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Forward-backward analysis of the photon-number evolution in a cavity
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A quantum system can be monitored through repeated interactions with meter systems. The state of the system
at time t , represented by the density matrix ρ(t), then becomes conditioned on the information obtained by the
meters until that time. More insight in the state of the system at any time t is provided, however, by taking into
account the full detection of all meters interacting with the system both in the past and in the future of t . We
present experiments that use near-resonant atomic probes to monitor the evolution of the quantized field in a
cavity. The application of the forward-backward smoothing method to this quantum problem, justified by the
past quantum state formalism [S. Gammelmark et al., Phys. Rev. Lett. 111, 160401 (2013)], allows us to resolve
a posteriori dynamics, which is not reflected by the usual quantum state ρ(t).
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I. INTRODUCTION

Journalists’ comments on the present time t are based on
their knowledge of the present and of the past. It is sometimes
difficult for them to single out the relevant events from the
random noise of daily news or to lift ambiguities between
equally probable interpretations. The situation of historians,
working at a future time T , is quite different. They base their
insights on all events up to their own time, and their knowledge
of the future of t may be instrumental in sorting out the relevant
events and in lifting ambiguities.

Similar considerations apply to the monitoring of the
evolution of a classical or quantum system. In the classical
realm, smoothing methods postprocess experimental data and
compute the probabilities for the system to occupy different
states at time t from the observations made both before and
after t [1]. In particular, the forward-backward algorithm
combines the conventional conditional probabilities, obtained
by (forward) iteration of Bayes’ rule until time t , with a
(backward) iteration depending on all data obtained until
the last observation at time T [1,2]. Direct application of
these techniques to quantum systems has been realized for
classical parameter estimation [3–6] and for the evolution of
two-level systems [7–9]. A general quantum version of the
forward-backward mechanism is provided by the past quantum
state formalism [10]. It provides the best estimate about the
result of any measurement performed on the system at t from
information gathered in the past and in the future of t . Both
in the classical case and in the quantum case, the estimation
of properties at time t relies most strongly on measurement
results obtained within a finite-time window before and after
t . Contributions from much earlier and later detection events
are suppressed due to the relaxation of the observed systems,
described by rate processes.

In this paper, we apply the forward-backward method
(or, equivalently, the past quantum state formalism) to
the monitoring of the photon number in a microwave
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superconducting cavity mode, repeatedly probed by circular
Rydberg atoms in the dispersive regime [11]. The atoms ex-
perience a photon-number-dependent light shift, which is read
out using a Ramsey atomic interferometer. The probabilities
of different atomic meter readings are periodic functions of the
photon number n. By accumulating measurement results from
meter atoms, we estimate the probability distribution for n at
the end of the measurement and its time evolution in the past.
This assignment is sensitive to statistical noise in the atomic
detections, and ambiguities arise due to the periodicity of the
detected signal versus n. The forward-backward estimation
removes these ambiguities. It considerably reduces the statis-
tical noise and reveals information about the system dynamics,
which is hidden in the conventional, forward photon-number
estimation. These results demonstrate the applicability and the
benefits of this method in the quantum realm.

II. EXPERIMENTAL SETUP

The scheme of the setup is presented in Fig. 1. The
microwave field is stored in a high-Q superconducting cavity C
resonant at ωc/2π = 51 GHz [12]. The cavity, cooled down to
0.8 K, has an energy damping time Tc = 65 ms. It is repeatedly
probed by circular Rydberg atoms, excited in B from a beam
of Rubidium atoms propagating with a 250 m/s velocity. The
atomic transition frequency ωa between the circular states with
principal quantum numbers 50 (state |g〉) and 51 (state |e〉)
is close to ωc. Atomic samples cross the cavity mode every
Ta = 86 μs. The atomic state is finally measured in the
field-ionization detector D. On average, we detect 0.28 atom
per sample.

The dispersive interaction of an atom with n photons in C
changes the relative phase between |g〉 and |e〉 by ϕ(n) ≈
ϕ0(n + 1/2), where ϕ0 is the phase shift per photon [11].
Information on ϕ(n), and thus on n, is read out using a
Ramsey interferometer, made up of two low-Q cavities, R1
and R2, sandwiching C. They induce π/2 classical Rabi pulses
between |g〉 and |e〉. Given a definite photon number n in the
cavity, the conditional probability to detect the atom in state
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FIG. 1. (Color online) Scheme of the experimental setup. A
sequence of circular Rydberg atoms crosses the mode of the high-
finesse optical cavity C fed by microwave source S. The atomic
states are excited in box B and detected in detector D. Auxiliary
low-finesse cavities R1 and R2, fed by source S’, constitute the
Ramsey interferometer. The electric field produced in R2 by the
voltage V controls the interferometer phase.

a ∈ {g,e} (the “Ramsey fringe signal”) is

P (a|φ,n) = {1± A± B(n) sin[ϕ(n)−ϕ0/2−φ]}/2, (1)

where the plus (minus) sign applies for a = g (e) and φ is
the Ramsey interferometer phase. Experimental imperfections
account for the finite offset (A = 0.03) and the photon-
number*dependent contrast B(n). The contrast is B(0) = 0.71
for n = 0 and decreases with increasing n due to the spatial
spread of the atomic beam in the cavity standing-wave mode
(see Appendix A for details).

We set here the average phase shift per photon to ϕ0 ≈ π/4
by adjusting the atom-cavity detuning. In order to optimize
the photon-number discrimination, the interferometer phase
φ cycles through four values for successive atomic samples
(φ1 ≈ 0, φ2 ≈ π/4, φ3 ≈ π/2, and φ4 ≈ 3π/4). It is con-
trolled using a transient Stark shift of ωa produced by the
electric potential V applied across R2. Due to the periodicity
of P (a|φ,n), the measurement is a priori unable to distinguish
n photons from n + 8 [13].

III. FORWARD-BACKWARD PHOTON-NUMBER
ESTIMATION

Assume an initial photon-number probability distribution
P f (n,0). This can be recursively updated by forward applica-
tion of Bayes’ rule [13],

P f (n,t+i ) ∝ P (ai |φri
,n)P f (n,t−i ), (2)

which relates the photon-number probabilities before (t−i ) and
after (t+i ) detection of the ith atom in state ai , probed with one
of the phases φri

, where ri = 1, . . . ,4.
Similarly, in the time interval Ta between the atomic probe

samples, the photon-number distribution P f (n,t) is subject to
cavity relaxation described by the rate equation

dP f (n,t)

dt
=

∑
m

Kn,mP f (m,t), (3)

where Kn,n = −κ[(1 + nb)n + nb(n + 1)], Kn,n+1 =
κ(1 + nb)(n + 1), and Kn,n−1 = κnbn, with all the other
coefficients being zero [14,15]. In these expressions,
κ = 1/Tc is the field energy damping rate and nb = 0.074 is

the thermal photon number. Iterating Eqs. (2) and (3) until
time t and normalizing the distribution to unity, we obtain the
time-dependent photon-number distribution P f (n,t).

We now show that the forward-backward method [1,2]
provides a better evaluation of the photon-number distribution
at t based on information about the past as well as the future
of t (detection events and relaxation). Such a method has
recently been developed for monitored, dissipative quantum
systems [10]. As we argue in Appendix B, the expressions for
the diagonal elements of matrices applied in the full quantum
treatment are, indeed, equivalent to the forward-backward
formalism and hereby justify its application to the photon-
number distribution in the cavity.

The forward-backward photon-number distribution reads

P f b(n,t) = P f (n,t)P b(n,t)∑
m P f (m,t)P b(m,t)

, (4)

where the populations P f (n,t) are weighted by P b(n,t), the
probability for the sequence of atomic meter readouts from t

until T , conditioned on the photon-number measurement result
n at time t . Following [1,2] (see also [7]), P b(n,t) depends on
the measurement record {aj } (tj > t) through the (backward)
update equation,

P b(n,t−j ) ∝ P (aj |φrj
,n)P b(n,t+j ), (5)

and between measurements, P b(n,t) solves the (backward)
rate equation,

dP b(n,t)

d(−t)
=

∑
m

Km,nP
b(m,j ), (6)

where the values of Km,n are given after Eq. (3) (note the
exchange of n and m). We shall normalize P b(n,t) separately
and refer to it as the backward distribution.

The smoothing performed by the forward-backward
method is conspicuous when we realize that the assignment of
probabilities at two consecutive times t and t + Ta differs only
by the transfer of the last relaxation rate and Bayesian updates
of P b(n,t + Ta) to the corresponding updates of P f (n,t).

While the past quantum state theory justifies the classical
forward-backward method for the photon-number estimation,
it is important to emphasize a conceptual difference between
the interpretation of the results in the quantum and classical
cases. Even when the quantum-mechanical density matrix ρ(t)
and the effect matrix of the past quantum state formalism E(t)
(see Ref. [10] and Appendix B for its definition) have only
diagonal elements, corresponding to P f (n,t) and P b(n,t),
we must distinguish the classical probability that the photon
number is n from the quantum probability that the result of a
photon-number measurement yields n.

The classical hidden Markov model formally deals with a
hidden (classical) variable and thus associates P f b(n,t) with
the probability that the system really occupies the number state
|n〉. A hypothetical field quadrature measurement would then
be governed by the probability p(q,t) = ∑

n P f b(n,t)|un(q)|2,
where un(q) = 〈q|n〉 are harmonic oscillator eigenfunctions.
But, according to Eq. (B2) in Appendix B, the past quan-
tum state formalism yields a different expression: p(q,t) =
N

∑
nm P f (n,t)P b(m,t)|un(q)|2|um(q)|2, where N is a nor-

malizing factor. We can apply the formalism of classical
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smoothing, but even in experiments that are sensitive to only
the photon number, this observable should not be thought
of as a classical hidden variable, i.e., as a quantity with a
stochastically evolving definite value.

IV. EXPERIMENTAL RESULTS

In a first experiment illustrating the achievements of the
forward-backward state analysis, we inject photons in the
cavity and then send a sequence of S = 6500 meter samples
(total duration T = 559 ms). For the sake of experimental
convenience we prepare initially a 6.2-photon coherent state.
However, this information is discarded in our analysis in order
to compare different photon-number estimation approaches in-
dependent of any a priori information on the field preparation.
We thus set P f (n,0) = 1/16 for n = 0, · · · ,15.

Figure 2 shows a single realization of the experiment. We
plot the forward, backward, and smoothed photon-number
distributions versus time. The “noise” observed in P f and
P b is mainly due to the statistical fluctuations of the random
atomic detections [represented by the Bayesian updates (2)
and (5), which can cause considerable changes in the photon-
number distribution]. Between actual meter detections (occur-
ring every 0.3 ms on average), P f (n,t) and P b(n,t) evolve
continuously under cavity relaxation represented by the rate
equations (3) and (6).

During the first 20 ms, the forward distribution in Fig. 2(a)
exhibits two significant maxima, at n = 0 and n ≈ 8, separated
by the eight-photon period of the meter interferometric readout
set by the choice ϕ0 � π/4. At t � 20 ms, the most probable
value of n jumps from 0 to 7, before relaxing toward zero
in a series of downward jumps. In experiments where this
large upward jump occurs, we are led to conclude that the
outcome of a photon measurement before the jump was
probably more likely to yield 8 than 0, a distinction we were,
however, unable to make at that time.

The backward distribution P b(n,t) in Figs. 2(c) and 2(d)
reflects the periodicity of P (a|φ,n) only at the end of the
experimental sequence. Starting from time T , it quickly
converges toward a mixture of n’s close to 0 modulo 8. Then,
at earlier times, down to t � 200 ms, the combination of
time-reversed decoherence and meter readings makes zero the
most probable photon number. Continuing backward in time,
the photon-number expectation value increases without any
sign of the abrupt jumps by ±8, which we saw for P f (n,t).

Figures 2(e) and 2(f) show the forward-backward distri-
bution P f b(n,t), i.e., the normalized product of P b(n,t) and
P f (n,t). The first striking observation is the drastic reduction
of the noise [compare Fig. 2(f) to Figs. 2(b) and 2(d)].
In contrast to P f (n,t) and P b(n,t), P f b(n,t) includes the
full available set of measurement and relaxation operators,
and the almost equivalent significance of atoms measured
before and after t implies a better signal-to-noise ratio in the
state estimation. Also, some spiked changes in the number
distribution P f (n,t) are discarded by the smoothing, as they
are recognized as natural fluctuations in the detection events.

The highest outcome probability maxn{P f b(n,t)} is, most
of the time, larger than the corresponding maxn{P f (n,t)}.
The outcome of a photon-number measurement and the
times at which quantum jumps occur in the photon-number

distribution are thus predicted with a higher fidelity by the
forward-backward state analysis.

Finally, Figs. 2(e) and 2(f) clearly show that the ambiguity
in the initial number distribution has been lifted, revealing
information that is hidden in the standard forward analysis in
Figs. 2(a) and 2(b). We can identify the series of quantum
jumps from the initial n, around 9 in this example, down
to vacuum. These features illustrates how detection results
obtained after time t can radically change state estimation
at t .

We assess the quality of the conventional and the smoothed
state predictions by comparing, in a single realization of the
experiment, the photon-number distributions obtained from
two disjoint subsets of atomic data. These distributions are both
nonexhaustive estimates of the same measurement outcome
distribution, and their mutual discrepancies reflect how much
their predictions vary from a real measurement.

We obtain the photon-number distribution by repeating the
experiment of Fig. 2 Nr = 6000 times. For each realization k =
1, . . . ,Nr , we sort the atomic samples into two independent
subsets, Ak and Bk . The first four samples go into Ak , the
next four into Bk , etc. The four Ramsey phases are thus
equally represented in Ak and Bk . Using the data of each
subset separately, we compute the forward and smoothed
distributions, P f

uk
(n,t) and P

f b
uk

(n,t), where uk = {Ak,Bk}, and
their average photon numbers n̄m

uk
(t), where m ∈ {f,f b}. We

finally quantify the distance between the distributions provided
by the A and B data subsets using the root-mean-square
deviation (over a large number of experimental runs) of the
time-dependent estimate of the mean photon numbers �m(t):

�m(t) =
√∑Nr

i=1

(
n̄m

A,i(t) − n̄m
B,i(t)

)2

Nr
. (7)

Figure 3 shows the result of this comparison for the forward
and forward-backward analyses (solid thin green and thick red
lines, respectively). The deviation �f b(t) is, for nearly all
times, much smaller than �f (t), indicating that the smoothed
state analysis provides a better estimate of the photon-number
distribution. Note, however, that, for t < 14 ms, �f (t) <

�f b(t) since the forward distributions are identical at t = 0,
and even though they are very broad and imprecise, �f (0) = 0.
The statistically independent information provided by disjoint
sets of atomic samples, however, quickly results in a rapid
increase of �f (t), followed by a slow decrease due to the
narrowing of the photon-number distributions induced by
cavity relaxation and by the information retrieved by the
measurements.

We now present a second experiment applying the forward-
backward analysis to the detection of a photon-number
quantum jump induced on purpose at a well-defined time.
The experimental sequence involves three parts. Starting with
the residual thermal field, which is close to vacuum, we first
transmit 4000 meter samples. We then induce a photon creation
quantum jump by injecting a single sample prepared in |e〉.
Using the Stark effect produced by an electric-field pulse
applied across the cavity mirrors, we tune this sample in
resonance with C, leading to atomic emission with a high
probability. We then resume the measurement of the field with
4000 nonresonant meter samples. The experiment is repeated
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FIG. 2. (Color online) Evolution of the estimated photon-number distributions. (a) and (b) Forward, (c) and (d) backward, and (e) and (f)
smoothed distributions in a typical realization of the experiment. (a), (c), and (e) present probabilities with the color shade scale given in (a).
(b), (d), and (f) give the explicit evolution of the photon-number probabilities. For the sake of clarity, we plot only the probability of the most
likely photon number in (b) and (d). This number is given by the line color code, defined by the labels in (f). Note that the time scale on the
horizontal axis is changed by a factor of about 5 at t = 100 ms (vertical dotted line) for all panels.

16 320 times. We select the 2962 realizations with exactly
one atom detected in state |g〉 in the resonant sample. We thus
isolate the sequences in which a quantum jump has most likely
been successfully induced.

Figure 4 shows the mean photon number obtained from
the forward (solid thin green line), backward (dashed blue
line), and forward-backward (solid thick red line) analyses.
Figure 4(a) presents a single realization. The time origin,
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FIG. 3. (Color online) Root-mean-square deviations, �f b(t)
(thick red line) and �f (t) (thin green line), between mean photon
numbers reconstructed from two independent subsets of data mea-
sured on the same experimental realizations.

t = 0, corresponds to the induced jump. As expected, the
forward (backward) measurement detects the induced jump
later (earlier) than its real occurrence time. The smoothed state
analysis gives a much better estimate: the jump time, defined as
the time when the expected mean value of the photon-number
measurement crosses the 0.5 level, is much closer to zero. The
standard deviation of all jump times is 4.4 ms, corresponding
to 13 detected atoms.

Figure 4(b) shows an average over all selected realizations.
The forward-backward curve crosses the 0.5 level at 0.1
ms, a deviation from zero shorter than the delay between
two detected atoms. This demonstrates that the smoothed

FIG. 4. (Color online) Detection of a photon creation quantum
jump induced at t = 0. (a) Evolution of the mean photon number n̄

in the forward (solid thin green line), backward (dashed blue line),
and forward-backward (solid thick red line) analyses for a single
realization. (b) Average over 2962 realizations 〈n̄〉. The black line is
an exponential fit to the smoothed result.

estimation of the jump time is unbiased. In comparison, the
average jump detection with standard analysis is delayed by
about 10 ms.

The black line is an exponential fit of the forward-backward
state data obtained for t > 35 ms. The fit parameters are the
decay constant, 67 ms (close to the independently determined
Tc), an offset of 0.068 photon (close to nb), and an amplitude
of 1.27 at t = 0. This initial photon number is higher than
1 and can be explained by the events in which two atoms
in the resonant sample (one remaining undetected) inject two
photons into C. This value is in excellent agreement with a
prediction based on the efficiency of D (30%) and the Poisson
distribution of the atom number in each sample.

The study of quantum jumps can be extended to larger
photon numbers. We have applied the forward-backward
analysis to the data of the 6000 experiments used for Fig. 3
with an initial coherent state having P f (n,0) = e−n̄0 n̄n

0/n!
with n̄0 = 6.2 photons. For each trajectory, we determine the
time intervals during which different number states have the
highest probability. Using data from all trajectories, we get, for
each n, the distribution of these time intervals, and we find that
it nicely fits with an exponential decay (see Appendix C for
details). This fit provides the lifetimes T

exp
n of the Fock states

with 1 � n � 10 (higher Fock states lead to poor statistics and
large uncertainties). They are plotted as red circles in Fig. 5.

The theoretical values of these lifetimes are T th
n =

Tc/[n(1 + nb) + nb(n + 1)]. They are shown as black squares
in Fig. 5 and are in excellent agreement with the values
extracted from the evolution of P f b(n,t). These theoretical
values had already been confirmed experimentally in [15] by
analyzing the evolution of photon-number distributions aver-
aged over many experimental realizations. Here, in contrast,
we extract the information from the analysis of individual
quantum jumps, an impossible feat using the forward analysis.

0

FIG. 5. (Color online) Lifetimes of the photon-number states.
The red circles present the experimental results; the light yellow
(light gray) band presents the bounds of the experimental values of
T exp

n reconstructed with the a priori value of Tc varying from 50 to
80 ms. The black squares are the theoretical values T th

n ; the dark blue
(dark gray) band presents their bounds for 50 ms < Tc < 80 ms.
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Moreover, we determine the lifetimes of Fock states with
n > 7, which cannot be detected unambiguously in the forward
analysis.

The forward-backward state analysis uses an a priori
knowledge of the cavity lifetime, Tc = 65 ms [see Eqs. (3)
and (6)]. In order to check that the inferred values of T

exp
n are

not merely reproducing this knowledge, we have performed the
analysis with different choices of Tc between 50 and 80 ms.
The corresponding theoretical values T th

n are given by the wide
blue (dark gray) band in Fig. 5. The measured T

exp
n values are

presented as the narrow yellow (light gray) band around the
red circles. The small variation of T

exp
n ’s for a large span of

Tc clearly shows that the measured values are not appreciably
biased by the damping model introduced in the smoothed state
reconstruction.

V. SUMMARY

We have applied the forward-backward analysis of classical
hidden Markov models to the state of a quantum field
in a cavity. This postprocess analysis is validated by the
full quantum theory of measurements, and it applies here
because coherences between photon-number states are not
measured and do not influence the population dynamics.
By using meter atom readouts, before and after time t , we
get a better estimate of the photon-number dynamics than
with the standard approach, which uses only information
available at and before t . By removing ambiguities in the
photon-number evolution, we access information which is
hidden in the standard approach, and we observe an improved
temporal correlation between our state assignment and the
deterministic injection of a photon into the cavity. Finally, from
a more precise determination of the quantum jump times, we
extract photon-number state lifetimes and verify that they very
precisely follow exponential distributions. All these features
confirm the validity of the forward-backward method in this
quantum context, and they show its power for the analysis of
the dynamics of quantum systems.
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APPENDIX A: CALIBRATION OF THE
MEASUREMENT OPERATORS

A reliable state reconstruction requires excellent knowledge
of all measurement parameters. In our case, the conditional
probabilities P (a|φ,n) must be calibrated as carefully as pos-
sible before analyzing the data. The relevant parameters [14]
are the phase shifts ϕ(n), the Ramsey interferometer phases
φj (j = 1, . . . ,4), the offset A, and the contrast B(n). The

particularly important parameters for extracting the most
information on large photon numbers are ϕ(n) and B(n).

The calibration of the dephasing ϕ(n) is presented in detail
in Ref. [14]. In the large detuning regime and for small photon
numbers, ϕ(n) depends linearly on n. In our case, however,
there is weak nonlinearity, which has to be carefully taken
into account. For the current experimental parameters (atom-
cavity detuning δ/2π = 248 kHz and vacuum Rabi frequency

0/2π = 46 kHz) we have found ϕ(n) = 0.250π (n + 1/2) −
0.0011πn2.

Due to the spatial spread of the atomic beam along the
cavity axis (about 0.7 mm), all atoms do not experience the
same coupling 
0 to the cavity mode. This spread induces a
dispersion of the phase shifts ϕ(n). The average Ramsey fringe
contrast is thus a decreasing function of n. Since the exact
position and spread of the atomic beam cannot be measured
directly, we use a method based on atomic spin tomography to
reconstruct B(n).

In Refs. [14,15] we have used the distribution of the
transverse atomic pseudospin after interaction with the cavity
field to determine ϕ(n). Here, we use the same method to
extract also information on the contrast B(n), which amounts
to a reduction of the spin amplitude with ϕ (and thus with
n). We analyze the experimental data used for Fig. 3. For
all experimental realizations and for every ensemble of 200
successive atomic samples, we calculate the relative atomic
population in state g, Rj , detected with the Ramsey phase φj .
It is defined as

Rj = mg,j − me,j

mg,j + me,j

+ A/2, (A1)

where ma,j is the number of atoms in the j th ensemble detected
in state a ∈ {g,e} and A = 0.03 is the independently measured
Ramsey fringe offset. Next, we calculate components σx and
σy of the atomic pseudospin:

σx = 1

2

[
R3 − R1 cos φ3

sin φ3
+ R2 cos φ4 − R4 cos φ2

sin[φ2 − φ4]

]
,

σy = 1

2

[
R1 + R2 sin φ4 − R4 sin φ2

sin[φ4 − φ2]

]
. (A2)

All experimental realizations start with a coherent field
of 6.2 photons on average. In order to avoid the overlap of
different photon numbers due to the eight-photon periodicity
of the interferometric measurement, we isolate three separate
sets of data for which the probability to have a photon number
in the ranges n ∈ [0,7], [4,11], and [8,15] is higher than
0.8, respectively. This selection is performed using P f b(n,t)
distributions calculated with a constant Ramsey fringe contrast
B. This rough estimate is sufficient to isolate the proper ranges
of photon numbers.

The spin tomography is then performed independently
on these three sets. The corresponding results are shown as
histograms in Figs. 6(a), 6(b), and 6(c). The white spiral lines
in each panel are a guide to the eye to follow the reduction of
the spin amplitude with n. This tomography does not provide
a direct measurement of B(n) since it is also affected by
spontaneous quantum jumps occurring during the 200-sample
time interval (i.e., during 17.2 ms) used to calculate σx and σy .
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FIG. 6. (Color online) Spin tomography. (a), (b), and (c) Experi-
mental data for three ranges of field values. (d), (e), and (f) Simulation
results for the same ranges. The conditional probability P (e|φ,n),
used in this simulation, is shown in Fig. 7. The white line (the same
in all panels) is a guide to the eye.

In order to determine B(n), we numerically simulate the ex-
periment with various forms of B(n) and search the one which
best reproduces the experimental data. Figures 6(d), 6(e),
and 6(f) present these simulation results. They are in excellent
agreement with the experimental data. The corresponding
optimal Ramsey fringes P (e|φj ,n) are shown in Fig. 7. These
conditional probabilities have been used to reconstruct all
forward and smoothed photon-number distributions presented
in this paper.

This approach is confirmed by a detailed analysis of the
atom-cavity coupling dispersion due to the atomic beam
spread. The optimal fringes P (e|φj ,n) correspond to a circular
atomic beam with a 0.8-mm diameter displaced vertically 0.39
mm away from the cavity center. These parameters are quite

FIG. 7. (Color online) Conditional probability P (e|φ,n) to detect
an atom in state e. The four curves correspond to the four Ramsey
interferometer phases φ used in the experiment: φ1 = 0 (squares),
φ2 = 0.260π (circles), φ3 = 0.519π (triangles), and φ4 = 0.773π

(diamonds). The contrast reduction is found by matching the simula-
tion results of the atomic spin distribution with the experimental one
(see Fig. 6).

realistic for our experimental setup. They also explain the
observed value of the Rabi frequency (46 kHz), which is
smaller than the maximal coupling of 50 kHz computed at
the cavity center.

APPENDIX B: THE PAST QUANTUM STATE FORMALISM

In quantum mechanics, the density matrix ρ(t) accounts for
the maximum information available about a quantum system
at time t . Thus, ρ(t) provides the probabilities for the outcome
of any quantum measurement, generally described by positive
operator-valued measures (POVMs) {
̂†

n
̂n} [16]:

p(n) = Tr[
̂†
n
̂nρ(t)]. (B1)

The value of ρ(t) is found by solving equations that take
into account the system Hamiltonian, coupling to ancillary
quantum systems, and measurements, carried out either di-
rectly on the system or on the ancillary degrees of free-
dom. In many situations, damping and dissipation caused
by the coupling to an environment may be taken into
account by a Lindblad master equation, dρ/dt = L[ρ], with

terms of the form ĈiρĈi
† − 1

2 (Ĉi
†
Ĉiρ + ρĈi

†
Ĉi). Lindblad

terms Ĉ1 = √
κ(nb + 1)â and Ĉ2 = √

κnbâ
† with photon

annihilation (creation) operators â (â†) thus describe the
exchange of photons between a cavity mode and a thermal
heat bath and yield the rate equation for P f (n,t) (3) when
restricted to the diagonal elements ρnn(t) of the density
matrix.

Probing a quantum system by an ancillary meter system
is described by the evolution and subsequent reduction of
the joint system and meter state, depending on the random
outcome μ of the measurement on the ancilla. Discarding the
meter after the measurement, this leaves the system in a new
density matrix, ρ → L̂μρL̂†

μ, with POVM operators {L̂†
μ,L̂μ}.

Measurements may be imperfect due to, for example, finite
detector efficiency or unresolved ancilla properties. In our
experiment, for example, atoms may pass undetected, we may
mistake a ground for an excited atom, and we may detect
only one atom when more atoms have actually passed the
cavity [14]. This can be taken into account by associating
with an outcome μ′ a (coarse grained) weighted back action,
ρ → ∑

μ P (μ′|μ)L̂μρL̂†
μ. When all these features and their

consequences for the evolution of the diagonal elements of
the density matrix are included for our cavity system, we
recover the transformation (2), following from the Bayes’ rule
argument.

When we are only concerned with measurements of the
photon number, i.e., 
̂n = 
̂

†
n = |n〉〈n|, (B1) yields the usual

result, p(n) = ρnn(t). The probability to get n in a photon-
number measurement is the population of the number state |n〉
according to the density matrix.

In a recent paper [10], it was shown that the probabilities
that we can assign at time T to the outcome of general quantum
measurements on a quantum system at an earlier time t are
conditioned not only on the dynamics of the system until time
t but also on the dynamics from t to T . Specifically, the probing
of the system after t yields information about the earlier state.
This theory does not change the density matrix ρ(t), but it
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assigns different probabilities for measurement outcomes than
Eq. (B1).

To obtain the refined outcome probability for the measure-
ment at time t , we must supplement the density matrix ρ(t)
with an “effect matrix” E(t), which is obtained as a product
of matrices, corresponding to a backward evolution in time by
measurement back action and relaxation between T and t . The
theory yields a factorization of the probability,

P f b(n,t) = Tr[
̂nρ(t)
̂†
nE(t)]∑

m Tr[
̂mρ(t)
̂†
mE(t)]

. (B2)

Expression (B2) leads to considerable modification of the
conventional predictions based on (B1). In the appropriate
weak and strong measurement limits, Eq. (B2) reproduces
both Aharonov’s “weak values” [17,18] and the Aharonov-
Bergmann-Lebowitz rule [19] for pre- and postselected mea-
surements. Equation (B2) has been used for the interpretation
of weak measurements on a qubit undergoing projective
measurements at zero and T [20] and for continuous moni-
toring by homodyne detection of a superconducting qubit in a
microwave cavity [21].

In our case, where the probing by atom meters is sensitive
to only the photon numbers, the diagonal elements Enn(t)
solve a closed set of equations, readily identified as Eqs. (5)
and (6) for P b(n,t) in this article. The dynamics of E is
adjoint to the dynamics of ρ(t) [10], in agreement with the
swap of indices on the rate coefficients between Eqs. (3)
and (6). As long as we want to make only predictions for
photon-number measurements, the classical smoothing theory,
Eq. (4), relying on Bayes’s rule and hidden Markov model
dynamics, is therefore equivalent to the past quantum state
expression (B2).

APPENDIX C: PHOTON-NUMBER LIFETIMES

We extract information on the photon-number lifetimes,
presented in Fig. 5, from the data acquired in 6000 realizations

FIG. 8. (Color online) Survival probability of photon numbers n

from 1 to 10 vs time. Thick solid lines are experimental data; thin
dashed lines are exponential fits.

of the experiment. Each experimental sequence starts by
injecting into the cavity a coherent field with a mean photon
number n0 = 6.2. The information on this initial field is
used in the forward-backward analysis by setting P f (n,0) =
e−n̄0 n̄n

0/n!. The state reconstruction in each realization is
performed with 6500 atomic samples. Note that the same data
set has also been used for Fig. 3.

We define a quantum jump as the time when the most prob-
able photon number n changes. For each n, we search all its
appearances in all realizations and measure the corresponding
time intervals of its survival. Next, we calculate the probability
to survive versus time and, finally, fit an exponential decay
function, f (t) = A exp(−t/Tn), to these data. Figure 8 shows
experimental data and fit results as solid and dashed lines,
respectively. Since we cannot reliably resolve very short times
between successive jumps, all fits start at 8 ms (about 30
detected atoms). The fitted Tn values are shown in Fig. 5.
Only photon numbers up to 10 have been analyzed here since
for larger n’s the measurement statistics is very poor.
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