ordinary and entropic
moments in both position and momentum representations
[4,10,12]. Indeed, they describe and/or are closely related to
some fundamental and/or experimentally accessible quantities,
such as the diamagnetic susceptibility (〈r2〉), the kinetic
energy (〈p2〉), the Thomas-Fermi kinetic energy (W5/3), the
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Dirac-Slater exchange energy (W4/3, 〈p〉), the height peak
of the Compton profile (〈p−1〉), the relativistic Breit-Pauli
energy (〈p4〉), the initial value of the Patterson function of
x-ray crystallography (W3, 〈p−3〉), the total electron-electron
repulsion energy (〈p3〉), etc. Moreover, the position and
momentum moments can be experimentally extracted as
discussed elsewhere [2,4,5,13].

These ordinary and frequency moments play a relevant
role in the analysis of the structure and dynamics of natural
systems and phenomena, from atomic and molecular systems
to systems with nonstandard dimensionalities, as can be seen
in the excellent monographs of Dong [14], Herschbach et al.
[15], and Sen [16].

This work deals with some generalized position-momentum
uncertainty relations which go far beyond the familiar uncer-
tainty relation based on the standard deviation. By now, it is
well known that the standard deviation is not at all the best
measure of uncertainty because at times it cannot capture the
essence of the uncertainty principle. The standard deviation is a
reasonable measure of the spread of a probability distribution
with a single hump (e.g., the Gaussian and quasi-Gaussian
distributions). However, when the probability distribution has
more than one hump, the standard deviation loses some of
its usefulness, especially in connection with the notion of
uncertainty. This problem is caused by the fact that the standard
deviation attributes an ever-increasing weight to the tails of the
probability distribution; thus a very slight contribution to the
probability density, provided that it is located very far from the
center, may cause the standard distribution to blow up. These
observations have been reiteratively pointed out by various
authors (see, e.g., [11,17–20].

Accordingly, a variety of alternative formulations have been
proposed which are based on other spreading measures of
the probability distributions, such as the ordinary moments
of higher orders and the frequency moments [6–11,16,21].
Although endless variations on this theme can be given, let
us just mention one practical application of these uncertainty
inequalities: the problem of estimating the ground-state energy
for some given Hamiltonian. This technical problem has
almost created an entire branch of mathematical physics, as
can be seen in Ref. [22] and references therein. Needless
to say, on the other hand, that lower and upper bounds for
the products of moments in the two conjugate position and
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momentum spaces are very useful and relevant because, among
many other things, they describe physical quantities which are
experimentally accessible; in addition, the momentum-space
quantities are not directly accessible, either in principle or due
to experimental impediments.

Based on numerous semiclassical and Hartree-Fock-like
ground-state calculations in atoms and diatomic molecules
[4,23–25], it has been found approximate relationships and
semiclassical bounds connecting the momentum ordinary
moments and position entropic moments of the form

〈pk〉 � ckW1+ k
3
[ρ] for k = −2, − 1 (3)

and

〈pk〉 � ckW1+ k
3
[ρ] for k = 1,2,3,4 (4)

with ck = 3(3π2)k/3(k + 3)−1. Moreover, the case k = 2 was
already conjectured by Lieb, and weaker versions of it have
been rigorously proved, as discussed elsewhere [26]. These
semiclassical bounds, which were found to be fulfilled by a
large diversity of ground-state atoms and molecules [7,8,26],
can be extended to d-dimensional systems of N fermions with
spin s as

〈pk〉 � Kd (k)q− k
d W1+ k

d
[ρ], (5)

where k > 0, q = 2s + 1 and

Kd (k) = d

k + d
(2π )k

[
�

(
1 + d

2

)]k/d

πk/2
. (6)

For k < 0 the sign of inequality (5) is inverted. Note
that expression (5) simplifies to Eqs. (3) and (4) for d = 3
and s = 1/2, since then Kd (k) = 2

k
3 ck . In fact, Eq. (5),

with constant K ′
d (k) = Kd (k) × B(d,k) with B(d,k) =

{�( d
k
) infa>0 [a− d

k (
∫ ∞
a

du e−u(u − a)u−1)
−1

]}−
k
d , has been

rigorously proved by Daubechies [27]. Table I collects some
values of the constant B(d,k) in terms of d and k.

A number of authors have published some rigorous d-
dimensional bounds of the same type [22,28] as well, but with
much less accuracy.

On the other hand, similar expressions have been found
which depend not on any global spreading measure (like the
moments Wα[ρ]) but on measures of the position probability
with a property of locality (because they depend on the
gradient of ρ), like the translationally or shift-invariant Fisher
information Id [ρ]. Indeed, Zumbach [29] has found that

〈p2〉 � 1

2

[
1 + Cd

(
N

q

)2/3]
Id [ρ], (7)

TABLE I. B(d,k) for different values of d and k.

B(d,k)
�����k

d
1 2 3 4

1 0.165728 0.405724 0.537513 0.618094
2 0.021331 0.165728 0.303977 0.405724
3 0.002056 0.061935 0.165728 0.262190
4 0.000158 0.021331 0.086812 0.165728

where the nonoptimal constant Cd is given by

Cd = (4π )2 5d2

d + 2

(
2

d + 2

)2/d

(8)

for 1 � d � 5, and Id [ρ] denotes the shift-invariant Fisher in-
formation of the electron probability density for d-dimensional
N -fermion systems defined [30] as

Id [ρ] =
∫
Rd

| �∇d

√
ρ(�r)|2

ρ(�r)
ddr = 4

∫
Rd

( �∇d

√
ρ(�r))2 ddr, (9)

where �∇d denotes the d-dimensional gradient operator given
by

�∇d = ∂

∂r
r̂ + 1

r

d−2∑
i=1

1∏i−1
k=1 sin θk

∂

∂θi

θ̂i + 1

r
∏d−2

i=1 sin θi

∂

∂ϕ
ϕ̂,

where the symbol â denotes the unit vector associated to the
corresponding coordinate. Notice that for d = 3 the constant
is C3 = 9(4π )2( 2

5 )
2/3

, and the Fisher information I3[ρ] =
4
∫
R3

(∇√
ρ)2 d3r denotes the standard Fisher information of

real N -fermion systems [30].
The one-dimensional shift-invariant Fisher information is

the translationally invariant version of the one-dimensional
parametric Fisher information so much used to establish the
ultimate bounds on sensitivity of measurements, which is a
major goal of the parametric estimation theory. The latter
quantity refers to the information about an unknown param-
eter in the probability distribution estimated from observed
outcomes. Let us assume that we want to estimate a parameter
θ doing n measures in an experiment. These data, �y ≡ {yi}ni=1,
obey yi = θ + xi where �x ≡ {xi}ni=1 are added noise values.
The noise �x is assumed to be intrinsic to the parameter θ

under measurement (θ has a definite but unknown value).
This system is specified by a conditional probability law
pθ (�y|θ ) = p(y1,y2, . . . ,yn|θ ), and θ̂ (�y|θ ) is, on average, a
better estimate of θ as compared to any of the data observables,
θ̂ (�y) = θ . In this case, we can define the parametric Fisher
information as

I ≡
∫ [

∂ ln pθ (�y)|θ
∂θ

]2

pθ (�y|θ )d �y, (10)

which fulfils the known Crámer-Rao inequality σ 2 × I � 1,
where σ 2 is the mean-square error given by

σ 2 =
∫

[θ̂(�y) − θ ]2pθ (�y)d �y. (11)

Then the parametric Fisher information measures the ability
to estimate a parameter; that is, it gives the minimum error in
estimating θ from the given probability density p(�y|θ ). In the
particular case of n = 1, pθ (�y|θ ) = p(y|θ ) and the fluctuations
x are invariant to the size of θ , pθ (y|θ ) = px(y − θ ) with
x = y − θ (i.e., shift invariance). One then has

I =
∫ [

∂ ln p(x)

∂x

]2

p(x)dx =
∫

[p′(x)]2

p(x)
dx, (12)

which is the one-dimensional translationally invariant Fisher
information. The extension to d dimensions is given by
expression (9). This quantity is a measure of the gradient
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content of the density, so that it is very sensitive to the
fluctuations of the density. Then it quantifies the narrowness
or localization of the density, so it is a measure of the
system disorder. See, e.g., the monograph of Frieden [30] and
references therein for further details.

Nowadays the notion of translationally invariant Fisher in-
formation is playing an increasing role in numerous fields [30],
in particular, for many-electron systems, partially because of
its formal resemblance with kinetic [30–33] and Weizsäcker
[1,34] energies. The translationally invariant Fisher informa-
tion, contrary to the Shannon entropy, is a local measure of
spreading of the density ρ(�r). The higher this quantity is, the
more localized the density, the smaller the uncertainty, and
the higher the accuracy in estimating the localization of the
particle. However, it has an intrinsic connection with Shannon
entropy via the de Bruijn inequality [35,36], as well as a
simple connection with the precision (variance V [ρ]) of the
experiments by means of the celebrated Crámer-Rao inequality
[35,36], I [ρ] × V [ρ] � d2.

The notion of Fisher information has been shown to be
very fertile to identify, characterize, and interpret numerous
phenomena and processes in atomic and molecular physics,
such as, e.g., correlation properties in atoms [37], the
most distinctive nonlinear spectroscopic phenomena (avoided
crossings) of atomic systems in strong external fields [38],
the periodicity and shell structure in the periodic table of
chemical elements [39], and the transition state and the bond
breaking/forming regions of some specific chemical reactions
[40], as well as to systematically investigate the origin of the
internal rotation barrier between the eclipsed and staggered
conformers of ethane [41] and the steric effect [42].

Recently, much effort is being devoted to build up a math-
ematical formulation of the quantum uncertainty principle
based upon the Fisher information measures evaluated on
the conjugate position and momentum spaces. Nowadays it
remains a strongly controversial problem [43–49]. First, it was
conjectured [45] in 2000 that the position-momentum Fisher
information product had the lower bound I1(ρ)I1(γ ) � 4
for one-dimensional quantum systems with the position and
momentum densities ρ(x) = |�(x)|2 and γ (p) = |�(p)|2,
�(p) being the Fourier transform of �(x). Later in 2006 it
was proved [44] that this conjecture only holds for all real,
even, one-dimensional wave functions �(x). Then, in 2011 this
result was rigorously generalized [47] as Id (ρ)Id (γ ) � 4d2 for
the d-dimensional systems, provided that either the position
wave function �(�r) or the corresponding momentum-space
wave function �( �p) is real [47].

In addition, it has been found [43] that the uncertainty
product I3(ρ)I3(γ ) can be explicitly expressed in terms of the
Heisenberg product 〈r2〉〈p2〉 for any three-dimensional central
potential; even more, it is fulfilled that I3(ρ)I3(γ ) � f (l,m),
where f (l,m) is a known simple function of the orbital and
magnetic quantum numbers, given by l and m, respectively.
Furthermore, let us also mention that the product of posi-
tion and momentum Fisher information has been proposed
[45] as a measure of joint classicality of quantum states,
which has been recently used for wave packet and quantum
revivals [50].

For completeness let us mention that a natural extension to
the classical parametric Fisher information mentioned above

has been coined as (parametric) quantum Fisher information
(see, e.g., the monographs [51,52]) and successfully applied to
quantum statistical inference and estimation theory in various
directions (see, e.g., [53–58] and references therein).

In this work, we will use the d-dimensional Daubechies-
Thakkar and Zumbach expressions, given by (5) and (7),
respectively, to obtain (moment-based) Heisenberg-like and
Fisher-information-based uncertaintylike relations for d-
dimensional systems of N fermions with spin s in Secs. II
and III, respectively. These relations extend and generalize
previous general and specific uncertainty results of similar
types. In addition, the accuracy of these results for a large
variety of neutral and singly ionized atoms and molecules is
examined.

II. HEISENBERG-LIKE UNCERTAINTY RELATIONS

Let us here obtain lower bounds on the Heisenberg-like
uncertainty products 〈rα〉〈pk〉, with α � 0 and −2 � k � 4
for d-dimensional N -electron systems, by taking into account
both spatial and spin degrees of freedom. First we derive the
bounds based on position and momentum expectation values
with positive order, and then the corresponding ones involving
momentum expectation values with a negative order. These
results extend, generalize, and/or improve similar results from
various authors (see, e.g., [10,13,39,59–64] and references
therein).

A. Uncertainty products 〈rα〉〈 pk〉, with α � 0 and 0 � k � 4

We begin with the semiclassical lower bound on the
momentum expectation value 〈pk〉 given by Eqs. (5) and (6)
in terms of the position entropy moments W1+ k

d
[ρ]. Then

we apply the variational method of Lagrange’s multipliers
described in Refs. [65] and [66] to bound the entropic moments
Wq[ρ]. Indeed, let us minimize the quantity

∫
[ρ(�r)]q ddr

subject to the constraints 〈r0〉 ≡ ∫
ρ(�r) ddr = N and 〈rα〉 =∫

rαρ(�r) ddr , α > 0, by taking variations of the form

δ

{∫
[ρ(�r)]q ddr − λ

∫
rαρ(�r) ddr − μ

∫
ρ(�r) ddr

}
= 0,

where λ and μ are Lagrange multipliers. One finds that the
minimizer solution is given by the density

f (r) =
{

C(aα − rα)1/(q−1), r � a,

0, r > a,

where the values of the factor C and the parameter a are
determined so that the two previous constraints are fulfilled.
In fact, following the lines indicated in Refs. [65–67], one can
show that the quantity∫

[f (r)]q ddr = F 〈rα〉− d
α

(q−1)N
d
α

(q−1)+q

is a lower bound of the wanted entropic moment Wq[ρ],
where F is a known analytic function of the parameters q,α,
and d. Then, with q = 1 + k

d
one finally obtains the rigorous

inequality

W1+ k
d
[ρ] � F (d,α,k)〈rα〉− k

α N1+k( 1
α
+ 1

d ), (13)
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TABLE II. Some generalized Heisenberg-like uncertainty relations for N -electron systems, where both spatial and spin degrees of freedom
are taking into account.

〈rα〉 k
α 〈pk〉 � f (N )

�����α

k
1 2 3 4

1 9
49 (45π )1/3N 7/3 243

5324 (35π )2/3N 11/3 243
625 πN 5 841995

39617584 (3465π 4)1/3N 19/3

2 9
22

√
3
11 (35π )1/3N 11/6 9

16 32/3N 8/3 135
196

√
3
7 πN 7/2 2268

28561 ( 21
13 π 2)

1/3 �( 17
4 )

�( 11
4 )

N 13/3

3 3
5 ( 9

5 π )
1/3

N 5/3 3( 45π

196
√

7
)
2/3

N 7/3 1
2 πN 3 189

484 ( 63
44 π 4)

1/3
N 11/3

4 3
38 ( 3

19 )
1/4

(3465π )1/3N 19/12 24
√

3
169 ( 4π√

13
)
1/3

[
�( 17

4 )

�( 3
4 )

]
2/3

N 13/16 21
4 ( 3

11 )
7/4

πN 11/4 567
3200 ( 63

2 )
1/3 π2

[�( 3
4 )�( 11

4 )]
4/3 N 10/3

where

F (d,α,k) =
(
1 + k

d

)1+ k
d α1+ 2k

d[
�dB

(
d
α
,2 + d

k

)] k
d

×
⎧⎨
⎩ kk[(

1 + k
d

)
α + k

](1+ k
d

)α+k

⎫⎬
⎭

1
α

, (14)

where �d = 2πd/2

�(d/2) is the volume of the unit hypersphere.
Then, from Eqs. (5) and (13) we obtain the generalized

Heisenberg-like uncertainty relation given by

〈rα〉 k
α 〈pk〉 � F(d,α,k) q− k

d N1+k( 1
α
+ 1

d ), (15)

whereF(d,α,k) = Kd (k)F (d,α,k). From this general inequal-
ity of N -fermion systems with spatial dimensionality d and
spin dimensionality q = 2s + 1, we can make numerous
observations. First, the case k = 2 has been recently found [68]
by means of the Lieb-Thirring inequality. Second, there exists
a delicate balance between the contributions of the spatial and
spin degrees of freedom, making the relation more or less
accurate than the corresponding spinless inequality for either
small or large d, respectively. Third, for d = 3 and q = 2 we
obtain

〈rα〉 k
α 〈pk〉 � F(3,α,k) 2− k

3 N
k
α
+ k+3

3 , (16)

which holds for all N -electron systems. In particular, for α =
k = 2 one has 〈r2〉〈p2〉 � 1.85733 × q− 2

3 N
8
3 = 1.17005N

8
3 .

A number of other Heisenberg-like relations, which are also
instances of this inequality, are explicitly given in Table II.

Let us now study the accuracy of the uncertainty relation
(15) for some values of α and k in a large set of N -electron
systems of neutral and singly ionized atoms, as well as in a
variety of molecules. This is done in Figs. 1 and 2 for the
Heisenberg-like products 〈r〉〈p〉 and 〈r2〉1/2〈p〉, respectively,
for all ground-state neutral atoms of the periodic table
from hydrogen (N = 1) to Lawrencium (N = 103) and their
corresponding anions and cations, as well as for 87 polyatomic
molecules (see Appendix). The molecular set chosen for the
numerical study includes different types of chemical organic
and inorganic systems (aliphatic and aromatic hydrocarbons,
alcohols, ethers, ketones). It represents a variety of closed-shell
systems, radicals, and isomers, as well as molecules with heavy
atoms such as sulfur, chlorine, magnesium, and phosphorous.
The symbol Z in both figures denotes the nuclear charge for
atoms and ions. The colors in the molecular graph on the right
of the two figures correspond to different isoelectronic groups
described in the Appendix.

The accurate near-Hartree-Fock wave functions of Koga
et al. [69,70] have been used to evaluate the atomic uncertainty
products. In the molecular case we have used the GAUSSIAN03

suite of programs [71] at the CISD/6 − 311 + +G(3df,2p)
level of theory. For this set of molecules we have calculated
position and momentum moments defined previously by
employing software developed in our laboratory along with
3D numerical integration routines [72] and the DGRID suite of
programs [73].

FIG. 1. (Color online) Accuracy of 〈r〉〈p〉 for all neutral atoms (left), all singly ionized atoms (center), and 87 polyatomic molecules
(right). The symbol Z denotes the nuclear charge for atoms and ions. The colors in the molecular graph on the right correspond to different
isoelectronic groups as explained in Appendix.
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FIG. 2. (Color online) Accuracy of 〈r2〉1/2〈p〉 for all neutral atoms (left), all singly ionized atoms (center), and 87 polyatomic molecules
(right). The symbol Z denotes the nuclear charge for atoms and ions. The colors in the molecular graph on the right correspond to different
isoelectronic groups as explained in the Appendix.

For each figure the numerical values of these uncertainty
products and the corresponding bounds (as given by Table I)
are represented in terms of the number of electrons of
the system under consideration. We first observe that the
Heisenberg-like relations are indeed fulfilled in all cases, what
is a check of our theoretical results. Then we notice that
our bounds are quite accurate for light electronic systems.
Moreover, their accuracy decreases as the number of electrons
increases. So there is still a lot of space for improvement in
heavy N -electron systems.

B. Uncertainty products 〈rα〉〈 pk〉, with α � 0 and k � 0

Here we start from the semiclassical lower bound on the
momentum expectation value 〈pk〉 given by Eqs. (5) and (6),
duly inverted because now k is assumed to have negative
values, so that we have the following upper bound,

〈pk〉 � Kd (k)q− k
d W1+ k

d
[ρ], (17)

in terms of the position entropy moments W1+ k
d
[ρ]. Now we

use the above-mentioned variational method of Lagrange’s
multipliers given in Refs. [65–67] to bound the entropic
moments Wk′[ρ] with the given constraints 〈r0〉 = N and 〈rα〉,
α < 0, obtaining the rigorous inequality

Wk′[ρ] � Gd (α,k′)〈rα〉− k′
α N1+k′( 1

α
+ 1

d ), (18)

where k′ < 1, α > d(1−k′)
k′ , and

Gd (α,k′)

= α1+ 2k′
d (−k′)k

′/α

(
1

α + α k′
d

+ k′

)k′( 1
α
+ 1

d )+1

×
(

k′

d
+ 1

) k′
d

+1[
�d B

(
− 1 − d(k′ + α)

k′α
,
d

α

)]− k′
d

,

(19)

where again �d = 2πd/2

�(d/2) .
Finally, from Eqs. (18) and (17) we obtain in an algebraic

manner the Heisenberg-like uncertainty relation

〈rα〉 k
α 〈pk〉 � Gd (α,k)q−k/dN1+k( 1

α
+ 1

d ), (20)

with k < 0, α > − 3k
k+d

, and Gd (α,k) = Kd (k)Gd (α,k), for d-
dimensional systems of N fermions with spin s.

This fermionic inequality gives rise to the two following
uncertainty relations:

〈rα〉− 1
α 〈p−1〉 � G3(α, − 1) 21/3N

2
3 − 1

α , α >
3

2
, (21)

and

〈rα〉− 2
α 〈p−2〉 � G3(α, − 2) 21/3N1+k( 1

α
+ 1

d ), α > 6,

for real N -electron systems, since then we have d = 3 and
q = 2, and the exact 〈pk〉 which are finite require that k � −2.
As particular cases we have the Heisenberg-like uncertainty
relations

〈r2〉− 1
2 〈p−1〉 � 3

1
6 2

1
3 N

1
6 ≈ 1.513 09N

1
6 , (22)

〈r3〉− 1
3 〈p−1〉 �

(
6

π

) 1
3

N
1
3 ≈ 1.240 7N

1
3 , (23)

〈r4〉− 1
4 〈p−1〉 � 2

1
2

(
3

5

) 5
12

N
5
12 ≈ 1.143 08 N

5
12 , (24)

by making α = 2,3, and 4, respectively, in Eq. (21).

III. FISHER-INFORMATION-BASED UNCERTAINTY
RELATION

In this section we first express the position-momentum
Fisher information product Id (ρ)Id (γ ) in terms of the
Heisenberg uncertainty product 〈r2〉〈p2〉 for N -electron d-
dimensional systems. Then we use some results of the previous
section to obtain a mathematical formulation of the position-
momentum uncertainty principle for these systems. The
resulting expressions extend and generalize various similar
conjectures and inequalities in the sense already discussed in
the first section [43–47].

We begin with Eq. (7) and, due to the reciprocity of the
position and momentum spaces, its conjugate inequality given
by

〈r2〉 � 1

2

[
1 + Cd

(
N

q

)2/d]
Id [γ ], (25)
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which leads to

Id [ρ]Id [γ ] � 4[
1 + Cd

(
N
q

)2/d]2 〈r2〉〈p2〉. (26)

This expression clearly manifests the uncertaintylike character
of the product of the position Fisher information and momen-
tum Fisher information for N -fermion systems. Moreover, let
us now take into account Eq. (15) with α = k = 2, which gives
the d-dimensional Heisenberg product [68]

〈r2〉〈p2〉 � A(2,d)q−2/dN2+2/d , (27)

with

A(2,d) =
{

d

d + 1
[�(d + 1)]1/d

}2

.

Then, the combination of Eqs. (7) and (27) leads to the
following lower bound on the position-momentum Fisher
information product of N -fermion d-dimensional systems:

Id [ρ]Id [γ ] � 4A(2,d)
N2/d+2q−2/d[

1 + Cd

(
N
q

)2/d]2 . (28)

For electronic systems (q = 2) this position-momentum un-
certainty relation has the form

Id [ρ]Id [γ ] � N
2
d
+2 22− 2

d

[1 + N2/d 80π2d2(d + 2)−
d+2
d ]2

A(2,d). (29)

Let us note here that for systems with a sufficiently large
number of constituents N so that 1 + Cd (N

q
)
2/d ≈ Cd (N

q
)
2/d

we obtain

Id [ρ]Id [γ ] � N2− 2
d q

2
d

(d + 2)
4
d
+2

25π44
2
d
+3d4

A(2,d) (30)

for fermionic systems, and

Id [ρ]Id [γ ] � N2− 2
d

(d + 2)
4
d
+2

25π44
1
d
+3d4

A(2,d) (31)

for electronic systems. And for real (i.e., d = 3) N -electron
systems we obtain from Eqs. (29) and (31) the uncertainty
relation

I3[ρ]I3[γ ] � N8/3(
N2/3 144π2

52/3 + 1
)2

38/3

4
, (32)

which for large N reduces as

I3[ρ]I3[γ ] � N4/3 5

3072π4

(
5

3

)1/3

, (33)

where 5
307 2π4 ( 5

3 )
1/3 ≈ 0.000 019 810 7.

IV. CONCLUSIONS

The (variance-based) Heisenberg-Kennard relation is
known to be a weak (and, at times, misleading) mathematical
formulation of the quantum uncertainty relation [17,18].
Stronger uncertaintylike relations based either on moments of
order other than 2 [6,9,59] or on some information-theoretic
quantities have been developed. Among the latter ones, the
entropic uncertainty relations based on the Shannon entropy

and on the Rényi entropy are well known [74–77]. However,
the Fisher-information-based uncertaintylike relation still rep-
resents a controversial problem [43–49] since its conjecture in
2000 for one-dimensional systems.

In this paper we have first found a set of (moment-
based) Heisenberg-like uncertainty relations which extend and
generalize the previous similar encountered expressions by
starting from the Daubechies-Thakkar relations, which were
semiempirically found by Thakkar for (three-dimensional)
atoms and molecules and rigorously proved by Daubechies for
d-dimensional quantum systems. Hereafter we have studied its
accuracy for a large set of quantum systems: all the neutral and
singly ionized atoms of the periodic table and a large diversity
of polyatomic molecules. Later, we have shown the uncertainty
character of the product of the position and momentum
Fisher information of finite fermionic systems by expressing
it in terms of the Heisenberg-Kennard position-momentum
product by means of an inequality-type relationship. Moreover,
we have found a lower bound on this product in terms of
the number N of its constituents. This result is not only
relevant from a fundamental point of view, but also because
of its physical implications on, e.g., the determination of
nonclassicality measures for quantum states as previously
discussed. Finally, we should point out, though, that the
latter bound can certainly be improved because the Zumbach
constant Cd is nonoptimal.
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APPENDIX: SET OF MOLECULES USED

The molecular set chosen for the study includes different
types of chemical organic and inorganic systems (aliphatic
compounds, hydrocarbons, aromatic, alcohols, ethers,
ketones). The set represents a variety of closed-shell systems,
radicals, isomers, as well as molecules with heavy atoms
such as sulfur, chlorine, magnesium, and phosphorous. The
geometries needed for the single point energy calculations
referred to above were obtained from experimental data from
standard databases [78]. The molecular set might be organized
by isoelectronic groups as follows:

N-2: H2 (hydrogen)
N-10: NH3 (ammonia), CH4 (methane), HF (fluoride

hydride)
N-12: LiOH (lithium hydroxide)
N-14: HBO (boron hydride oxide), Li2O (dilithium oxide)
N-15: HCO (formyl radical), NO (nitric oxide)
N-16: H2CO (formaldehyde), NHO (nitrosyl hydride), O2

(oxygen)
N-17: CH3O (methoxy radical)
N-18: CH3NH2 (methyl amine), CH3OH (methyl alcohol),

H2O2 (hydrogen peroxide), NH2OH (hydroxylamine)
N-20: NaOH (sodium hydroxide)
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N-21: BO2 (boron dioxide), C3H3 (radical propargyl),
MgOH (magnesium hydroxide), HCCO (ketenyl radical)

N-22: C3H4 (cyclopropene), CH2CCH2 (allene), CH3CCH
(propyne), CH2NN (diazomethane), CH2CO (ketene), CH3CN
(acetonitrile), CH3NC (methyl isocyanide), CO2 (carbon diox-
ide), FCN (cyanogen fluoride), HBS (hydrogen boron sulfide),
HCCOH (ethynol), HCNO (fulminic acid), HN3 (hydrogen
azide), HNCO (isocyanic acid), HOCN (cyanic acid), N2O
(nitrous oxide), NH2CN (cyanamide)

N-23: NO2 (nitrogen dioxide), NS (mononitrogen monosul-
fide), PO (phosphorus monoxide),C3H5 (allyl radical), CH3CO
(acetyl radical)

N-24: C2H4O (ethylene oxide), C2H5N (aziridine), C3H6

(cyclopropane), CF2 (difluoromethylene), CH2O2 (dioxirane),
CH3CHO (acetaldehyde), CHONH2 (formamide), FNO (ni-
trosyl fluoride), H2CS (thioformaldehyde), HCOOH (formic
acid), HNO2 (nitrous acid) NHCHNH2 (aminomethanimine),
O3 (ozone), SO (sulfur monoxide)

N-25: CH2CH2CH3 (n-propyl radical), CH3CHCH3 (iso-
propyl radical), CH3OO (methylperoxy radical), FO2 (dioxy-
gen monofluoride), NF2 (difluoroamino radical), CH3CHOH
(ethoxy radical),CH3S (thiomethoxy)

N-26: C3H8 (propane), CH3CH2NH2 (ethylamine),
CH3CH2OH (ethanol), CH3NHCH3 (dimethylamine),
CH3OCH3 (dimethyl ether), CH3OOH (methyl peroxide),
F2O (difluorine monoxide)

N-30: ClCN (chlorocyanogen), OCS (carbonyl sulfide),
SiO2 (silicon dioxide)

N-31: PO2 (phosphorus dioxide), PS (phosphorus sulfide)
N-32: ClNO (nitrosyl chloride), S2 (sulfur diatomic), SO2

(sulfur dioxide)
N-33: ClO2 (chlorine dioxide), OClO (chlorine dioxide)
N-34: CH3CH2SH (ethanethiol), CH3SCH3 (dimethyl

sulfide),H2S2 (hydrogen sulfide), SF2 (sulfur difluoride)
N-36: HBr (bromide hydride)
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[72] J. M. Pérez-Jordá and E. San-Fabian, J. Chem. Phys. 100, 6520
(1994).

[73] M. Kohout, program DGRID version 4.2 (2007).
[74] S. Zozor, M. Portesi, and C. Vignat, Phys. A 387, 4800 (2008).
[75] I. Bialynicki-Birula, Phys. Rev. A 74, 052101 (2006).
[76] I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys. 44,

129 (1975).
[77] S. Zozor and C. Vignat, Phys. A 375, 499 (2007).
[78] Computational Chemistry Comparison and Benchmark

Database, http://cccbdb.nist.gov/.

062122-8

http://dx.doi.org/10.1080/00268970500493243
http://dx.doi.org/10.1080/00268970500493243
http://dx.doi.org/10.1080/00268970500493243
http://dx.doi.org/10.1080/00268970500493243
http://dx.doi.org/10.1103/PhysRevA.62.012107
http://dx.doi.org/10.1103/PhysRevA.62.012107
http://dx.doi.org/10.1103/PhysRevA.62.012107
http://dx.doi.org/10.1103/PhysRevA.62.012107
http://dx.doi.org/10.1155/2015/120698
http://dx.doi.org/10.1155/2015/120698
http://dx.doi.org/10.1155/2015/120698
http://dx.doi.org/10.1088/1751-8113/44/6/065301
http://dx.doi.org/10.1088/1751-8113/44/6/065301
http://dx.doi.org/10.1088/1751-8113/44/6/065301
http://dx.doi.org/10.1088/1751-8113/44/6/065301
http://dx.doi.org/10.1088/1367-2630/8/12/330
http://dx.doi.org/10.1088/1367-2630/8/12/330
http://dx.doi.org/10.1088/1367-2630/8/12/330
http://dx.doi.org/10.1088/1367-2630/8/12/330
http://dx.doi.org/10.1016/j.physleta.2013.06.037
http://dx.doi.org/10.1016/j.physleta.2013.06.037
http://dx.doi.org/10.1016/j.physleta.2013.06.037
http://dx.doi.org/10.1016/j.physleta.2013.06.037
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevLett.91.180403
http://dx.doi.org/10.1103/PhysRevA.84.042121
http://dx.doi.org/10.1103/PhysRevA.84.042121
http://dx.doi.org/10.1103/PhysRevA.84.042121
http://dx.doi.org/10.1103/PhysRevA.84.042121
http://arxiv.org/abs/arXiv:1409.6847
http://dx.doi.org/10.1103/PhysRevA.88.063609
http://dx.doi.org/10.1103/PhysRevA.88.063609
http://dx.doi.org/10.1103/PhysRevA.88.063609
http://dx.doi.org/10.1103/PhysRevA.88.063609
http://dx.doi.org/10.1103/PhysRevA.89.032326
http://dx.doi.org/10.1103/PhysRevA.89.032326
http://dx.doi.org/10.1103/PhysRevA.89.032326
http://dx.doi.org/10.1103/PhysRevA.89.032326
http://dx.doi.org/10.1103/PhysRevA.83.062102
http://dx.doi.org/10.1103/PhysRevA.83.062102
http://dx.doi.org/10.1103/PhysRevA.83.062102
http://dx.doi.org/10.1103/PhysRevA.83.062102
http://dx.doi.org/10.1088/1367-2630/9/5/131
http://dx.doi.org/10.1088/1367-2630/9/5/131
http://dx.doi.org/10.1088/1367-2630/9/5/131
http://dx.doi.org/10.1088/1367-2630/9/5/131
http://dx.doi.org/10.1103/PhysRevA.84.042105
http://dx.doi.org/10.1103/PhysRevA.84.042105
http://dx.doi.org/10.1103/PhysRevA.84.042105
http://dx.doi.org/10.1103/PhysRevA.84.042105
http://dx.doi.org/10.1103/PhysRevA.59.4064
http://dx.doi.org/10.1103/PhysRevA.59.4064
http://dx.doi.org/10.1103/PhysRevA.59.4064
http://dx.doi.org/10.1103/PhysRevA.59.4064
http://dx.doi.org/10.1088/0953-4075/31/9/008
http://dx.doi.org/10.1088/0953-4075/31/9/008
http://dx.doi.org/10.1088/0953-4075/31/9/008
http://dx.doi.org/10.1088/0953-4075/31/9/008
http://dx.doi.org/10.1238/Physica.Regular.066a00449
http://dx.doi.org/10.1238/Physica.Regular.066a00449
http://dx.doi.org/10.1238/Physica.Regular.066a00449
http://dx.doi.org/10.1238/Physica.Regular.066a00449
http://dx.doi.org/10.1103/PhysRevA.37.3634
http://dx.doi.org/10.1103/PhysRevA.37.3634
http://dx.doi.org/10.1103/PhysRevA.37.3634
http://dx.doi.org/10.1103/PhysRevA.37.3634
http://dx.doi.org/10.1103/PhysRevA.40.35
http://dx.doi.org/10.1103/PhysRevA.40.35
http://dx.doi.org/10.1103/PhysRevA.40.35
http://dx.doi.org/10.1103/PhysRevA.40.35
http://dx.doi.org/10.1103/PhysRevA.35.2384
http://dx.doi.org/10.1103/PhysRevA.35.2384
http://dx.doi.org/10.1103/PhysRevA.35.2384
http://dx.doi.org/10.1103/PhysRevA.35.2384
http://dx.doi.org/10.1016/j.cplett.2014.08.064
http://dx.doi.org/10.1016/j.cplett.2014.08.064
http://dx.doi.org/10.1016/j.cplett.2014.08.064
http://dx.doi.org/10.1016/j.cplett.2014.08.064
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:6<491::AID-QUA6>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:6<491::AID-QUA6>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:6<491::AID-QUA6>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)71:6<491::AID-QUA6>3.0.CO;2-T
http://dx.doi.org/10.1007/s002140000150
http://dx.doi.org/10.1007/s002140000150
http://dx.doi.org/10.1007/s002140000150
http://dx.doi.org/10.1007/s002140000150
http://dx.doi.org/10.1063/1.467061
http://dx.doi.org/10.1063/1.467061
http://dx.doi.org/10.1063/1.467061
http://dx.doi.org/10.1063/1.467061
http://dx.doi.org/10.1016/j.physa.2008.04.010
http://dx.doi.org/10.1016/j.physa.2008.04.010
http://dx.doi.org/10.1016/j.physa.2008.04.010
http://dx.doi.org/10.1016/j.physa.2008.04.010
http://dx.doi.org/10.1103/PhysRevA.74.052101
http://dx.doi.org/10.1103/PhysRevA.74.052101
http://dx.doi.org/10.1103/PhysRevA.74.052101
http://dx.doi.org/10.1103/PhysRevA.74.052101
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.1016/j.physa.2006.09.019
http://dx.doi.org/10.1016/j.physa.2006.09.019
http://dx.doi.org/10.1016/j.physa.2006.09.019
http://dx.doi.org/10.1016/j.physa.2006.09.019
http://cccbdb.nist.gov/



