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Positive-operator-valued measures in the Hamiltonian formulation of quantum mechanics
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In the Hilbert space formulation of quantum mechanics, ideal measurements of physical variables are discussed
using the spectral theory of Hermitian operators and the corresponding projector-valued measures (PVMs).
However, more general types of measurements require the treatment in terms of positive-operator-valued measures
(POVMs). In the Hamiltonian formulation of quantum mechanics, canonical coordinates are related to PVM. In
this paper the results of an analysis of various aspects of applications of POVMs in the Hamiltonian formulation
are reported. Several properties of state parameters and quantum observables given by POVMs or represented
in an overcomplete basis, including the general Hamiltonian treatment of the Neumark extension, are presented.
An analysis of the phase operator, given by the corresponding POVMs, in the Hilbert space and the Hamiltonian
frameworks is also given.
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I. INTRODUCTION

The Hamiltonian formulation of quantum mechanics
(HQM) [1–4] provides an alternative mathematical formu-
lation that is equivalent to the more standard one based on
Hilbert spaces and has proven to be useful in discussing
such issues as nonlinear constraints [5,6] the geometry of
entanglement [2], the classical limit [7,8], hybrid quantum-
classical systems [9–11], and nonlinear and stochastic gen-
eralizations of quantum mechanics (QM) [1,2,12]. In the
Hamiltonian formulation quantum pure states are repre-
sented by points of an appropriate smooth manifold M
and the quantum dynamics is represented by a Hamiltonian
flow on M. In order to formulate probabilistic aspects of
QM and in particular describe ideal measurements in the
sense of von Neumann, the manifold M is equipped with
a Riemannian metric. Standard postulates of QM about
states, observables, and dynamics are formulated in terms
of notions associated directly with a Hamiltonian dynamical
system on M, without any reference to the Hilbert space
formulation.

An ideal measurement of a quantum observable, repre-
sented in the von Neumann scheme by a Hermitian operator
and its spectral projector-valued measure (PVM), is in the
Hamiltonian framework formulated using quadratic functions
of canonical coordinates on M, their critical values and
critical points, and the Riemannian metric on M. However,
there are legitimate questions that can be asked about the
preparation of a quantum system that cannot be cast into the
von Neumann ideal measurement conception [13–15]. Data
about the system can be collected that cannot be obtained as
eigenvalues of an appropriate self-adjoined operator. On the
other hand, such sets of data do satisfy certain conditions, such
as covariance with respect to some natural transformations
[13,14], which justify association of such data with certain
physical quantities. Important examples of such data sets,
like those related to polarization or the phase of quantum
motion, are conveniently described by positive-operator-
valued measures (POVMs) instead of PVMs. Another instance
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where the use of POVMs appears most naturally is in the
context of approximate or indirect measurements or joined
measurements of canonically related observables. It is our goal
to formulate and analyze important properties of POVMs in the
framework of the Hamiltonian formulation and thus prepare
the way for the Hamiltonian formulation of the generalized
measurement.

The paper is organized as follows. In the next section we
provide a brief presentation of the Hamiltonian formulation
of QM, insisting on its independence from the Hilbert space
formulation. Section III is devoted to an abstract treatment
in the framework of the Hamiltonian formulation of var-
ious questions related to the use of the POVM, with all
considerations restricted to a finite-dimensional state space.
In particular, we discuss in detail the kinematical and the
dynamical aspects of the Hamiltonian analog of the Neumark
extension for a POVM. In Sec. IV we treat in detail the example
of a POVM corresponding to the phase of quantum motion.
The Neumark extension of the phase POVM in the Hilbert
space formulation is derived and the corresponding Hamil-
tonian formulation is presented. Section V provides a brief
summary.

II. BASICS OF THE HAMILTONIAN FORMULATION

The Hamiltonian formulation of quantum mechanics is
formally rather similar to the standard theory of Hamiltonian
dynamical systems as it is used in classical mechanics [16].
The additional features are related to the statistical properties
of quantum systems. Pure states of a quantum system are
in the HQM mathematically represented by points of a
smooth manifold with Kahler structure (M,G,�,J ), where
M is a smooth manifold admitting a Riemannian G and
symplectic � structures and J is a map on the tangent
space TM satisfying G(X,Y ) = �(X,JY ). One refers to
(M,G,�,J ) as the quantum phase space. In fact, in the
case of systems with a finite N -dimensional Hilbert space
HN , the Hamiltonian formulation is given using M = R2N

with the standard Riemannian, symplectic, and complex
structures. On the other hand, phase spaces for systems with
infinite-dimensional Hilbert spaces can be considered as direct
sums of an even number of real infinite-dimensional vector
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spaces. In this and the next section we restrict our attention
to the finite-dimensional cases. In any case, a pure quantum
state is represented by an equivalence class of points in M.
Nevertheless, we almost always refer to the points of M as the
quantum states neglecting the fact that many points correspond
to physically the same quantum pure state.

The symplectic two-form � associates a Hamiltonian
vector field Xf with a sufficiently smooth function f on M
by the formula

�(X,Xf ) = df (X), (1)

where X is a vector field on M. Thus, any smooth function
generates a symplectic transformation. The symplectic struc-
ture also defines a Poisson bracket between smooth functions
f and g on M,

{f,g} = �(Xf ,Xg), (2)

where Xf ,Xg are Hamiltonian vector fields corresponding to
f,g.

The Euclidian space R2N admits global canonical co-
ordinates (q,p) ≡ {qi,pj ; i,j = 1,2, . . . ,N}, which satisfy
{qi,pj } = δij and {qi,qj } = {pi,pj } = 0. In the classical me-
chanical application of Hamiltonian dynamics any real smooth
function of (q,p) represents a physical variable. Quantum
mechanics is characterized also by the metric structure and
therefore the set of physical variables of a quantum system,
defined as generators of transformations that preserve the
typical structures � and G, is different: Only real quadratic
functions of the form

f (q,p) =
N∑
ij

f 1
ij (qiqj + pipj ) + f 2

ij qipj , (3)

where f 1
ij are real symmetric and f 2

ij are real antisymmetric,
are assumed to be related to quantum physical observables.
The most important property of such quadratic functions is
that the corresponding Hamiltonian vector fields generate
symplectic maps that preserve the Riemannian structure. Thus,
the physical variables generate transformations that preserve
the two constituting structures of the quantum phase space
(M,G,�,J ). It is important to stress that, contrary to the
case of classical mechanics, not all values of a function (3)
representing a physical variable can be obtained as a result
of quantum measurements of this physical variable. Possible
results of measurements in the Hamiltonian formulation will
be discusses shortly.

It is convenient to introduce the set of complex coefficients
πlm such that

f (q,p) =
N∑
ij

f 1
ij

(
q2

i + p2
i

) + f 2
ij qipj

=
N∑
lm

πlm(ql − ipl)(qm + ipm). (4)

Obviously, one has

Reπij = f 1
ij , Imπij = −f 2

ij /2. (5)

In fact, πlm form an N × N Hermitian matrix, so there is a
Hermitian operator F̂ on a Hilbert space HN and a proper

basis |el〉, l = 1,2, . . . ,N , such that

πlm = 〈el|F̂ |em〉. (6)

Here the Hermitian scalar product between two vectors
〈ψ1|ψ2〉 is related to the metric and symplectic structures on
M by 〈ψ1|ψ2〉 = G(ψ1,ψ2)/2 + i�(ψ1,ψ2)/2, where on the
right-hand side we identified R2N with its tangent space.

Using the proper basis |el〉, one associates a Hilbert space
vector |ψqp〉 ∈ HN with the point m ∈ R2N parametrized
by the canonical coordinates values {ql = ml,pl = ml+N ; l =
1,2, . . . ,N}. The relation is

|ψ〉 =
N∑
l

(ql + ipl)|el〉. (7)

The operator F̂ in (6) is given in terms of this proper basis by

F̂ =
N∑
ij

πij |ei〉〈ej | (8)

and the quadratic function

F (q,p) = 〈ψqp|F̂ |ψqp〉 (9)

is to be interpreted as the quantum expectation of the
quantum observable F̂ in the state |ψqp〉. The Poisson bracket
between two quadratic functions F1 and F2 is related to the
quadratic function corresponding to the commutator between
the corresponding operators F̂1 and F̂2:

1

i
〈ψ |[F̂1,F̂2]|ψ〉 = {F1,F2}, (10)

where, as before, Fi(ψ) = 〈ψ |F̂i |ψ〉.
The kinematic part of the Hamiltonian formulation of QM

will be referred to as the quantum phase-space formulation.
The dynamics of a quantum system is in the HQM given by
the abstract Hamiltonian equations

ṁ = XH (m), (11)

where m ∈ M and XH is the Hamiltonian vector field
corresponding to the function H (m) = 〈ψm|Ĥ |ψm〉, where Ĥ

is the Hamiltonian of the system. In the complex space the
corresponding equation is the Schrödinger equation

i�|ψ̇(t)〉 = Ĥ |ψ(t)〉. (12)

In canonical coordinates Eq. (11) is

q̇i = {H (q,p),qi} = ∂H (q,p)

∂pi

,

ṗi = {H (q,p),pi} = −∂H (q,p)

∂qi

, i = 1,2, . . . ,N.

(13)

Information about the state of a quantum system is obtained
by performing operations with the considered systems and
possibly additional systems. A quite restricted class of such
operations is the ideal measurements in the sense of von
Neumann. In the Hilbert space formulation, the data collected
by such a measurement involve spectral decomposition of an
appropriate Hermitian operator, i.e., involve an appropriate
PVM. In the Hamiltonian formulation of quantum mechanics,
the data collected by such measurements involve only the
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functions of the form (9) and the Riemannian structure G.
A full description of the von Neumann measurement of
an observable with a possibly degenerate and continuous
spectrum in the Hamiltonian framework is discussed in [1].
As an illustration, we recapitulate the case of an observable
with a discrete nondegenerate spectrum. Possible results of
a measurement from this class are exhausted by the critical
values of a function of the form (9). We denote these critical
values and the corresponding critical points from R2N by F0,i ,
i = 1,2, . . . ,N , and XF,i , respectively. For the system in a state
min ≡ (qin,pin) the probability of the measurement result F0,i

is given by G(min,XF,i), where XF,i is the ith critical point of
F . In terms of the quadratic function (9), the possible results
of an F measurement are obtained by diagonalization of the
Hermitian matrix π

f

ij . Spectral decomposition of the operator

F̂ corresponds to the harmonic-oscillator representation of
the quadratic function f (q ′,p′) = ∑

l π
f

l (q ′2
l + p′2

l ), where
the sum goes over distinct eigenvalues π

f

l of the matrix π
f

ij

and {q ′
l ,p

′
l} denote here the real and imaginary parts of the

eigenvalues of F̂ . The transformation from (q,p) to (q ′,p′)
coordinates is of course canonical and isometric.

However, the most general class of quantum operations that
can be used to obtain information about a quantum state is in
the Hilbert space formulation described by POVMs [14,15].
A description of such a generalized measurement process
in terms of a POVM involves two important mathematical
properties of POVMs. (i) For all purposes related to quantum
information processing, a POVM can always be given in
terms of an overcomplete basis (Davis theorem [15,17]). (ii) A
POVM can be obtained by projecting a PVM acting in a larger
Hilbert space (Neumark theorem [15,18]). The Hamiltonian
formulation of these properties of POVMs is the topic of this
paper.

III. POSITIVE-OPERATOR-VALUED MEASURES AND
FUNCTIONS REPRESENTING PHYSICAL VARIABLES

Consider an overcomplete set of vectors {|bi〉,i ∈ I } where
the index i can be discrete i = 1,2, . . . ,M > N or continuous.
It is sometimes convenient to use a multidimensional or com-
plex index set I , for example, in the case of ordinary coherent
states. The one-dimensional (1D) projectors |bi〉〈bi | are not
mutually orthogonal. Such an overcomplete set provides a
POVM {B̂i = |bi〉〈bi |,i ∈ I }. Such a POVM can be used,
instead of a PVM, to define a Hermitian operator or to represent
a Hermitian operator as a function of the corresponding 2M

noncanonical variables. Furthermore, there is a Hilbert space
H̄, a PVM {P̂i}, and a projector �̂, H̄ → H, such that a POVM
{B̂i} is given by B̂i = �̂P̂i�̂. We analyze the formulation and
consequences of these facts in the Hamiltonian framework
of QM. In the abstract treatment of this section we restrict
our attention to the case when the index i, enumerating the
vectors of the overcomplete basis, is discrete and finite. The
case when the index enumerating the overcomplete basis is
real and continuous but bounded will be treated in detail in
the next section using the example of a POVM associated
with the quantum phase. Another common example of an
overcomplete basis and the corresponding POVM with an
interesting Hamiltonian formulation, which, however, will

not be treated here, is provided by the coherent states of
a single linear harmonic oscillator on L2(R). The index set
here is the complex plane C. The Neumark extension of this
POVM is the PVM given by the multiplication operator on the
Hilbert space L2(R2). The Hamiltonian formulations of the
original and the extended system with constraints both involve
infinite-dimensional Hamiltonian systems.

A. Positive-operator-valued measures as a set of
dependent coordinates

A set of canonical coordinates (q,p) is uniquely related to
a basis of mutually orthogonal vectors, i.e., with a PVM. On
the other hand, an overcomplete basis {|bj 〉} with the index
j continuous or discrete with maxj = M > N can be used
to associate with each vector in the 2N -dimensional space a
set of 2M > 2N real numbers. Thus, the overcomplete basis
provides 2M parameters to characterize the points from R2N .
Obviously, the values of these parameters on R2N cannot be
linearly independent.

Consider a set of vectors B = {|bj 〉}Mj=1 (M � N ) generat-
ing a resolution of unity in HN ,

M∑
j=1

|bj 〉〈bj | = IN. (14)

The set B could be a proper basis (M = N ) where the vectors
are necessarily mutually orthogonal, but could also be an
overcomplete basis (M > N ), when at least two of the vectors
are not orthogonal. In any case, a (normalized) state |ψ〉 from
the Hilbert space HN can be expanded, using (14), as

|ψ〉 =
M∑

j=1

cj |bj 〉 =
M∑

j=1

(qj + ipj )/
√

2� |bj 〉, (15)

with real qj and pj . Coefficients (qj ,pj ) are uniquely defined
if and only if the vectors |bj 〉 form a proper basis. On the other
hand, if the resolution of unity (14) is overcomplete, i.e., if
some of the |bj 〉 are not mutually orthogonal, the coefficients
(qj ,pj ) satisfying (15) are not unique, but any such set of 2M

coefficients satisfies the relations

qi =
∑

j

qj Re〈bi |bj 〉 − pj Im〈bi |bj 〉,

pi =
∑

j

pj Re〈bi |bj 〉 + qj Im〈bi |bj 〉.
(16)

Obviously, if the basis B is proper then Eq. (16) are reduced to
trivial identities and the explicit expressions for the coefficients
are

qj = Re〈bj |ψ〉, pj = Im〈bj |ψ〉. (17)

However, if the basis is overcomplete the relations are
nontrivial and express the nonuniqueness of the expansion
(15). The general explicit form of the coefficients in this case
is given later in (22).

The coordinate form of the abstract Schrödinger equation
(12) or equivalently of the abstract Hamilton equations (11),
corresponding to the general setB satisfying (14), is equivalent
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to the set of equations

GB

[
q̇
ṗ

]
=

[
∂H/∂ p

−∂H/∂q

]
, (18)

where the vectors of coordinates are given by q =
[q1, . . . ,qM ]T and p = [p1, . . . ,pM ]T , while H (q, p) =
〈ψq,p|Ĥ |ψq,p〉. The Gram matrix of the set B can be cast
into the real form

GB =
[

g −π

π g

]
, (19)

where matrices g and π have the elements gjk = Re〈bj |bk〉
and πjk = Im〈bj |bk〉, respectively. If B is a proper basis (M =
N ), then GB becomes an identity matrix of dimension 2N

and Eq. (18) assumes the form of the Hamilton equations in a
canonical basis [

q̇
ṗ

]
=

[
∂H/∂ p

−∂H/∂q

]
. (20)

Consider now the case when the setB is overcomplete (M >

N ). Due to the overcompleteness of the basis B, there are M −
N nontrivial zero-valued complex linear combinations of basis
vectors or equivalently 2(M − N ) real linear combinations

GB

[
x(k)

y(k)

]
= 0, GB

[− y(k)

x(k)

]
= 0, k = 1, . . . ,M − N,

(21)
where x(k) = [x(k)

1 , . . . ,x
(k)
M ]T and y(k) = [y(k)

1 , . . . ,y
(k)
M ]T are

M − N independent solutions of (21). Thus, the general form
of the (qj ,pj ) coefficients satisfying (15) is

[
q
p

]
=

[
Re〈b|ψ〉
Im〈b|ψ〉

]
+

M−N∑
k=1

(
ak

[
x(k)

y(k)

]
+ bk

[− y(k)

x(k)

])
. (22)

The matrix GB is singular and Eq. (18) cannot be cast into
the canonical form of Hamiltonian equations. The parameters
{qj ,pj } do not form a set of canonical coordinates on R2N . In
fact, (18) has the equivalent form

[
q̇
ṗ

]
= G(−1)

B

[
∂H/∂ p

−∂H/∂q

]
+

M−N∑
k=1

(
λk

[
x(k)

y(k)

]
+ μk

[− y(k)

x(k)

])
,

(23)

where λk and μk are arbitrary real numbers and G(−1)
B is

the Moore-Penrose pseudoinverse. The terms in (23) under
the sum do not influence the evolution of the state |ψ〉. In
anticipation of the Hamiltonian treatment, in the next section
the numbers λk and μk can be considered as corresponding
to the gauge degrees of freedom. Fixing their values would
give additional 2(M − N ) constraints and yield one possible
solution. For example, the natural gauge could be λk = 0 and
μk = 0 for k = 1, . . . ,M − N .

B. Hamiltonian formulation of the Neumark extension

We shall first briefly recapitulate the Hilbert space formu-
lation of the Neumark extension, introducing the appropriate
notation at the same time. It will then be demonstrated that the
Hamiltonian description of the relation between the Neumark
extension and the original system is in fact given in terms of a

reduction of the Hamiltonian systems with primary constraints.
i.e., with gauge degrees of freedom.

Let {|ek〉}Nk=1 be a proper orthonormal basis of HN . Then
one has

|bj 〉 =
N∑

k=1

βkj |ek〉, j = 1, . . . ,M, (24)

with βkj = 〈ek|bj 〉. Using (14) we get the relations

M∑
j=1

βkjβ
∗
k′j =

M∑
j=1

〈ek|bj 〉〈bj |ek′ 〉 = 〈ek|ek′ 〉 = δk′k. (25)

The relation means that we have a set {bk =
[βk1, . . . ,βkM ]T }Nk=1 of N orthonormal vectors from
CM . We can choose M − N auxiliary vectors {bN+1, . . . ,bM}
such that {bk}Mk=1 is an orthonormal basis of CM . Now let us
consider an enlarged Hilbert space

HM = HN ⊕ H⊥, (26)

whereH⊥ = S({|ek〉}Mk=N+1) with orthonormal auxiliary basis
states {|ek〉}Mk=N+1 and S denoting the span. The states {|Bj 〉 =∑M

k=1 βkj |ek〉}Mj=1 are also orthonormal. Hence, an arbitrary
normalized state |
〉 ∈ HM has the unique expansion

|
〉 =
M∑

j=1

(Qj + iPj )/
√

2� |Bj 〉, (27)

with real Qj and Pj that can be regarded as a pair of canonical
coordinates on the extended phase space R2M . Define the
projector operator by

�̂|ek〉 = |ek〉, k = 1, . . . ,N (28a)

�̂|ek〉 = 0, k = N + 1, . . . ,M. (28b)

This leads to

�̂|Bj 〉 = |bj 〉 (29)

and

�̂|
〉 =
M∑

j=1

(Qj + iPj )/
√

2� |bj 〉, (30)

which is of the same form as (15). In other words, the PVM
given by the proper basis {|Bj 〉} in HM is the Neumark
extension of the POVM given on HN by {|bj 〉}).

Strictly speaking, the Neumark theorem is not concerned
with the dynamics, i.e., Hamiltonians, on HN versus that on
HM . Nevertheless, it is natural to require that Ĥ on HN and
the corresponding Ĥex on HM satisfy the following condition:
All states from HM that are projected onto the same state
|ψ(t0)〉 in HN evolve during t − t0 into the states that are
all projected onto the same state |ψ(t)〉. This is the case
if

Ĥex = �̂−1Ĥ �̂. (31)

In anticipation of the Hamiltonian formulation, expectation
values of Ĥex in |
〉 and Ĥ in |ψ〉 = �̂|
〉 are related
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by

Hex(Q,P ) = 〈
Q,P |Ĥex |
Q,P 〉
=

∑
j,j ′

(Qj − iPj )(Qj ′ + iPj ′ )〈Bj |�̂−1Ĥ �̂|Bj ′ 〉

=
∑
j,j ′

(Qj − iPj )(Qj ′ + iPj ′ )〈bj |Ĥ |bj ′ 〉

= H (Qj,Pj ), (32)

where (Q,P ) in Hex(Q,P ) and in H (Q,P ) are the same
numbers but are treated as values of independent coordinates
on R2M or dependent parameters on R2N , respectively.

We now present the phase-space formulation of the Neu-
mark extension. Consider the space R2M as a symplectic man-
ifold of a Hamiltonian system with the canonical coordinates
denoted by {(Qj,Pj ); j = 1,2, . . . ,M}. The natural conditions
〈ek|
(t)〉 = 0 for k = N + 1, . . . ,M are implemented as
constraints on the phase space R2M . Explicitly, the 2(M − N )
constraints are

φk( Q,P) ≡
M∑

j=1

(
βR

kjQj − βI
kjPj

) = 0, (33a)

πk( Q,P) ≡
M∑

j=1

(
βI

kjQj + βR
kjPj

) = 0, (33b)

where βR
kj = Reβkj and βI

kj = Imβkj . The constraints satisfy
the Poisson brackets

{φk,πk′ }Q,P = Re
M∑

j=1

β∗
k′jβkj = δk′k, (34a)

{φk,φk′ }Q,P = {πk,πk′ }Q,P = Im
M∑

j=1

β∗
k′jβkj = 0. (34b)

In the general case of arbitrary constraints, the constrained
manifold need not be symplectic and need not support a Hamil-
tonian system. However, in our case (33), the matrix of Poisson
brackets between the constraints (34) is nonsingular, i.e., the
constraints are primary, and therefore the manifold determined
by the constraints is also symplectic. The symplectic structure
on the constrained manifold is given by the Dirac-Poisson
bracket on R2N [19,20],

{f1,f2}R2N = {f1,f2}R2M + c

2(M−N)∑
m,n

{Fn,f1}R2M

×{Fm,Fn}−1
R2M {Fm,f2}R2M , (35)

where f1,f2 are functions on the constrained manifold, the
symbols Fn,Fm,m,n = 1,2, . . . ,2(M − N ) denote the con-
straints (33), and the Poisson brackets on the right-hand side
are the canonical brackets on R2M . The general formula (35)
in the notation (33) assumes the explicit form

{f1,f2}R2N = {f1,f2}Q,P −
M∑

k=N+1

(
∂f1

∂φk

∂f2

∂πk

− ∂f2

∂φk

∂f1

∂πk

)
.

(36)

Consider now the relation between the Hamiltonian func-
tion H (Q,P ) as a function of the dependent parameters on
R2N , i.e., as the Hamiltonian of the system given on R2N ,
and the Hamiltonian system on R2M with the Hamiltonian
H (Q,P ) [where (Q,P ) are now independent and canonical
on R2M ] with imposed constraints (33). In the case of
general constraints they can be incorporated into the dynamics
using the standard Dirac approach [19,20]. Namely, the total
Hamilton function has the form

HT = H +
M∑

k=N+1

(φkλk − πkμk),

HT = H +
M∑

k=N+1

(φk{πk,H }Q,P − πk{φk,H }Q,P ),

(37)

where the appropriate Lagrange multipliers λk,μk have been
determined from the compatibility conditions and using (34).
However, if the constraints are such that the constrained
manifold is symplectic, as they are in our case, then the
general procedure of constructing the Hamiltonian on the
constrained manifold can be bypassed. In fact, in this case
the Hamiltonian of the system on the constrained manifold is
simply obtained as a restriction of the Hamiltonian on R2M on
the constrained manifold R2N . This is precisely the relation
between the expectation values of the Hamiltonian operators
(32) introduced within the treatment of the Neumark extension.

What has been demonstrated is that the 2M real state
parameters {Qj,Pj ; j = 1,2, . . . ,M} given by the POVM,
i.e., by the overcomplete set {|bj 〉〈bj |; j = 1,2, . . . ,2M} in
HN , can be considered as parameters on R2N or equivalently
as canonical coordinates of an extended Hamiltonian system
on R2M with imposed primary constraints. We see that
the overcomplete description given by a POVM involves
in the Hamiltonian formulation the existence of constraints,
i.e., the gauge degrees of freedom, and the corresponding
reduction of an extended Hamiltonian system. This is yet
another example of the insights into the quantum-mechanical
formalism provided by the Hamiltonian formulation.

C. Functions associated with POVMs

In this section we derive several simple but useful formulas.

1. Functions corresponding to PVMs or POVMs

As before, B = {|bk〉; k = 1,2, . . . ,M � N} denotes an
arbitrary set of vectors, with the corresponding set of 1D
projectors {P̂k = |bk〉〈bk|}. Using another set B′ = {|b′

l〉; l =
1,2, . . . ,M ′ � N}, with the corresponding set {P̂l = |b′

l〉〈b′
l|}

that satisfies (14), each of the projectors |bk〉〈bk| is associated
with a quadratic function of the parameters (q ′

l ,p
′
l) provided by

B′. Thus, corresponding to the set {P̂k} is the set of quadratic
functions

Pk(q ′,p′) =
M ′∑
lm

πk
lm(q ′

l − ip′
l)(q

′
m + ip′

m), (38a)

where

πk
lm = 〈b′

l |P̂k|b′
m〉, k = 1,2, . . . ,M. (38b)
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It is our goal to obtain explicit conditions that distinguish the
sets of coefficients πk

lm in (38), given by B and B′ representing
a PVM and/or a POVM. In this setup, N is the dimension
of the Hilbert space, M � N is the number of vectors in the
set B whose properties such as the resolution of unity and
orthogonality are to be studied, and M ′ � N is the number of
vectors in the complete (or overcomplete) set B′ that is used
to associate functions with projectors from the set B.

If the set of functions (38) corresponds to either a PVM
or a POVM, an analog of the condition (14) must be satisfied
by the coefficients πk

lm. Furthermore, if the set corresponds
to a PVM, then the condition of mutual orthogonality of the
involved projectors has its analog in terms of the coefficients
πk

lm.

2. Resolution of unity in terms of π k
lm coefficients

Consider the scalar product 〈b′
l |b′

m〉 between arbitrary two-
vectors from B′. The condition (14) on B would imply

〈b′
l |b′

m〉 = 〈b′
l|

M∑
k

P̂k|b′
m〉 =

M∑
k

〈b′
l|P̂k|b′

m〉

=
M∑
k

πk
lm, l,m = 1,2, . . . ,M ′. (39)

Thus, if B is complete, then

M∑
k

πk
lm = 〈b′

l|b′
m〉, l,m = 1,2, . . . ,M ′. (40)

Obviously, if the coordinates (q ′
l ,p

′
l) in the set of functions

(38) are associated with an orthogonal (and complete) basis,
then

M∑
k

πk
lm = δlm. (41)

It is equally simple to show that if (40) is true, then the set
B satisfies (14). This follows from the equalities in the reverse
order of (39) and from the fact that if an operator has all matrix
elements between vectors from a complete (or overcomplete)
set equal to zero, then it is the zero operator, i.e., it annihilates
each vector from the Hilbert space. Thus, the set of functions
given by (38) satisfies (40) if and only if the set of projectors
{P̂k = |bk〉〈bk|; k = 1,2, . . . ,M � N} generates a resolution
of unity (14).

3. Orthogonality of two projectors in terms of π k
lm coefficients

The orthogonality of projectors P̂k and P̂k′ is equivalent to

P̂kP̂k′ = δkk′ P̂k′ . (42)

Using arbitrary set B′ satisfying (14), the condition (42)
implies the following conditions on all pairs of coefficients
πk

lm,πk′
lm:

M ′∑
l

πk
l′lπ

k′
ll′′ = δkk′πk

ll′′ , l,l′ = 1,2, . . . ,M;

(43)
k,k′ = 1,2, . . . ,M.

Observe that the two conditions (43) and (40) are based only
on the assumption that |ψ〉 = ∑M ′

l (q ′
l + ip′

l)|b′
l〉, which is true

since B′ satisfies (14).
The two criteria (43) and (40) taken together imply that

the set of functions Pk = ∑M ′
l,m πk

lm(q ′
l − ip′

l)(q
′
m + ip′

m), k =
1,2, . . . ,M , represents a PVM if all pairs π

k1
lm,π

k2
lm (k1,k2 =

1,2, . . . ,M) correspond to orthogonal projectors, i.e., satisfy
(43), and if the condition (40) is satisfied. If only the condition
(40) is satisfied but there is a pair of πk1 ,πk2 violating (43),
then the set of functions corresponds to a POVM. Furthermore,
the parameters appearing as the arguments in the considered
functions are canonical, i.e., the basis is proper orthonormal if
(41) is satisfied.

Let us also briefly discuss the notion of orthogonality of
the quadratic functions representing observables in a proper
basis. Consider two operators Â1 and Â2. The operators are
orthogonal if

Tr[Â1Â2] = 0. (44)

In terms of the coefficients πk
ij in the quadratic functions

corresponding to Â1,Â2 the previous condition is written as

Tr[Â1Â2] =
N∑
i

〈ai |Â1Â2|ai〉

=
N∑
ii ′

〈ai |Â1|a′
i〉〈a′

i |Â2|ai〉

=
N∑
i,i ′

π1
ii ′π

2
i ′i = 0. (45)

Thus, it makes sense to call two quadratic functions of the
form (9) orthogonal if

N∑
ij

π1
ijπ

2
ji = 0. (46)

The condition (46) supplies us with the notion of orthogonality
between two quadratic functions solely in terms of these
functions, with no reference to the analogous Hilbert space
formulation.

An alternative criterion for orthogonality of two 1D
projectors in terms of the associated quadratic function, i.e., in
terms of π1

ij ,π
2
ij , is obtained from the fact that orthogonal 1D

projectors commute and the relation (10). In fact,

〈[P̂μ,P̂ν]〉 = δμ,ν = i{Pμ,Pν}
= i

∑
ij

〈ak|eμ〉〈eμ|al〉〈ak|eν〉〈eν |al〉

× [−i{pi,qj } − i{qi,pj }]
= 2

∑
k

π
μ

ii π
ν
ii . (47)

If the two 1D projectors are orthogonal, the sum of the products
of the diagonal coefficients in the corresponding quadratic
functions is zero.
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4. Relations between functions representing an operator given by
PVMs or by POVMs

A Hermitian operator can be defined using a proper
basis |ei〉, i = 1,2, . . . ,N , or an overcomplete basis |bl〉,
l = 1,2, . . . ,M . Similarly, the operator can be represented as
a quadratic function of 2N canonical variables (q,p) using the
proper basis or as a quadratic function of the 2M noncanonical
parameters (Q,P ). Relations between different representations
are given by the simple formula

πlm =
∑
ij

aij 〈bl |ei〉〈ej |bm〉, (48)

where πlm (l,m = 1,2, . . . ,M) and aij (i,j = 1,2, . . . ,N) are
the coefficients in representations given by the overcomplete
and the proper orthogonal basis, respectively.

The inverse relation expressing aij (i,j = 1,2, . . . ,N) in
terms of πlm (l,m = 1,2, . . . ,M) reads

aij =
∑
lm

πlm〈ei |bl〉〈bm|ej 〉. (49)

In formulas (48) and (49) the Hermitian scalar product could be
replaced by the combination of the Riemannian scalar product
and the symplectic skew product, expressing the relations
entirely in terms of objects appearing in the Hamiltonian
formulation. However, the corresponding transformations are
not canonical.

IV. RELEVANT EXAMPLE: THE PHASE

The phase of quantum motion is an observable physical
quantity that is naturally expressed using an appropriate
POVM (see [21] and references therein). For our purpose
it is enough to discuss the phase POVM in the case of
the simplest quantum systems with finite Hilbert spaces and
with a nondegenerate energy spectrum. In this section we
first illustrate the construction of the relevant nonorthogonal
basis and the POVM in the Hilbert space formulation. We
then present the corresponding Neumark extension. The
Hilbert space analysis will be followed by the corresponding
Hamiltonian treatment.

A. Phase POVMs and the Neumark extension

Consider an N1-dimensional Hilbert space H1 with an
arbitrary proper basis denoted by |n〉1, n = 1,2, . . . ,N1. With
this basis one associates an infinite set of vectors parametrized
by an angle ϕ ∈ [0, 2π ) defined as

|ϕ〉1 = 1√
2π

N∑
n=1

eiknϕ|n〉1, ϕ ∈ [0, 2π ), (50)

where kn ∈ Z are integers. In the general construction pre-
sented here these integers are arbitrary. However, if the
constructed POVM is to correspond to the phase, then the
integers are to be precisely the nondegenerate and discrete
energy eigenvalues of the considered system.

A collection of operators defined as

�̂1(ϕ1,ϕ2) =
∫ ϕ2

ϕ1

P̂1(ϕ)dϕ (51)

and

P̂1(ϕ) ≡ |ϕ〉11〈ϕ| = 1

2π

N∑
n=1

N∑
m=1

ei(kn−km)ϕ|n〉11〈m| (52)

forms a resolution of unity, i.e.,

�̂1(0,2π ) = Î , (53)

but the operators associated with disjoined subsets of ϕ ∈
[0,2π ) are not orthogonal. Thus the collection (52) forms a
POVM. As pointed out, if the integers kn coincide with the
energy eigenvalues, the collection of operators (51) satisfies
the so-called covariance condition

exp −iaĤ �̂1(ϕ1,ϕ2) exp iaĤ

= �̂1((ϕ1 + a)mod2π,(ϕ2 + a)mod2π ). (54)

This fact justifies the association of the POVM (52) with the
data corresponding to the phase of the quantum motion.

In order to formulate the Neumark extension of the phase
POVM one needs an appropriate Hilbert space H2 with
dimension N2 > N1 and a projector-valued measure P2(ϕ)
with projectors onto orthogonal subspaces of H2 associated
with disjoined intervals. Then the theorem claims that there is
a projector P2→1 from H1 onto H2 such that P2→1�̂2P2→1 is
isomorphic to �̂1.

For the case of the POVM given by (52) the Hilbert space
H2, the PVM P̂2, and the projector P2→1 are given as follows.
The Hilbert space H2 is in fact the complex vector space
of square integrable functions on the interval (0, 2π ). The
coordinate representation is determined by generalized vectors
|ϕ〉2 and 2〈ϕ|ϕ′〉2 = δ(ϕ − ϕ′) and a proper basis |k〉2 is given
by

2〈ϕ|k〉2 ≡ ψk(ϕ) = 1√
2π

e−ikϕ, k ∈ Z. (55)

The proper basis with orthogonal generalized vectors

|ϕ〉2 = 1√
2π

+∞∑
k=−∞

eikϕ|k〉2 (56)

is used to define the PVMs

�̂2(a,b) =
∫ b

b

P̂2dϕ, (57)

P̂2(ϕ) = |ϕ〉22〈ϕ| = 1

2π

+∞∑
k=−∞

+∞∑
k′=−∞

ei(k−k′)ϕ|k〉22〈k′|. (58)

The relevant projector P2→1 is defined as

P̂2→1 = |q1〉22〈q1| + |q2〉22〈q2| + · · · + |qN 〉22〈qN |, (59)

where |qi〉2 are vectors (56) with k = |qi〉. It follows that

P̂2→1P̂2(ϕ)P̂2→1 = P̂2→1|ϕ〉22〈ϕ|P̂2→1

= 1

2π

N∑
i=1

N∑
i ′=1

ei(qi−qi′ )ϕ|qi〉22〈qi ′ |, (60)

which is isomorphic to the measure P̂1(ϕ). This is the Neumark
theorem for the POVM given by (52).
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B. The phase in the Hamiltonian formulation

The Hamiltonian formulation of the original quantum
system on the finite-dimensional Hilbert space H1 is given on
the finite even-dimensional phase space M1. The Neumark
extension involves a Hamiltonian system on an infinite-
dimensional symplectic manifold M2, which is a direct sum
of two real vector spaces of square integrable functions on
[0,2π ).

The phase POVM involves an overcomplete set of vectors
{|ϕ〉} indexed by the continuous index ϕ ∈ [0,2π ). Conse-
quently, the expansion of an arbitrary |ψ〉 ∈ CN ,

|ψ〉 =
∫

dϕ[q(ψ ; ϕ) + ip(ψ ; ϕ)]|ϕ〉, (61)

generates functional parameters [q(ψ ; ϕ),p(ψ ; ϕ)] of points
ψ ∈ CN . On the other hand, the proper energy basis {|n〉1}
(with eigenvalues kn 
= kn′ ,n 
= n′) generates, via

|ψ〉 =
N∑
n

[qn(ψ) + ipn(ψ)]|n〉1, (62)

2N canonical coordinates {qn(ψ),pn(ψ)} of a point ψ indexed
by discrete and finite n. All relevant formulas from Sec. III
involve either of the expressions

〈ϕ1|ϕ2〉 = 1

2π

N∑
n

exp ikn(ϕ2 − ϕ1) (63)

or

〈n|ϕ〉 = 1√
2π

exp iknϕ (64)

and the real and the imaginary parts thereof. For example, the
arbitrary vector |
〉2 from H2 is expended as

|
〉2 =
∫ 2π

0
dϕ[Q(ϕ) + iP (ϕ)]|ϕ〉2, (65)

where the conditions 〈el|
〉2 = 0, l 
= kn, and n = 1, . . . , N

obtain the explicit form

∫ 2π

0
dϕ[Q(ϕ) + iP (ϕ)]〈el |ϕ〉2

=
∫ 2π

0
dϕ[Q(ϕ) + iP (ϕ)]

1√
2π

eilϕ = 0. (66)

The functions Q(ϕ),P (ϕ) are the canonical coordinates on
M2. The constraints (33) are explicitly given by

φl(Q(ϕ),P (ϕ))

= 1√
2π

∫ 2π

0
dϕ[cos(lϕ)Q(ϕ) − sin(lϕ)P (ϕ)] = 0,

πl(Q(ϕ),P (ϕ))

= 1√
2π

∫ 2π

0
dϕ[sin(lϕ)Q(ϕ) + cos(lϕ)P (ϕ)] = 0. (67)

Variational derivatives of the constraints read

δφl

δQ
= 1√

2π
cos(lϕ),

δφl

δP
= − 1√

2π
sin(lϕ),

δπl

δQ
= 1√

2π
sin(lϕ),

δπl

δP
= 1√

2π
cos(lϕ).

(68)

Poisson brackets between the constraints are, as in the general
case (34),

{φl,πl′ }Q,P =
∫ 2π

0
dϕ

(
δφl

δQ

δπl′

δP
− δφl

δP

δπl′

δQ

)

= 1

2π

∫ 2π

0
dϕ[cos(lϕ) cos(l′ϕ)

+ sin(lϕ) sin(l′ϕ)] = δll′ ,

{φl, φl′ }Q,P = 1

2π

∫ 2π

0
dϕ[− cos(lϕ) sin(l′ϕ)

+ sin(lϕ) cos(l′ϕ)] = 0,

{πl,πl′ }Q,P = 1

2π

∫ 2π

0
dϕ[sin(lϕ) cos(l′ϕ)

− cos(lϕ) sin(l′ϕ)] = 0. (69)

The functions �
(a,b)
2 (Q,P ) of the canonical (Q,P ) correspond-

ing to the PVM �̂2(a,b) is given, after some computation, by
the simple expression

�
(a,b)
2 (Q,P ) = 2〈
|

∫ b

a

dϕ|ϕ〉22〈ϕ|
〉2

=
∫ b

a

dϕ[Q2(ϕ) + P 2(ϕ)], (70)

which is as expected for the coordinates corresponding to the
eigenbases of �̂2. The functions corresponding to the POVM
�̂1(a,b) in the original space are by definition

P
(a,b)
1 (Q,P ) = 1〈
|

∫ b

a

dϕ|ϕ〉11〈ϕ|
〉1. (71)

Due to nonorthogonality of the vectors |ϕ〉1, this expression
cannot be significantly simplified. The explicit expression
reads

P
(a,b)
1 (Q,P ) =

∫ 2π

0
dϕ

∫ 2π

0
dϕ′′[Q(ϕ) − iP (ϕ)]

× [Q(ϕ′′) + iP (ϕ′′)]
∫ b

a

dϕ′
1〈ϕ|ϕ′〉11〈ϕ′|ϕ′′〉1,

where

1〈ϕ|ϕ′〉11〈ϕ′|ϕ′′〉1 = 1

2π

N∑
n=1

eikn(ϕ′−ϕ) 1

2π

N∑
m=1

eikm(ϕ′′−ϕ′).

This expression results also from explicit substitution of the
constraints (67) satisfied by (Q,P ) into the expression (70).

V. SUMMARY

We have studied several questions related to the description
and interpretation of POVMs in the Hamiltonian formulation
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of quantum mechanics. The topic is important from the
point of view that considers the Hamiltonian formulation as
independent and equivalent to the Hilbert space formulation,
because the POVMs appear as a description of important
quantum mechanical concepts, originally represented math-
ematically within the Hilbert space formulation. In particular,
the POVMs appear in the treatment of approximate and indirect
measurements and in the description of joint measurement of
conjugate variables. Furthermore, a physically justified defini-
tion of certain observables requires the corresponding POVMs
instead of standard representation via PVMs. As pointed
out, if the Hamiltonian formulation is to be considered as a
viable alternative approach to the mathematical formulation
of quantum mechanics, it is important to analyze properties
of representatives of the POVMs within the Hamiltonian
approach.

In particular we have studied the properties of the sets of
state coordinates corresponding in the Hamiltonian formula-
tion to an overcomplete basis in the Hilbert space formulation.
Coordinates in such a set are dependent and the relations

can be treated as constraints on the Hamiltonian formulation
in a larger phase space. We have demonstrated that the
Hamiltonian treatment of systems with linear primary con-
straints corresponds to the Neumark extension and reduction.
We have also provided the criteria that distinguish between
objects representing POVMs from those of PVMs entirely
within the Hamiltonian formulation. Finally, these abstract
considerations have been illustrated using the example of
a POVM corresponding to the phase of quantum motion.
The Hilbert space formulation of the phase POVM and the
corresponding Neumark extension was described first and then
the corresponding Hamiltonian description was provided.
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Prvanović, Phys. Rev. A 86, 034104 (2012).
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