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Decoherence-free states have been found in Markovian open system dynamics and in the framework of non-
Markovian fermionic environments. In the latter scenario we determine an energy range where quantum coherence
is maintained over long times for every initial coherent configuration. In particular, for a two-state fermionic sys-
tem interacting with a non-Markovian fermionic environment, undamped oscillating or stable coherence between
the two energy eigenstates appears if the degenerate energy level is below a critical energy. If these energies coin-
cide, the same behavior is observed in the superohmic regime and, under special conditions, the initial coherence
is approached asymptotically. Equivalently, coherence persists if a defined dressed energy of the system is less
than the band-gap energy of the reservoir. Same properties are found in the framework of bosonic environments.
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I. INTRODUCTION

Quantum coherence is the key ingredient for the realization
of quantum information processing [1–4]. Consequently, the
disruptive effects of the external environment on quantum
coherence is one of the main obstacles to the development
of quantum technologies [5]. Despite the action of the external
environment the reduced dynamics can be unitary in a subspace
of the Hilbert space of an open quantum system [2]. This
subspace is decoherence free and its existence is related to the
degeneracy of an eigenvalue of the interaction Hamiltonian
[6]. Decoherence-free states are obtained in several ways, from
symmetries of the Hamiltonian [7] and semigroup approach
[8], both in the Markovian [9] and non-Markovian regime [10],
to name a few. The experimental realizations of decoherence-
free subspaces are the most various. Decoherence-free spaces
have been found in neutron interferometry [11], nuclear spin
dynamics [12], trapped ions [13], and polarization-entangled
photons [14], to name a few. Especially, the engineering
reservoir approach provides time-dependent decoherence-free
evolution in the ground and excited states of an ion trapped
in a dissipative cavity, or in a superconducting artificial atom
coupled to a microwave cavity, to name a few [15].

If the open system dynamics is Markovian [16,17] the
decoherence-free subspace [8] can be determined by eval-
uating the kernel of the decohering Gorini-Kossakowski-
Sudarshan-Lindblad superoperator [18–20]. Since the open
system can evolve outside the decoherence-free subspace [21]
the condition for a global unitary Markovian open dynamics
has also been determined by including the unitary Hamiltonian
evolution [9].

Increasing interest has been devoted to the non-Markovian
open system dynamics in fermionic environments [22–36].
This theoretical model can describe quantum dots and
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nanodevices embedded in a large variety of nanostructures
that are suitable for the implementation of quantum in-
formation processing. The nonequilibrium transport theory
and the Schwinger-Keldysh nonequilibrium Green’s-function
technique provide for the non-Markovian open dynamics
master equations with time-local decoherence rates [22,37].
By considering a fermionic open system with two degenerate
energy levels, the enlightening analysis performed in Ref. [38]
shows the existence of dynamically stabilized decoherence-
free pure states. Full quantum coherence persists in the
nanosystem despite the effect of the fermionic environment.

As a continuation of the above scenario, we consider a
two-level nanoelectronic system interacting with a fermionic
environment. As a further way to protect quantum coherence,
we search for conditions on the energy that may maintain
coherence in the nanosystem.

The paper is organized as follows. Section II is devoted
to the description of the model. In Sec. III coherence
between the quantum states of the nanosystem is analyzed
in terms of the spectral density of the fermionic reservoir
and an energy range is identified where partial coherence is
maintained. Inverse power-law relaxations to the asymptotic
regimes are obtained for a class of sub- and superohmic
spectral densities in Sec. IV. Special cases are considered
in Sec. V and the corresponding open system dynamics is
described in terms of special functions. In Sec. VI coherence
in bosonic environment is analyzed. Section VII is devoted to
the conclusions, and details on the calculations are provided
in the Appendix.

II. MODEL

A general nanoelectronic system interacting with a
fermionic reservoir is described by the Hamiltonian H =
HS + HR + HI , where HS represents the Hamiltonian of
the system, HR is the Hamiltonian of the reservoir, and HI
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represents the interaction term [38],

HS =
N∑

j=1

Eja
†
j aj , HR =

∑
k

εkc
†
kck, (1)

HI =
N∑

j=1

∑
k

gj,k(eıφj a
†
j ck + e−ıφj c

†
kaj ). (2)

The energy levels of the system are E1, . . . ,EN , while the
creation and the annihilation operators related to the j th energy
level Ej are a

†
j and aj , respectively. Similarly, the creation and

annihilation operators of the kth energy level εk of the reservoir
are c

†
k and ck , respectively. The real coefficient gj,k and the

phase φj define the coupling strength between the j th energy
level of the nanosystem and the kth level of the reservoir. The
imaginary unity is ı and � = 1.

In the following, we consider a nanosystem with two
degenerate energy levels, N = 2 and E1 = E2 = E0, that are
identically coupled to the fermionic reservoir, g1,k = g2,k =
2−1/2gk . Following Ref. [38], the open system dynamics is
well described via the fermion operators A+ and A−,

A+ = a1 + eı(φ1−φ2)a2

21/2
, A− = a2 − eı(φ2−φ1)a1

21/2
. (3)

In this way, the system and the interaction Hamiltonian read

HS = E0(A†
+A+ + A

†
−A−), (4)

HI =
∑

k

gk(eıφ1A
†
+ck + e−ıφ1A+c

†
k). (5)

Furthermore, the states |+〉 and |−〉 are defined as coherent
superpositions of the original energy eigenstates |1〉 and |2〉 of
the nanosystem,

|+〉 = 2−1/2(|1〉 + e−ıφ|2〉), (6)

|−〉 = 2−1/2(|2〉 − eıφ|1〉), (7)

while |v〉 and |d〉 represent the vacuum and the dou-
bly occupied electron state. The following relationships
hold on the basis: {|+〉,|−〉,|v〉,|d〉}, A

†
+|+〉 = A+|−〉 =

A+|v〉 = A
†
+|d〉 = 0, A+|+〉 = |v〉, A

†
+|−〉 = |d〉, A

†
+|v〉 =

|+〉, A+|d〉 = A
†
−|v〉 = |−〉, |1〉 = a

†
1|v〉, |2〉 = a

†
2|v〉. The

vanishing commutator [A†
−A−,H ] suggests that the open

dynamics is closed in the subspaces {|+〉,|v〉} and {|−〉,|d〉}
that correspond to the expectation value 〈A†

−A−〉 of the
occupation number equal to 0 and 1, respectively.

Following Refs. [25–33,38], the time evolution of this open
system is described by the master equation

ρ̇(t) = −ı[H ′
S,ρ(t)] + L[ρ(t)], (8)

where ρ(t) represents the density matrix. The renormalized
system Hamiltonian H ′

S and the decohering superoperator L

are defined in terms of the fermion operators A+ and A− as
follows:

H ′
S = Er (t)A†

+A+ + E0A
†
−A−, (9)

L[ρ(t)] = k(t)[2A+ρ(t)A†
+ − A

†
+A+ρ(t) − ρ(t)A†

+A+]

+ kr (t)[2A
†
+ρ(t)A+ − A+A

†
+ρ(t) − ρ(t)A+A

†
+].

(10)

The renormalized energy level Er (t) and the decoherence rates
k(t) and kr (t) are determined by the nonequilibrium retarded
Green’s functions u(t) and nonequilibrium correlation Green’s
functions uc(t),

Er (t) = −Im{u̇(t)u−1(t)}, (11)

k(t) = uc(t)Re{u̇(t)u−1(t)} − Re{u̇(t)u−1(t)} − u̇c(t)/2,

(12)

kr (t) = u̇c(t)/2 − uc(t)Re{u̇(t)u−1(t)}. (13)

The Green’s functions are provided by the Schwinger-Keldish
formalism of nonequilibrium transport theory [37]. The re-
tarded Green’s function u(t) is obtained as the solution of the
following integrodifferential equation:

u̇(t) + ıE0u(t) +
∫ t

0
g(t − t ′)u(t ′)dt ′ = 0, (14)

where

g(τ ) =
∫ ∞

�g

J (ω)e−ıωτ dω. (15)

The function J (ω) represents the environmental spectral
density, J (ω) = ∑

k |gk|2δ(ω − ωk), and �g is the band-gap
frequency of the reservoir. The correlation Green’s function
uc(t) is defined in terms of the retarded Green’s function,

uc(t) =
∫ t

0
dt ′

∫ t

0
u(t ′)gT (t ′′ − t ′)u∗(t ′′)dt ′′, (16)

where

gT (τ ) =
∫ ∞

�g

J (ω)e−ıωτ

e(ω−μf )/(kBT ) + 1
dω. (17)

The parameter μf represents the external bias, kB is the
Boltzmann constant, and T is the absolute temperature.
Finally, the exact solution of the master equation (8) is given
by the following form [38]:

ρ(t) = ρ+,+(t)|+〉〈+| + ρ+,−(t)|+〉〈−| + ρ∗
+,−(t)|−〉〈+|

+ ρ−,−(t)|−〉〈−| + ρv,v(t)|v〉〈v| + ρd,d (t)|d〉〈d|,
(18)

where

ρ+,+(t) = ρ+,+(0)[|u(t)|2 + uc(t)] + ρv,v(0)uc(t), (19)

ρ+,−(t) = ρ+,−(0)eıE0t u(t), (20)

ρ−,−(t) = ρ−,−(0)[1 − uc(t)] + ρd,d (0)[1 − |u(t)|2 − uc(t)],

(21)

ρv,v(t) = ρv,v(0)[1 − uc(t)] + ρ+,+(0)[1 − |u(t)|2 − uc(t)],

(22)

ρd,d (t) = ρ−,−(0)uc(t) + ρd,d (0)[|uc(t)|2 + uc(t)]. (23)
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Following Ref. [38], the physical decoherence-free states are
obtained iff one of the two decoherence rates vanishes dy-
namically. Beside mixed states, the possible pure dynamically
stabilized decoherence-free states of the present system are
|+〉, |−〉, |v〉, |d〉.

III. ENERGY RANGE FOR COHERENCE

We search for conditions that maintain quantum coherence
between the states |+〉 and |−〉 of the nanosystem that linearly
interacts with a fermionic environment. In general, the open
dynamics is characterized by three typical time scales [22]. The
typical time scale of the nanosystem is 1/E0. The typical time
scale of the environment is 1/δω, where δω represents the band-
width of the environmental spectral density. The interaction
between system and environment provides a further time scale
that is estimated by the inverse of the coupling strength. Here,
the evolution of the coherence term is described by introducing
a time scale 1/ωs . The scale frequency ωs arises from the
environmental spectral density and scaling properties. In fact,
the spectral density is defined via the auxiliary function 	(ν)
as J (ω + �g) = 	(ν), where ν = ω/ωs , for every ω � 0.
The physical conditions that maintain coherence will be
determined by the interplay between the scale frequency ωs

and integral properties of the auxiliary function. Throughout
the whole paper the regular spectral densities under study do
not vanish above the band-gap frequency, J (ω) > 0 for every
ω > �g . The spectral densities are limited over the interval
[�g,+∞) and summable, J (ω) ∈ L1[�g,+∞)

. The absence
of any band gap in the reservoir is obviously included by
setting �g = 0.

If the two states are initially coherently coupled, i.e.,
ρ+,−(0) �= 0, persistence, undamped oscillations, or total loss
of coherence are observed over long times. The appearance
of each condition depends on a critical energy Ec that is
determined by integral properties of the spectral density and
the band-gap energy of the reservoir,

Ec = �g +
∫ ∞

�g

J (ω)

ω − �g

dω. (24)

If the degenerate energy level E0 of the nanoelectric system
is below the critical energy Ec of the reservoir, the coherence
term results in

ρ+,−(t) = ρ+,− (0) eı(E0−�g )t

× [γ eı�ωs t + I (ωst)], E0 < Ec. (25)

The coefficients γ and � are defined in the Appendix via
the auxiliary function 	(ν). The transient function I (ωst) is
determined by the spectral density,

I (ωst) =
∫ ∞

0+
e−ıωtJ (ω + �g)/({ω − E0

+�g + H+[J (ω′ + �g),ω]}2

+π2J 2(ω + �g)) dω, (26)

via the one-sided Hilbert transform, H+[ϕ(ω′),ω] =∫−∞
0 ϕ(ω′)/(ω′ − ω)dω′. The bar refers to the Cauchy principal

value at ω′ = ω. Over long times, t 	 1/ωs , the transient
function I (ωst) vanishes and undamped oscillations of the

coherence term appear,

ρ+,−(t) ∼ ρ+,− (0) eı(E0−�g)t γ eı�ωs t , E0 < Ec. (27)

The frequency of the undamped oscillations is constant(
E0 − �g + �ωs

)
, and vanishes for a special value of the

band-gap frequency, �g = E0 + �ωs . In this case coherence
persists for t 	 1/ωs ,

ρ+,−(t) ∼ γρ+,− (0) , E0 < Ec, �g = E0 + �ωs. (28)

The above analysis holds also if the critical energy is
infinite, Ec = +∞. This condition is due to the divergence
of the improper integral appearing on the right-hand side
of Eq. (24). For example, the critical energy is infinite for
spectral densities that do not vanish in the band-gap frequency,
J (�g) > 0. On the contrary, the critical energy is finite for
spectral densities that are super- or subohmic in the band-gap
frequency, J (ω) ∼ a0(ω − �g)α0 for ω → �+

g with α0 > 1 or
1 > α0 > 0, respectively [39].

If the degenerate energy level of the nanoelectric system is
equal to the critical energy of the reservoir, the appearance of
persistence, undamped oscillations or total loss of coherence
over long times is determined by the structure of the spectral
density at low frequencies. For spectral densities that are
superohmic in the band-gap frequency the coherence term
results to be

ρ+,−(t) = ρ+,−(0)eı(E0−�g)t [γc + IS(ωst)],

E0 = Ec, α0 > 1, (29)

where

γc =
(

1 + 1

ωs

∫ ∞

�g

J (ω)(
ω − �g

)2 dω

)−1

. (30)

The transient term IS (ωst) is given by the following form:

IS(ωst) =
∫ ∞

0+

J (ω + �g)e−ıωt

ω2

/[(
πJ (ω + �g)

ω

)2

+
(

1 + H+

[
J (ω′ + �g)

ω′ ,ω

])2]
dω (31)

and vanishes over long times. Consequently, undamped oscil-
lations of the coherence term appear for t 	 1/ωs ,

ρ+,−(t) ∼ γcρ+,−(0)eı(E0−�g )t , E0 = Ec, α0 > 1, (32)

and persistence of coherence is obtained in the same regime
if the band-gap energy coincides with the energy level of the
nanosystem,

ρ+,−(t) ∼ γcρ+,− (0) , E0 = Ec = �g, α0 > 1. (33)

Let the degenerate energy level of the nanoelectric system
be equal to the critical energy of the reservoir. For subohmic
spectral densities such that J (ω) ∼ ∑∞

j=0 aj (ω − �g)αj for
ω → �+

g , with 0 < α0 < 1 and αj �= 1 for every j = 1,2, . . .,
the coherence term is

ρ+,−(t) = ρ+,−(0)eı(E0−�g )t I (ωst),

E0 = Ec, 1 > α0 > 0, (34)

and vanishes for t 	 1/ωs .
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If the degenerate energy level of the nanoelectric system is
above the critical energy of the reservoir the coherence term
reads

ρ+,−(t) = ρ+,−(0)eı(E0−�g)t I (ωst), E0 > Ec, (35)

and vanishes for t 	 1/ωs .
In summary, if the states |+〉 and |−〉 of the nanosystem

are initially coherently coupled, i.e., ρ+,−(0) �= 0, undamped
oscillations of the coherence term appear over long times,
t 	 1/ωs , under each of the two following conditions:
the degenerate energy level of the nanosystem is lower
than the critical energy, E0 < Ec, or the degenerate energy
level of the nanosystem is equal to the critical energy,
E0 = Ec, and the spectral density is superohmic, α0 > 1,
in the band-gap frequency �g . The oscillations disappear
and coherence becomes persistent for special values of the
band-gap frequency. The second condition, E0 = Ec and
α0 > 1, is of interest for the protection and control of the initial
coherence. In fact, over long times, t 	 1/ωs , the magnitude
of the coherence term approaches its initial value,

ρ+,−(t) ∼ ρ+,−(0)eı(E0−�g)t , (36)

for∫ ∞

�g

J (ω)

(ω − �g)2
dω � ωs, E0 = Ec, α0 > 1. (37)

Especially, if the conditions (37) hold and if �g = E0 = Ec,
the oscillations disappear and the coherence term approaches
the initial value, ρ+,−(t) ∼ ρ+,−(0), over long times,
t 	 1/ωs . Qualitatively, the first of the conditions (37) can
be obtained slightly above the ohmic regime, α0 � 1, where
the dominant low-frequency contribution to the integration is
small, or if the scale frequency ωs is adequately larger than
the negative second moment of the auxiliary function of the
spectral density.

The above analysis shows how coherence can be maintained
in a degenerate two-level system interacting with a fermionic
environment if the energy E0 of the nanosystem is less than or,
in the superohmic regime, equal to the critical energy Ec. This
behavior exhibits analogies with the fractionalized steady-
state inversion phenomena that appear in a two-level atom
embedded in a photonic band-gap material [40–42]. In fact, the
quantity

∫ ∞
�g

J (ω)/
(
ω − �g

)
dω, belonging to the expression

of the critical energy Ec, can be interpreted as a negative energy
shift in the energy E0 of the nanosystem that is due to the
interaction with the fermionic reservoir. In this way, the per-
sistence of coherence can be explained via the mutual interplay
between the band-gap energy �g of the fermionic reservoir and
the “dressed” energy Ed that is defined as follows:

Ed = E0 −
∫ ∞

�g

J (ω)

ω − �g

dω. (38)

If the dressed energy is below the band-gap energy, Ed < �g ,
oscillating or stable coherence is maintained in the nanosystem
over long times. If the dressed energy exceeds the band-gap
energy, Ed > �g , coherence is entirely lost over long times.
If the dressed energy equals the band-gap energy, Ed = �g ,
threshold effects appear and the loss of coherence depends
on the structure of the environmental spectral density in
the band-gap frequency. As reported above, coherence

is completely lost in the subohmic regime and persists
asymptotically in superohmic conditions.

IV. INVERSE POWER-LAW RELAXATIONS

The long-time behaviors of the coherence term ρ+,−(t) are
determined by the decays of the transient functions I (ωst)
and IS (ωst). We intend to analyze the dependence of these
decays on the low-frequency structure of the spectral density.
Usually, the spectral densities are shaped as power laws at
low frequencies with an exponential cutoff at high frequencies
[3,38]. Here, we consider a class of spectral densities with
a band gap that are super- or subohmic in the band-gap
frequency. For the sake of simplicity, this class is defined by
imposing certain constraints over the auxiliary function 	(ν)
introduced in the previous section. The constraint concerning
the low-frequency behavior is the following:

	(ν) ∼
∞∑

n=0

anν
αn, ν → 0+, (39)

where α0 > 0, αn+1 > αn and αn �= αn� for every natural
value of the index n. The functions 	(ν) are regular and
continuously differentiable (α0� + 2) times, at least, in
(0,∞). The spectral densities are shaped quite arbitrarily
at high frequencies by requiring the physical constraints of
summability, sup{δ | 	(ν) = O(ν−1−δ),ν → +∞} > 0, and
the convergence of the integral

∫ ∞
1 |	(l)(ν)|dν for every

l = 0,1, . . . ,α0� + 2.
In the following, we analyze the behavior of the coherence

terms that are induced by the above class of spectral densities.
If the degenerate energy level of the nanoelectric system is
below the critical energy of the reservoir the transient term
I (ωst) exhibits inverse power-law decays that are arbitrarily
faster than 1/ (ωst). The resulting coherence term behaves for
t 	 1/ωs as follows:

ρ+,−(t) ∼ ρ+,−(0)eı(E0−�g )t [γ eı�ωs t + η(ωst)
−1−α0 ],

E0 < Ec. (40)

The coefficient η is defined in the Appendix.
If the degenerate energy level of the nanoelectric system

is equal to the critical energy of the reservoir, if the spectral
density belongs to the above class and is superohmic in the
band-gap frequency, the transient term IS (ωst) exhibits long-
time arbitrarily slow inverse power-law decays. Consequently,
for t 	 1/ωs the resulting coherence term reads

ρ+,−(t) ∼ ρ+,−(0)eı(E0−�g)t [γc + ηc(ωst)
1−α0 ],

E0 = Ec, α0 > 1. (41)

The coefficient ηc is defined in the Appendix.
If the degenerate energy level of the nanoelectric system

is equal to the critical energy of the reservoir and the spectral
density belongs to the above class and is subohmic in the
band-gap frequency, the transient term I (ωst) decays over
long times according to arbitrarily slow inverse power laws.
The resulting coherence term is described for t 	 1/ωs by
the following form:

ρ+,−(t) ∼ ηsρ+,−(0)eı(E0−�g )t (ωst)
α0−1,

E0 = Ec, 1 > α0 > 0. (42)

The coefficient ηs is defined in the Appendix.
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If the degenerate energy level of the nanoelectric system
is above the critical energy of the reservoir and the spectral
density belongs to the above class, the transient term I (ωst)
results over long times in inverse power-law decays. These
relaxations are arbitrarily faster than 1/ (ωst) and for t 	 1/ωs

the coherence term reads

ρ+,−(t) ∼ ηρ+,−(0)eı(E0−�g)t (ωst)
−1−α0 , E0 > Ec. (43)

In occurrence of the resonance E0 = Ec the relaxations
to the asymptotic configurations become arbitrarily slow by
approaching the boundary between sub- and superohmic
regime, i.e., α0 → 1− in the subohmic regime and α0 → 1+ in
the superohmic condition. This behavior has been found in the
general non-Markovian open system dynamics of finite dimen-
sional open quantum systems in bosonic environments [43].

V. SPECIAL CASES

We study the quantum coherence that exists between the
two states |+〉 and |−〉 of the nanosystem by considering two

special forms of spectral densities. The spectral density J1(ω)
is defined by the following expression:

J1(ω) =
j1

(ω−�g

ωs

)α

λ2 + (ω−�g

ωs

)2 , 1 > α > 0, (44)

and is subohmic in the band-gap frequency. The spectral
density J2(ω) is defined as follows:

J2(ω) =
j2

(ω−�g

ωs

)β

(
l + ω−�g

ωs

)[
λ2 + (ω−�g

ωs

)2] , (45)

for 2 > β > 0, it is superohmic in the band-gap frequency
for 2 > β > 1 and subohmic for 1 > β > 0. The parameters
j1 and j2 depend on the coupling between open system and
environment and on the reservoir correlation time [2].

The time evolution of the coherence term is described in
terms of the Fox H -function [44]. This special function is
defined by the following expression:

Hm,n
p,q

[
z

∣∣∣∣(a1,A1), . . . ,(ap,Ap)
(b1,B1), . . . ,(bq,Bq)

]
= 1

2πı

∫
C

�m
j=1�(bj + Bjs)�n

j=1�(1 − aj − Ajs)z−s

�
q

j=m+1�(1 − bj −Bjs)�p

j=n+1�(aj + Ajs)
ds,

under the conditions that the poles of the � functions, appearing in the denominator, do not coincide. The empty products are
interpreted as unity. The natural numbers m,n,p,q fulfill the following constraints: 0 � n � p, 1 � m � q, Aj ,Bk ∈ (0,+∞),
for every j = 1, . . . ,p and k = 1, . . . ,q. For the sake of shortness, we refer to [44] for details on the contour path C, the existence,
and the properties of the Fox H -function. If the environmental spectral density is described by the form J1(ω) the coherence
term results in

ρ+,−(t) = ρ+,−(0)eı(E0−�g)t
∞∑

n=0

n∑
k=0

k∑
j=0

C
(1)
n,k,j (ωst)

2n+k−αj

×
(

H
1,1
1,2

[
ır2ωst

∣∣∣∣(−n,1)
(0,1) , (−2n − k + αj,1)

]
− (λωst)

2 H
1,1
1,2

[
ır2ωst

∣∣∣∣(−n,1)
(0,1) , (−2n − k + αj − 2,1)

] )
. (46)

If the environmental spectral density is described by the form J2(ω) the coherence term reads

ρ+,−(t) = ρ+,−(0)eı(E0−�g)t
∞∑

n=0

n∑
k=0

k∑
j=0

j∑
m=0

C
(2)
n,k,j,m(ωst)

2n+k+j−βm

(
H

1,1
1,2

[
ıq3ωst

∣∣∣∣(−n,1)
(0,1),(−2n − k − j + βm,1)

]

− ılωstH
1,1
1,2

[
ıq3ωst

∣∣∣∣(−n,1)
(0,1), (−2n − k − j + βm − 1,1)

]

− λ2(ωst)
2H

1,1
1,2

[
ıq3ωst

∣∣∣∣(−n,1)
(0,1),(−2n − k − j + βm − 2,1)

]

+ ılλ2(ωst)
3H

1,1
1,2

[
ıq3ωst

∣∣∣∣(−n,1)
(0,1),(−2n − k − j + βm − 3,1)

])
. (47)

The coefficients C
(1)
n,k,j and C

(2)
n,k,j,m are defined in the Appendix. Since the spectral densities J1(ω) and J2(ω) belong to the general

class defined in the previous section, the long-time behaviors are included in the cases reported above. The corresponding critical
energies Ec,1 and Ec,2 read

Ec,1 = �g + π

2
j1λ

α−2 csc

(
πα

2

)
, (48)

Ec,2 = �g + π

2(l2 + λ2)

[
2lβ−1 csc (πβ) + lλβ−2 csc

(
πβ

2

)
− λβ−1 sec

(
πβ

2

) ]
. (49)
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FIG. 1. (Color online) The ratio |ρ+,−(t)/ρ+,−(0)| vs (ωst) for
different values of ρ0 = (E0 − �g)/ωs , ρc = (Ec − �g)/ωs , α, ρ1 =
j1/ωs , λ. Curve (1) corresponds to the values ρ0 = λ = 1, ρc �
50.83, α = 1/5, ρ1 = 10; curve (2) corresponds to ρ0 = λ = 1,
ρc = 10π , α = 1/3, ρ1 = 10; curve (3) corresponds to ρ0 = λ =
1, ρc � 9.71, α = 3/5, ρ1 = 5; curve (4) corresponds to ρ0 = λ = 1,
ρc = 3−1/210π , α = 2/3, ρ1 = 10; curve (5) corresponds to ρ0 =
λ = 1, ρc = 5π sec(π/8), α = 3/4, ρ1 = 10; curve (6) corresponds
to ρ0 = λ = 1, ρc � 16.52, α = 4/5, ρ1 = 10. Each curve shows
persistence of quantum coherence over long times.

Simplified forms are obtained if the powers α and β take
rational values p/q. In this cases the coherence term results in
a finite sum,

ρ+,−(t)

= ρ+,−(0)eı(E0−�g )t
nj∑
l=1

m
(j )
l∑

k=1

�
(j )
l,k (ωst)

(ml−k+1−q)/q

×H
1,1
1,2

[
−σ

(j )
l (ωst)

1/q

∣∣∣∣
(
k − m

(j )
l ,1

)
(0,1),

( q−m
(j )
l +k−1
q

, 1
q

)
]
, (50)

where j = 1,2. The case j = 1 refers to the spectral density
J1(ω) and j = 2 to J2(ω). The involved parameters nj , m

(j )
l ,

σ
(j )
l , �

(j )
l,k , are defined in the Appendix.

The numerical analysis shows long-time persistence of
coherence in the condition E0 < Ec and in the superohmic
regime of the resonance E0 = Ec, in accordance with the
theoretical analysis performed in the previous section. See
Figs. 1 and 2. Furthermore, the inverse power-law decays
of the coherence term are confirmed by the asymptotic lines
appearing in the log-log plots of Figs. 3 and 4. Each slope
coincides with the power of the inverse power-aw decay that
is theoretically predicted in the previous section.

VI. BOSONIC ENVIRONMENT

The Feynman-Vernon influence functional approach in the
coherent states representation provides an efficient way to
describe the open dynamics of a nanodevice [45]. For a
quantum dot coupled to a fermionic environment the master

1
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0.64
ρ , t ρ , 0

FIG. 2. (Color online) The ratio |ρ+,−(t)/ρ+,−(0)| vs (ωst) for
different values of the parameters ρ0, ρc, β, ρ2, λ, l. Curve (1)
corresponds to the values ρ0 = 1/2, ρc � 0.71, β = 7/6, ρ2 = λ =
l = 1; curve (2) corresponds to ρ0 = 1/2, ρc � 0.70, β = 6/5,
ρ2 = λ = l = 1; curve (3) corresponds to ρ0 = 1/2, ρc � 0.68, β =
5/4, ρ2 = λ = l = 1; curve (4) corresponds to ρ0 = 1/2, ρc � 0.66,
β = 4/3, ρ2 = λ = l = 1; curve (5) corresponds to ρ0 = 1/2, ρc �
0.65, β = 3/2, ρ2 = λ = l = 1; curve (6) corresponds to ρ0 = 3/2,
ρc = π/2, β = 5/2, ρ2 = λ = l = 1. Each curve shows persistence
of quantum coherence over long times.

equation of the reduced density matrix is given by the following
expression:

ρ̇(t) = −ı[H ′(t),ρ(t)] + γe(t)[2aρ(t)a† − ρ(t)a†a

− a†aρ(t)] + γ̃e(t)[aρ(t)a† + a†ρ(t)a − a†aρ(t)

− ρ(t)a†a], (51)

1
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ln ωst
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14
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FIG. 3. (Color online) The quantity | ln |ρ+,−(t)/ρ+,−(0)|| vs
ln(ωst) for different values of the parameters ρ0, ρc, α, ρ1, λ. Curve (1)
corresponds to the values ρ0 = ρc = 2−1/2π , α = 1/2, ρ1 = λ = 1;
curve (2) corresponds to ρ0 = 10, ρc = π , α = 1/3, ρ1 = λ = 1;
curve (3) corresponds to ρ0 = ρc = π csc (π/8) /2, α = 1/4, ρ1 =
λ = 1; curve (4) corresponds to ρ0 = 10, ρc = π csc (π/8) /2, α =
1/4, ρ1 = λ = 1; curve (5) corresponds to ρ0 = 10, ρc = π , α =
1/3, ρ1 = λ = 1; curve (6) corresponds to ρ0 = 10, ρc = 2−1/2π ,
α = 1/2, ρ1 = λ = 1. For each curve the asymptotic line corresponds
to the inverse power-law decay of the coherence term and the slope
coincides with the theoretically predicted power.
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FIG. 4. (Color online) The quantity | ln |ρ+,−(t)/ρ+,−(0)|| vs
ln(ωst) for different values of the parameters ρ0, ρc, β, ρ2, λ,
l. Curve (1) corresponds to ρ0 = ρ2 = λ = l = 1, ρc � 0.96, β =
11/5; curve (2) corresponds to ρ0 = ρ2 = λ = l = 1, ρc � 0.71,
β = 7/6; curve (3) corresponds to ρ0 = ρ2 = λ = l = 1, ρc � 0.68,
β = 5/4; curve (4) corresponds to ρ0 = 10, ρc � 0.96, ρ2 = λ = l =
1, β = 11/5; curve (5) corresponds to ρ0 = 4, ρc � 0.66, β = 4/3
ρ2 = λ = l = 1; curve (6) corresponds to ρ0 = 5, ρc � 0.65, β =
3/2, ρ2 = λ = l = 1. For each curve the asymptotic line witnesses
the appearance of the inverse power-law decay of the coherence term
and the slope coincides with the theoretically predicted power.

where a† and a are the creation and annihilation operator, re-
spectively. See Refs. [22,25–33,38] for details. The renormal-
ized Hamiltonian H ′(t) reads H ′(t) = −Im{u̇(t)u−1(t)}a†a.
The master equation (51) is time local and the two nonunitary
terms drive the dissipation and fluctuation process. The dissi-
pation coefficient is γe(t) = −Re{u̇(t)u−1(t)}, while the fluctu-
ation coefficient reads γ̃e(t) = u̇c(t) − 2uc(t)Re{u̇(t)u−1(t)}.
The functions u(t) and uc(t) are the nonequilibrium retarded
and correlation Green’s function of the system, respectively,
and are defined in Sec. III via Eqs. (14) and (16). Following
Ref. [31], the reduced dynamics of a nanocavity that is
embedded in photonic crystals is also described by the master
equation (51). In this case the creation and annihilation
operators fulfill the bosonic commutation rule. This theoretical
construct has been generalized to systems of noninteracting
bosons (fermions), consisting of N single-particle energy
levels, that are coupled to different bosonic (fermionic)
reservoirs [22]. Following Refs. [22,31], every feature of the
open dynamics is determined by the retarded and correlation
Green’s functions of the system. Especially, the nonvanishing
asymptotic behavior of the retarded Green’s function provokes
a suppression of the decoherence process [31]. Section III is
devoted to the constraints on the energy that guarantee non-
vanishing long-time behavior of coherence or, equivalently,
of the retarded Green’s function. These conditions hold also
for a bosonic system with one single-particle energy level
E0 that interacts with a bosonic environment. Consequently,
coherence persists in this bosonic open system if E0 < Ec or in
the superohmic regime of the resonance E0 = Ec. Obviously,
the critical energy Ec is defined by Eq. (24) with the bosonic
environmental spectral density.

In the following we consider the decoherence process
of a two-state system (qubit), |0〉 and |1〉, that interacts
with a reservoir of bosonic modes under the rotating wave

approximation [2,46–48]. By choosing � = 1, the Hamiltonian
of the whole system is HQ + HB + HQB, where

HQ = ω0 σ+σ−, HB =
∞∑

k=1

ωk b
†
kbk, (52)

HQB =
∞∑

k=1

[
g

(b)
k σ+bk + (

g
(b)
k

)∗
σ−b

†
k

]
. (53)

The rising and lowering operators, σ+ and σ−, respectively, act
on the Hilbert space of the qubit and are defined as follows:
σ+ = σ

†
− = |1〉〈0|, while b

†
k and bk represent the creation and

annihilation operators acting on the Hilbert space of the kth
bosonic mode. The coupling between the transition |0〉 ↔ |1〉
and the kth bosonic mode is represented by the constant g

(b)
k ,

while ω0 is the qubit transition frequency. If the qubit is
initially unentangled from the vacuum state |0〉B of the bosonic
reservoir,

|�(0)〉 = [c0|0〉 + c1(0)|1〉] ⊗ |0〉B, (54)

the density matrix of the qubit evolves as follows [2,48]:

ρ1,1(t) = 1 − ρ0,0(t) = ρ1,1(0) |G(t)|2 , (55)

ρ1,0(t) = ρ∗
0,1(t) = ρ1,0(0) e−ıω0tG(t). (56)

The function G(t) is the solution of the convolution equation

Ġ(t) +
∫ t

0
f (t − t ′)G(t ′)dt ′ = 0, (57)

where the initial condition is G(0) = 1, while f (τ ) is the
correlation function,

f (τ ) =
∫ ∞

0
J (ω)e−ı(ω−ω0)τ dω,

and J (ω) is the spectral density of the bosonic reservoir [2,48].
Similarly to the scenario of the fermionic environment, the

persistence or undamped oscillations of coherence depends
on a critical frequency ωc that is determined by the spectral
density and the band-gap frequency �g of the bosonic
reservoir,

ωc = �g +
∫ ∞

�g

J (ω)

ω − �g

dω. (58)

If the transition frequency of the qubit is less than the critical
frequency the coherence term results in

ρ1,0(t) = ρ1,0(0)e−ı�gt [γbe
ı�bωs t + I (ωst)], ω0 < ωc.

(59)

The coefficients γb and �b are defined in the Appendix in
terms of the auxiliary function 	(ν) introduced in Sec. III.
The transient function I (ωst) refers to the expression (26)
where J (ω) is the spectral density of the bosonic envi-
ronment. The transient function vanishes over long times
and undamped oscillations of the coherence term appear
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for t 	 1/ωs ,

ρ1,0(t) ∼ γbρ1,0(0)eı(�bωs−�g )t , ω0 < ωc. (60)

Especially, if the band-gap frequency coincides with the value
�bωs stable persistence of coherence is obtained for t 	 1/ωs ,

ρ1,0(t) ∼ γbρ1,0(0), ω0 < ωc, �g = �bωs.

The above features of the reduced dynamics holds also if the
critical frequency is infinite, ωc = +∞.

If the transition frequency of the qubit is equal to the
critical frequency the appearance of persistence, undamped
oscillations, or total loss of coherence over long times is again
determined by the structure of the spectral density at low
frequencies. For bosonic spectral densities that are superohmic
in the band-gap frequency the coherence term results in

ρ1,0(t) = ρ1,0(0)e−ı�gt [γc + IS(ωst)] , ω0 = ωc, α0 > 1.

(61)

The transient term IS(ωst) is given by the expression (31),
where J (ω) is the spectral density of the bosonic reservoir,
and vanishes over long times. Consequently, the coherence
term exhibits undamped oscillations for t 	 1/ωs ,

ρ1,0(t) = γcρ1,0(0)e−ı�gt , ω0 = ωc, α0 > 1. (62)

The frequency of the oscillations coincides with the band-gap
frequency and vanishes for �g = 0. In this case coherence
persists over long times, t 	 1/ωs ,

ρ1,0 (∞) ∼ γcρ1,0(0), ω0 = ωc, �g = 0, α0 > 1.

(63)

If the transition frequency of the qubit is equal to the critical
energy of the reservoir and the spectral density is subohmic in
the band-gap frequency the coherence term results in

ρ1,0(t) = ρ1,0(0)e−ı�gt I (ωst), ω0 = ωc, 1 > α0 > 0,

(64)

and vanishes over long times, t 	 1/ωs . If the transition
frequency of the qubit exceeds the critical frequency the
coherence term reads

ρ1,0(t) = ρ1,0(0)e−ı�gt I (ωst), (65)

and vanishes for t 	 1/ωs . Similarly to the decoherence
process in fermionic environment, a “dressed” energy εd can
be defined

εd = ω0 −
∫ ∞

�g

J (ω)

ω − �g

dω, (66)

such that oscillating or stable coherence persists in the two-
level system over long times if the dressed energy is below
the band-gap energy, εd < �g . Coherence is entirely lost if the
dressed energy exceeds the band-gap energy, εd > �g . The
loss of coherence depends on the structure of the environmental
spectral density in the band-gap frequency if the dressed energy
equals the band-gap energy, εd = �g . In fact, coherence is
completely lost in the subohmic regime and persists over long
times in superohmic environments.

By considering bosonic spectral densities that belong to
the general class defined in Sec. IV, J (ω + �g) = 	(ν), the

coherence term exhibits inverse power-law relaxations to the
asymptotic regimes. If the transition frequency of the qubit
is less or greater than the critical frequency the long-time
relaxations to the oscillating regime are described by inverse
power laws that are arbitrarily faster than 1/(ωst),

ρ1,0(t) ∼ ρ1,0(0)e−ı�gt [γbe
ı�bωs t + ηb(ωst)

−1−α0 ], ω0 < ωc,

(67)

ρ+,−(t) ∼ ρ+,−(0)ηbe
−ı�gt (ωst)

−1−α0 , ω0 > ωc. (68)

The coefficient ηb is defined in the Appendix. If the transition
frequency of the qubit is equal to the critical frequency the
long-time relaxations to the oscillating regime are described
by arbitrarily slow inverse power laws,

ρ1,0(t) ∼ ρ1,0(0)e−ı�gt [γc + ηc(ωst)
1−α0 ],

ω0 = ωc, α0 > 1, (69)

ρ1,0(t) ∼ ηsρ1,0(0)e−ı�gt (ωst)
α0−1,

ω0 = ωc, 1 > α0 > 0. (70)

The present analysis of the general evolution and long-time
persistence of coherence improves the description of the open
dynamics performed in Ref. [49].

By dropping the rotating wave approximation a referential
model of a two-level system coupled to a bosonic environment
is the so-called spin-boson model. This system has been
widely studied with the most various approaches and the
related literature is vast [3,50–60]. In Ref. [61] a relevant
and detailed analysis of the spin-boson model shows that an
increase of the coupling strength between the system and the
bosonic environment hinders the decoherence process via a
transition from vanishing relaxations to lossless oscillations.
Persistence of coherence has been also observed at vanishing
temperatures [62] and, recently, under certain approximations,
in the delocalized phase regime of the spin-boson model [63]
by considering the spectral density (44). In the latter scenario
we intend to generalize the conditions that protect coherence
via the approach adopted in Sec. III.

The Hamiltonian of the spin-boson model is

HSB = ε

2
σ3 − �

2
σ1 +

∑
k

gb,k

2
σ3(bk + b

†
k) +

∑
k

ωkb
†
kbk,

(71)

where the sums are performed over the bosonic modes of
the reservoir. The parameters ε and � refer to the energy
difference and the transition amplitude between the two levels,
respectively, and � = 1. The Pauli operators σ1, σ2, σ3, act
on the Hilbert space of the two-level system. Following
Ref. [61], the unitary transformation U1 = exp {−ıπσ2/4}
and the successive rotating wave approximation leads, for
vanishing ε, to the following exactly solvable Hamiltonian:

HRWA = �

2
σ3 +

∑
k

gb,k

2
(σ+bk + σ−b

†
k) +

∑
k

ωkb
†
kbk.

(72)

The initial condition is |�(0)〉 = |+〉 ⊗ |0〉B , and corresponds
to |�1(0)〉 = U1|�(0)〉 = |+〉1 ⊗ |0〉B in the rotated frame.
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The time evolution [61] is

|�1(t)〉 = eı�t/2

(
2−1/2|−〉 ⊗ |0〉B + c(t)|+〉 ⊗ |0〉B

+
∑

k

dk(t)|−〉 ⊗ |1k〉E
)

, (73)

where |1k〉B = b
†
k|0〉B for every k = 1,2, . . ., and σ1|±〉x =

±|±〉x . The coherence between the two levels is analyzed
via the expectation value of the operator σ1. This value
corresponds to the polarization 〈�(t)|σ3|�(t)〉 in the original
frame, which means Pz(t) = 〈�1(t)|σ1|�1(t)〉. For this reason
the subindex z is chosen. Starting from the initial value Pz(0) =
1, under the rotating wave approximation, the polarization
reads

Pz(t) = 21/2Re {c(t)} , (74)

where the function c(t) is the solution of the following
convoluted equation:

ċ(t) + ı�c(t) +
∫ t

0
fb

(
t − t ′

)
c(t ′)dt ′ = 0, (75)

where the initial condition is c(0) = 2−1/2, while fb denotes
the correlation function of the reservoir.

Various perturbation approaches to the spin-boson model
are based on unitary transformations [59–61]. Consider the
transformed Hamiltonian H ′

SB that is obtained from the
Hamiltonian (71) via the unitary transformations U1 and U2 =
exp{∑k ϕkgb,kσ1(b†k − bk)/(2ωk)}. The resulting Hamiltonian
is H ′

SB = H ′
0 + H ′

1 + H ′
2, where

H ′
0 = θ�

2
σ3 +

∑
k

ωkb
†
kbk + C0, (76)

H ′
1 =

∑
k

g′
k (σ+bk + σ−b

†
k), (77)

H ′
2 = �

2
σ3(cosh χ − θ ) − ı

�

2
σ2(sinh χ − θχ ). (78)

The expressions of the parameters ϕk , θ , g′
k , χ , C0, are defined

in the Appendix.
The spin-boson interaction disappears at the zero-order

approximation, Eq. (76), in the transformed Hamiltonian H ′
and the renormalized transition amplitude is �r = θ�. The
delocalized phase regime [61] refers to nonvanishing values
of the parameter θ . The first-order perturbation terms are
collected in H ′

1, Eq. (77), while the second- and higher-order
perturbation terms appear in H ′

2, Eq. (78). The contribution of
the term H ′

2 to the open dynamics can be neglected in the weak-
coupling limit at zero temperature [60] and the transformed
Hamiltonian is well approximated by the following form:

Heff = θ�

2
σz +

∑
k

g′
k (σ− ⊗ b

†
k + σ+ ⊗ bk)

+
∑

k

ωkb
†
kbk + C0. (79)

The Hamiltonian (79) is evidently similar to the Hamiltonian
(72) and is suitable for the analysis of the dynamics of the spin-
boson model when the rotating-wave approximation is relaxed.

The initial condition in the transformed frame is |+〉x ⊗ |0〉B
and the polarization results in Pz(t) = 21/2Re {h(t)}, where the
function h(t) is solution of the convoluted structure equation,

ḣ(t) + ıθ�h(t) +
∫ t

0
fr (t − t ′)h(t ′)dt ′ = 0, (80)

with the initial condition h(0) = 2−1/2. The function fr is the
transformed correlation function of the reservoir,

fr (τ ) =
∫ ∞

0
Jr (ω)e−ıωτ dω,

and is defined in terms of the renormalized spectral density
Jr (ω) = (4π )−1 ∑

k(g′
k)2δ (ω − ωk). See Ref. [61] for details.

Similarly to the scenario found in the fermionic environ-
ment, the appearance of undamped oscillations in the polar-
ization Pz(t) depends on the critical value �(c) of the transition
amplitude. This value is defined in terms of the renormalized
spectral density and the band-gap frequency �g of the bosonic
reservoir,

�(c) = �g +
∫ ∞

�g

Jr (ω)

ω − �g

dω. (81)

If the critical value �(c) exceeds the value θ� the polarization
results in

Pz(t) = Re{e−ı�gt [γsbe
ı�sbωs t + Isb(ωst)]}, θ� < �(c).

(82)

The coefficients γsb and �sb are defined in the Appendix in
terms of the auxiliary function 	r (ν). Similarly to the previous
cases, the auxiliary function 	r (ν) is defined in terms of
the renormalized spectral density as 	r (ν) = Jr (ω + �g) for
every ω � 0. The transient function Isb(ωst) is also defined in
terms of the renormalized spectral density,

Isb(ωst) =
∫ ∞

0+
e−ıωtJr (ω + �g)/

({ω − θ�

+�g + H+[Jr (ω′ + �g),ω]}2

+π2J 2
r (ω + �g)

)
dω, (83)

and vanishes over long times. Consequently, undamped oscil-
lations of the polarization appear for t 	 1/ωs ,

Pz(t) ∼ Re{γsbe
ı(�sbωs−�g)t }, θ� < �(c). (84)

The frequency of the undamped oscillations is constant,
|�sbωs − �g|, and vanishes for a special value of the band-gap
frequency, �g = �sbωs . In this case the polarization persists
for t 	 1/ωs ,

Pz(t) ∼ Re{γsb}, θ� < �(c), �g = �sbωs. (85)

Again, the above analysis holds if the critical value of the
transition amplitude is infinite, �(c) = +∞.

If the critical value �(c) is equal to the value θ� the
long-time behavior of the polarization depends on the structure
of the renormalized spectral density at low frequencies,
Jr (ω) ∼ a0(ω − �g)α0 for ω → �+

g . For renormalized spec-
tral densities that are superohmic in the band-gap frequency
the polarization results in

Pz(t) = γc,r cos(�gt) + Re{e−ı�gt IS,r (ωst)},
θ� = �(c), α0 > 1, (86)
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where the transient term IS,r (ωst) reads

IS,r (ωst) =
∫ ∞

0+

Jr (ω + �g)e−ıωt

ω2

/[
π2J 2

r (ω + �g)

ω2

+
(

1 + H+

[
Jr (ω′ + �g)

ω′ ,ω

])2]
dω, (87)

while the parameter γc,r is defined in the Appendix. The tran-
sient term IS,r (ωst) vanishes over long times and undamped
oscillations of the polarizations appear for t 	 1/ωs ,

Pz(t) ∼ γc,r cos(�gt), θ� = �(c), α0 > 1. (88)

The oscillations disappear if the renormalized spectral density
has no band gap,

Pz(t) ∼ γc,r , θ� = �(c), α0 > 1, �g = 0. (89)

If the critical value �(c) equals the value θ� and the
renormalized spectral density is subohmic in the band-gap
frequency the polarization results in

Pz(t) = e−ı�gt Isb(ωst), θ� = �(c), 1 > α0 > 0.

and vanishes over long times, t 	 1/ωs . If the value θ�

exceeds the critical value �(c) the polarization reads

Pz(t) = Re{e−ı�gt Isb(ωst)}, (90)

and vanishes over long times.
Starting from the renormalized transition energy θ� and

the renormalized spectral density Jr (ω), a “dressed” energy
ε

(sb)
d can be defined

ε
(sb)
d = θ� −

∫ ∞

�g

Jr (ω)

ω − �g

dω. (91)

Over long times coherence persists in the two-level system if
the dressed energy is below the band-gap energy, ε

(sb)
d < �g ,

and is entirely lost if the dressed energy exceeds the band-gap
energy, ε

(sb)
d > �g . If the dressed energy equals the band-gap

energy, ε
(sb)
d = �g , the loss of coherence is determined by the

structure of the renormalized spectral density in the band-gap
frequency. Again, coherence is completely lost in the subohmic
regime and persists over long times if the renormalized spectral
density is superohmic in the band-gap frequency.

If the renormalized spectral density belongs to the general
class defined in Sec. IV the open dynamics exhibits inverse
power-law relaxations to the asymptotic configurations. In fact,
the transient terms exhibit oscillations enveloped in inverse
power-law profiles. The power laws are arbitrarily faster than
1/(ωst) for θ� �= �(c),

Pz(t) ∼ Re{γsbe
ı(�sbωs−�g )t } − |ηsb|(ωst)

−1−α0

× sin(�gt + πα0/2), θ� < �(c), (92)

Pz(t) ∼ − |ηsb| (ωst)
−1−α0 sin(�gt + πα0/2), θ� > �(c),

(93)

and arbitrarily slow for θ� = �(c),

Pz(t) ∼ γc cos(�gt) + |ηc,r |(ωst)
1−α0 sin(�gt + πα0/2),

θ� = �(c), α0 > 1, (94)

Pz(t) ∼ −|ηs |(ωst)
α0−1 sin(�gt − πα0/2),

θ� = �(c), 1 > α0 > 0. (95)

The coefficients ηsb, ηc,r , are defined in the Appendix.
The present analysis of the conditions inducing undamped
oscillation or persistence of the polarization improves the study
performed in Ref. [63].

VII. CONCLUSIONS

We have considered a two-state nanoelectronic system
that interacts with a fermionic environment. Coherence is
maintained in the nanodevice by simple conditions that
involve the corresponding degenerate energy level and a
critical energy. This energy is defined via integral properties of
the spectral density of the fermionic reservoir. If the degenerate
energy level is less than or, in the superohmic regime, equal to
the critical energy of the open system, undamped oscillation or
persistence of coherence between the two states is maintained
over long times for every initial coherent configuration of
the nanosystem. Additional conditions induce coherence to
approach asymptotically the initial value. The appearance
of the oscillating or stable asymptotic nonvanishing regime
depends on the value of the band-gap frequency of the
reservoir. Furthermore, a dressed energy of the nanosystem
can be defined such that coherence is maintained uniquely if
the dressed energy is less than or, in the superohmic regime,
equal to the band-gap energy of the reservoir. The behaviors
of coherence reported above are found also in a nanocavity
that is embedded in photonic crystals and, more generally,
in a bosonic system with one single-particle energy level that
interacts with a bosonic environment or in a two-level system
that is coupled to a bosonic environment.

Following Ref. [38], the present model of a nanodevice
interacting with a fermionic environment refers to a double
quantum dot that is coupled to electrodes. Each dot has a
single active energy level and all the spins are polarized both
in the dots and electrodes. Alternatively, the model mimics
a single-level quantum dot that is coupled to electrodes with
possible spin-flip configurations in opposite directions. Single
and double quantum dots are realized via semiconducting
nanowires with tunable couplings [64]. The energy and
decoherence of a pseudospin qubit in a semiconductor double
quantum dot can be manipulated via a high-speed voltage
pulse [65]. The description of an experimental apparatus that
might detect the coherent behavior described above is out of
the purposes of the present paper. Still, the critical energy
that causes the transition from full decoherence to undamped
oscillations or persistence of coherence might be observed in
a nanosystem with a tunable degenerate energy level that is
coupled to an electron reservoir.
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APPENDIX: DETAILS

The study of the evolution of the coherence term ρ+,−(t) is
performed via Eq. (20), where the function u(t) is obtained by
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solving Eq. (14). It is convenient to analyze the function v (t),
defined as v(t) = exp{ı�gt}u(t), and its Laplace transform,
ṽ(s) = ∫ ∞

0 exp {−st} v(t)dt . The equality v(t) = ωsk(ωst)
defines the function k (ξ ) and its Laplace transform reads

k̃(ζ ) = {ı(E0 − �g) + ωsζ − ıS [	(ν),−ıζ ]}−1. (A1)

The symbol S represents the Stieltjes transform [66–68],
S [	(ν),z] = ∫ ∞

0 	(ν)/ (ν + z) dν for |arg z| < π . The sin-
gularities of the function k̃(ζ ) are determined by solving the
following equation:

(E0 − �g) − ıωsζ − S [	(ν),−ıζ ] = 0. (A2)

The transcendental equation (A2) has been studied in Ref. [69].
The existence of the solution depends on the critical value
Ec, given by Eq. (24), of the degenerate energy level E0.
This solution is imaginary, ζ = ı� with � > 0, and exists
uniquely for E0 < Ec. Consequently, the complex valued
function k̃(ζ ) is well defined in the complex plane cut
along the negative imaginary axis, ζ �= ıy for every y � 0,
and exhibits uniquely one singularity, ζ = ı�, for E0 < Ec.
This singularity contributes to the Laplace inversion via the
corresponding residue,

γ = ωsRes[k̃(ζ ),ı�], E0 < Ec. (A3)

The function k (ξ ) is evaluated via the Laplace inversion of the
function k̃(ζ ),

k (ξ ) = lim
y0→+∞

1

2πı

∫ x0+ıy0

x0−ıy0

eξζ k̃(ζ )dζ, (A4)

where x0 and y0 are positive parameters. The above in-
tegration is performed via the corresponding line integral
over the path QABCDEFP in the complex plane, where
Q = x0 − ıy0, A = ε − ıy0, B = ε(1 − ı), C = −ε(1 + ı),
D = −(ε + ıy0), E = ıR, F = ıy0, P = x0 + ıy0, and

R = (ε2 + y2
0 )1/2. The counterclockwise circular arc BC is

centered in the origin with radius r = 21/2ε. The clockwise
circular arc DE is centered in the origin with radius R = (y2

0 +
ε2)1/2, respectively. The remaining paths are segments. For
y0 → +∞ and ε → 0+ the contributions of paths QA, DE,
EF , FP , vanish. If E0 �= Ec, or if E0 = Ec and 1 > α0 > 0,
the contribution of the path ABCD in the limits ε → 0+ and
y0 → +∞ is the following integral:

IABCD (ξ ) =
∫ ∞

0+
e−ıξν	(ν)/({H+[	(ν ′),ν]+ωsν−E0+�g}2

+π2	2(ν))dν, (A5)

and results in Eq. (26) by considering the definition of the
auxiliary function 	(ν) reported in Sec. III. No singularity of
the function k̃(ζ ) exists inside or belongs to the closed contour
of integration QABCDEFP if E0 � Ec. One singularity
appears inside the closed contour for E0 < Ec and contributes
to the integration via the residue. This approach leads to
Eqs. (25), (34), (35).

The integral (A5) vanishes for ξ 	 1 and Eqs. (27) and (28)
are found. The residue provides the undamped oscillations of
Eqs. (25) and (27) and the persistent nonvanishing asymptotic
behavior of Eq. (28). For the class of spectral densities
introduced in Sec. IV, the integral IABCD (ξ ) decays according
to inverse power laws [67] and leads to Eqs. (40), (42), (43),
where

η = ωsa0�(1 + α0)

(E0 − Ec)2 e−ıπ(1+α0)/2,

ηs = ωs sin (πα0)

πa0� (α0)
eıπ(α0−1)/2.

If E0 = Ec and α0 > 1 the following form,

k̃(ζ ) = 1

ωs + μ2

[
1

ζ
− ıS[	(ν)/ν2,−ıζ ]

ωs + μ2

/(
1 + ıζS[	(ν)/ν2, − ıζ ]

ωs + μ2

)]
, (A6)

gives the Laplace inversion

k (ξ ) = γc

ωs

{
1 + γc

ωs

∫ ∞

0+
e−ıξν 	(ν)

ν2

/[(
1 + γc

ωs

ν H+

[
	(ν ′)
(ν ′)2 ,ν

])2

+ π2

(
γc

ωs

)2
	2(ν)

ν2

]
dν

}
. (A7)

The parameter γc is defined as γc = ωs/(ωs + μ2), where
μ2 = ∫ ∞

0 	(ν)/ν2dν, and results in the expression (30). In
this way, Eqs. (29) and (31) are found. Notice that the integral
that defines the constant μ2 exists finite due to the superohmic
behavior of the spectral density. The integral appearing on
the right-hand side of Eq. (A7) vanishes for ξ 	 1. In this
way we find Eqs. (32) and (33). For the class of auxiliary
functions 	(ν) introduced in Sec. IV, the integral appearing
on the right-hand side of Eq. (A7) exhibits inverse power-law
decays [67] as ξ 	 1 and Eq. (41) is found, where

ηc = γ 2
c a0� (α0 − 1) eıπ(1−α0)/2

ωs

.

In Sec. V the special spectral densities (44) and (45)
correspond to auxiliary functions 	1(ν) and 	2(ν) that are

defined by the following forms:

	1(ν) = j1ν
α

ν2 + λ2
, 1 > α > 0, (A8)

	2(ν) = j2ν
β

(ν + l)(ν2 + λ2)
, 2 > β > 0, (A9)

where λ,l > 0. The corresponding forms of the function k̃(ζ )
are

k̃1(ζ ) = (ζ 2 − λ2)/ωs

ζ 3 + ır2ζ 2 + r1ζ + rαe−ıπ(1+α)/2ζ α + ır0
,

k̃2(ζ ) = (ζ 3 − ılζ 2 − λ2ζ + ılλ2)/ωs

ζ 4 + ıq3ζ 3 + q2ζ 2 − qβe−ıπβ/2ζ β + ıq1ζ + q0
,
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where

r0 = 1

ωs

(
πj1λ

α csc (πα/2)

2
+ λ2(�g − E0)

)
,

rα = πj1 csc (πα)

ωs

, r2 = E0 − �g

ωs

,

r1 = πj1λ
α−1 sec (πα/2)

2ωs

− λ2,

and

q0 = {πj2[2lβλ2 csc(πβ) − lλ1+β sec(πβ/2)

+ l2λβ csc(πβ/2)]/[2(l2 + λ2)]

+ lλ2(�g − E0)}/ωs,

q1 = [λ2(�g − E0) − πj2λ
β−1 sec(πβ/2)/2]/ωs

+ lλ2, qβ = πj2 csc(πβ)/ωs,

q2 = {πj2[λβ csc(πβ/2)/2 + lλβ−1 sec(πβ/2)/2

− lβ csc(πβ)]/(l2 + λ2) + l(E0 − �g)}/ωs − λ2,

q3 = −l + (E0 − �g)/ωs.

The term by term Laplace inversion [70] of the series
expansions of the functions k̃1(ζ ) and k̃2(ζ ) for large ζ leads
to Eqs. (46) and (47), where

C
(>1)
n,k,j = (−1)nrn−k

1 r
k−j

0 r
j
αeıπ(k−2j−αj )/2

j !(n − k)!(k − j )!
,

C
(2)
n,k,j,m = (−1)n+mqn−k

2 q
k−j

1 q
j−m

0 qm
β eıπ(k−j−βm)/2

m!(n − k)!(k − j )!(j − m)!
.

For rational values p/q of the powers α and β, the functions
k1(ξ ) and k2(ξ ) are obtained as the Laplace inversions of the
rational functions K1(w) and K2(w),

K1(w) = [(w2q − λ2)/ωs]/(w3q + ır2w
2q + r1w

q

+ rαe−ıπ(1+α)/2wp + ır0),

K2(w) = [(w3q − ılw2q − λ2wq + ılλ2)/ωs]/(w4q

+ ıq3w
3q + q2w

2q − qβe−ıπβ/2wp + ıq1w
q + q0),

where w = ζ 1/q . Let the roots of the denominators of the
rational function Kj (w) be σ

(j )
1 , . . . ,σ (J )

nj
, with multiplicity

m
(j )
1 , . . . ,m

(j )
nj

, for every j = 1,2. The Laplace inversion of
the decomposition of the rational functions leads to Eq. (50),

where

�
(j )
l,k = 1

(k − 1)!
(
m

(j )
l − k

)
!

dk−1

dwk−1

× [(
w − σ

(1)
l

)ml
Kj (w)

]
w=σ

(j )
l

, (A10)

for every l = 1, . . . ,nj , k = 1, . . . ,m
(j )
l , and j = 1,2.

The study of coherence of a qubit interacting with a bosonic
environment is performed by solving Eq. (57). The functions
vb(t) and kb(t) are defined as follows: vb(t) = eı(�g−ω0)tG(t)
and ṽb(t) = k̃b (s/ωs). The latter Laplace transform reads

k̃b(ζ ) = {ı(ω0 − �g) + ωsζ − ıS [	(ν),−ıζ ]}−1, (A11)

and is analyzed with the approach reported above. In this way,
Eqs. (58)–(70) are obtained, where

γb = ωsRes[k̃b(ζ ),ı�b], ω0 < ωc, (A12)

and

ηb = ωsa0�(1 + α0)

(ω0 − ωc)2 e−ıπ(1+α0)/2.

The polarization of the delocalized phase regime of the
spin-boson model is studied by solving Eq. (80). The functions
vsb(t) and ksb(t) are defined as follows: vsb(t) = eı�gth(t) and
ṽsb(t) = k̃sb (s/ωs). The latter Laplace transform results in

k̃sb(ζ ) = h(0){ı(θ� − �g) − ıS[	(ν),−ıζ ] + ωsζ }−1,

(A13)

and is analyzed with the approach reported above. The
involved parameters are

θ = exp

{
−

∑
k

g2
b,kϕ

2
k

2ω2
k

}
, g′

k = θ�gb,kϕk

ωk

,

C0 =
∑

k

g2
b,kϕk

4ωk

(ϕk − 2) , χ =
∑

k

gb,kϕk

ωk

(b†k − bk).

See Ref. [61] for details. In this way we find Eqs. (81)–(95),
where

γsb = ωsRes[k̃sb(ζ ),ı�sb], θ� < �(c), (A14)

and

ηsb = ωsa0�(1 + α0)

(θ� − �(c))2
e−ıπ(1+α0)/2,

γc,r = ωs

ωs + ∫ ∞
0 	r (ν)/ν2dν

.

This concludes the demonstrations of the results reported in
the paper.
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