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Decoherence-free states have been found in Markovian open system dynamics and in the framework of non-
Markovian fermionic environments. In the latter scenario we determine an energy range where quantum coherence

is maintained over long times for every initial coherent configuration. In particular, for a two-state fermionic sys-
tem interacting with a non-Markovian fermionic environment, undamped oscillating or stable coherence between
the two energy eigenstates appears if the degenerate energy level is below a critical energy. If these energies coin-
cide, the same behavior is observed in the superohmic regime and, under special conditions, the initial coherence

is approached asymptotically. Equivalently, coherence persists if a defined dressed energy of the system is less
than the band-gap energy of the reservoir. Same properties are found in the framework of bosonic environments.
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I. INTRODUCTION

Quantum coherence is the key ingredient for the realization
of quantum information processing [1-4]. Consequently, the
disruptive effects of the external environment on quantum
coherence is one of the main obstacles to the development
of quantum technologies [5]. Despite the action of the external
environment the reduced dynamics can be unitary in a subspace
of the Hilbert space of an open quantum system [2]. This
subspace is decoherence free and its existence is related to the
degeneracy of an eigenvalue of the interaction Hamiltonian
[6]. Decoherence-free states are obtained in several ways, from
symmetries of the Hamiltonian [7] and semigroup approach
[8], both in the Markovian [9] and non-Markovian regime [10],
to name a few. The experimental realizations of decoherence-
free subspaces are the most various. Decoherence-free spaces
have been found in neutron interferometry [11], nuclear spin
dynamics [12], trapped ions [13], and polarization-entangled
photons [14], to name a few. Especially, the engineering
reservoir approach provides time-dependent decoherence-free
evolution in the ground and excited states of an ion trapped
in a dissipative cavity, or in a superconducting artificial atom
coupled to a microwave cavity, to name a few [15].

If the open system dynamics is Markovian [16,17] the
decoherence-free subspace [8] can be determined by eval-
uating the kernel of the decohering Gorini-Kossakowski-
Sudarshan-Lindblad superoperator [18-20]. Since the open
system can evolve outside the decoherence-free subspace [21]
the condition for a global unitary Markovian open dynamics
has also been determined by including the unitary Hamiltonian
evolution [9].

Increasing interest has been devoted to the non-Markovian
open system dynamics in fermionic environments [22-36].
This theoretical model can describe quantum dots and
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nanodevices embedded in a large variety of nanostructures
that are suitable for the implementation of quantum in-
formation processing. The nonequilibrium transport theory
and the Schwinger-Keldysh nonequilibrium Green’s-function
technique provide for the non-Markovian open dynamics
master equations with time-local decoherence rates [22,37].
By considering a fermionic open system with two degenerate
energy levels, the enlightening analysis performed in Ref. [38]
shows the existence of dynamically stabilized decoherence-
free pure states. Full quantum coherence persists in the
nanosystem despite the effect of the fermionic environment.

As a continuation of the above scenario, we consider a
two-level nanoelectronic system interacting with a fermionic
environment. As a further way to protect quantum coherence,
we search for conditions on the energy that may maintain
coherence in the nanosystem.

The paper is organized as follows. Section II is devoted
to the description of the model. In Sec. III coherence
between the quantum states of the nanosystem is analyzed
in terms of the spectral density of the fermionic reservoir
and an energy range is identified where partial coherence is
maintained. Inverse power-law relaxations to the asymptotic
regimes are obtained for a class of sub- and superohmic
spectral densities in Sec. IV. Special cases are considered
in Sec. V and the corresponding open system dynamics is
described in terms of special functions. In Sec. VI coherence
in bosonic environment is analyzed. Section VII is devoted to
the conclusions, and details on the calculations are provided
in the Appendix.

II. MODEL

A general nanoelectronic system interacting with a
fermionic reservoir is described by the Hamiltonian H =
Hg + Hi + H;, where Hg represents the Hamiltonian of
the system, Hy is the Hamiltonian of the reservoir, and H;
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represents the interaction term [38],

N

HS=ZEjajaj, HR=28](C}:C]<, (1)
j=1 k
N

H; = Z Z gj,k(e“i’fa}ck + 67’¢-fc,taj). 2)
j=1 &

The energy levels of the system are Ey,...,Ey, while the
creation and the annihilation operators related to the jth energy
level E; are a} and a;, respectively. Similarly, the creation and
annihilation operators of the kth energy level g, of the reservoir
are ci and ¢y, respectively. The real coefficient g; and the
phase ¢; define the coupling strength between the jth energy
level of the nanosystem and the kth level of the reservoir. The
imaginary unity is: and & = 1.

In the following, we consider a nanosystem with two
degenerate energy levels, N = 2 and E; = E, = E), that are
identically coupled to the fermionic reservoir, g = g2k =
271/2g,. Following Ref. [38], the open system dynamics is
well described via the fermion operators A, and A_,

ap + gl(¢|*¢2)a2 a — el(¢2*¢1)al

A= A= O
In this way, the system and the interaction Hamiltonian read
Hg = Eg(ALA, + AT A), 4)
Hy =Y gi(e? Alcp + e Ayc)). (5)
k

Furthermore, the states |+) and |—) are defined as coherent
superpositions of the original energy eigenstates |1) and |2) of
the nanosystem,

I4+) = 272(|11) + e79|2)), (6)

|—) =2712(12) — £'?|1)), (7)

while |v) and |d) represent the vacuum and the dou-
bly occupied electron state. The following relationships
hold on the basis: {|+),|—),|v),|d)}, ALH—) =Ayl-) =
Aglv) = ALld) =0, AL+) = |v), A=) =d), AlJv) =
[4), Asld) = ALp) = =), 1) = ajlv), 12) = ajlv). The
vanishing commutator [AT_A_,H] suggests that the open
dynamics is closed in the subspaces {|+),|v)} and {|—),|d)}
that correspond to the expectation value (AT_A_) of the
occupation number equal to 0 and 1, respectively.

Following Refs. [25-33,38], the time evolution of this open
system is described by the master equation

p(t) = —1[Hg,p(O)] + L{p®)], ®)

where p(t) represents the density matrix. The renormalized
system Hamiltonian Hg and the decohering superoperator L
are defined in terms of the fermion operators A4 and A_ as
follows:

H| = E, ()AL A, + EgAT A_, )

PHYSICAL REVIEW A 91, 062112 (2015)

Lip()] = k(D241 p(1) Al — ALA,p(t) — p(1) AL A
+h(OR2ALp(OAL — AL AL p(t) — p(DALALL.
(10)

The renormalized energy level E, () and the decoherence rates
k(t) and k,(¢) are determined by the nonequilibrium retarded
Green’s functions () and nonequilibrium correlation Green’s
functions u.(t),

E (1) = —Im{i(t)u~" (1)}, (11)

k() = u()Refi(t)u~" (1)} — Re{u(t)u~" (1)} — i (1)/2,
(12)
k(1) = 1t (1)/2 — uo(t)Refu(t)u~" (1)} (13)

The Green’s functions are provided by the Schwinger-Keldish
formalism of nonequilibrium transport theory [37]. The re-
tarded Green’s function u(t) is obtained as the solution of the
following integrodifferential equation:

u(t) + 1 Equ(t) + / g(t — tHu(t)dt' =0, (14)
0
where

[e.¢]

gy = / J(w)e """ dw. (15)
QL’

The function J(w) represents the environmental spectral

density, J(w) =), lgx|?*8(w — wy), and Q, is the band-gap

frequency of the reservoir. The correlation Green’s function

u.(t) is defined in terms of the retarded Green’s function,

t t
uc(t):/ dt// u(gr " — tHu*("dt", (16)
0 0
where

o, @D ]

The parameter 11y represents the external bias, kp is the
Boltzmann constant, and 7 is the absolute temperature.
Finally, the exact solution of the master equation (8) is given
by the following form [38]:

p(1) = pr 4+ O (F] + o+ —(OIH) (=1 + oL _(O]=)(+]
+ o —OI=) (= + poOIV) (V] + pa.a(®)Id)(d],

(18)
where

01 4@) = po s ONu@)* + uc®] + po,sOuc(t),  (19)

P+~ (1) = py () P u(n), (20)

o (1) = p— —(O)[1 — uc(t)] + pa.a(O)N1 — [u(®)* — uc(t)],

@21)

Pu,o(t) = oo (O — uc(®)] + o1+ O — Ju(@®)]* — uc(D)],

(22)

Pa.a(t) = p——Ouc(t) + pa.aOucO +u D). (23)
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Following Ref. [38], the physical decoherence-free states are
obtained iff one of the two decoherence rates vanishes dy-
namically. Beside mixed states, the possible pure dynamically
stabilized decoherence-free states of the present system are
I+), =), [v), |d).

III. ENERGY RANGE FOR COHERENCE

We search for conditions that maintain quantum coherence
between the states [+) and |—) of the nanosystem that linearly
interacts with a fermionic environment. In general, the open
dynamics is characterized by three typical time scales [22]. The
typical time scale of the nanosystem is 1/ Ey. The typical time
scale of the environment is 1/4,,, where &, represents the band-
width of the environmental spectral density. The interaction
between system and environment provides a further time scale
that is estimated by the inverse of the coupling strength. Here,
the evolution of the coherence term is described by introducing
a time scale 1/wy. The scale frequency w; arises from the
environmental spectral density and scaling properties. In fact,
the spectral density is defined via the auxiliary function A(v)
as J(w+ 2,) = A(v), where v = w/w;, for every w > 0.
The physical conditions that maintain coherence will be
determined by the interplay between the scale frequency wy
and integral properties of the auxiliary function. Throughout
the whole paper the regular spectral densities under study do
not vanish above the band-gap frequency, J(w) > 0 for every
w > ,. The spectral densities are limited over the interval
[R2,,+00) and summable, J(w) € Ll[Qg,-I—oo). The absence
of any band gap in the reservoir is obviously included by
setting 2, = 0.

If the two states are initially coherently coupled, i.e.,
p+.—(0) # 0, persistence, undamped oscillations, or total loss
of coherence are observed over long times. The appearance
of each condition depends on a critical energy E. that is
determined by integral properties of the spectral density and
the band-gap energy of the reservoir,

* J(w)
E, =Q dw. 24
g"’/gy w—Q, w (24)

If the degenerate energy level E of the nanoelectric system
is below the critical energy E. of the reservoir, the coherence
term results in

P (1) = py.— (0) ' Fo= RN
x [ye'®>! + I (wst)], Eog < E.. (25)

The coefficients y and A are defined in the Appendix via
the auxiliary function A(v). The transient function I (wyt) is
determined by the spectral density,

I (wst) = / e J(w+ 2)/({w — E
ot

+Qp + Hi[J (@ + Q) 0]}
+ 12w + Q) do, (26)

via the one-sided Hilbert transform, H,[¢(0),w] =
£ p(w') /(0 — w)dw'. The bar refers to the Cauchy principal
value at ' = w. Over long times, ¢ > 1/wjy, the transient
function /(wyt) vanishes and undamped oscillations of the
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coherence term appear,

pi—(t) ~ py.— (0) &' Eom Ry grient

The frequency of the undamped oscillations is constant
(Eo - Q.+ Aa)s), and vanishes for a special value of the
band-gap frequency, 2, = Eo + Aw,. In this case coherence
persists for t > 1/w;,

EO < EC. (27)

pa—() ~ yps.—(0), Eo<E., Q=Eo+ Ao, (28)

The above analysis holds also if the critical energy is
infinite, £, = 400. This condition is due to the divergence
of the improper integral appearing on the right-hand side
of Eq. (24). For example, the critical energy is infinite for
spectral densities that do not vanish in the band-gap frequency,
J(£2,) > 0. On the contrary, the critical energy is finite for
spectral densities that are super- or subohmic in the band-gap
frequency, J(w) ~ ag(w — 2,)* for v — Q;r with g > 1 or
1 > ap > 0, respectively [39].

If the degenerate energy level of the nanoelectric system is
equal to the critical energy of the reservoir, the appearance of
persistence, undamped oscillations or total loss of coherence
over long times is determined by the structure of the spectral
density at low frequencies. For spectral densities that are
superohmic in the band-gap frequency the coherence term
results to be

pr.— (1) = py._(0)" B [y 4 Ig(w,1)],
E() = Ec» oy > 1, (29)

~1
ye = (1 4L / G dco) . (30)
@s Ja, (a)— Qg)

The transient term /g (w;?) is given by the following form:

o0 —1ot 5
Is(wyt) =/ %/[(M)
0+ w W
/ 2
R I

and vanishes over long times. Consequently, undamped oscil-
lations of the coherence term appear for ¢t > 1/wjy,

ap > 1, (32)

where

O —(t) ~ Yeps —(0)e" o7 Ey = E,,

and persistence of coherence is obtained in the same regime
if the band-gap energy coincides with the energy level of the
nanosystem,

i)~ yeps,-(0), Eg=E. =Q ay>1. (33

Let the degenerate energy level of the nanoelectric system
be equal to the critical energy of the reservoir. For subohmic
spectral densities such that J(w) ~ Zjio aj(w — Q)% for
w — Q;,withO <ag<landa; # lforevery j =1,2,...,
the coherence term is

P (1) = pr—(0) P~ [(wy1),
EQ = Ec’ 1> oy > O, (34)

and vanishes for > 1/w.
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If the degenerate energy level of the nanoelectric system is
above the critical energy of the reservoir the coherence term
reads

P —(1) = py (0" P~ [(wy1),

and vanishes for > 1/w;.

In summary, if the states |+) and |—) of the nanosystem
are initially coherently coupled, i.e., p; _(0) # 0, undamped
oscillations of the coherence term appear over long times,
t > 1/wg, under each of the two following conditions:
the degenerate energy level of the nanosystem is lower
than the critical energy, Ey < E., or the degenerate energy
level of the nanosystem is equal to the critical energy,
Ey = E,, and the spectral density is superohmic, oy > 1,
in the band-gap frequency €2,. The oscillations disappear
and coherence becomes persistent for special values of the
band-gap frequency. The second condition, Ey = E. and
ap > 1,is of interest for the protection and control of the initial
coherence. In fact, over long times, ¢ >> 1/wj, the magnitude
of the coherence term approaches its initial value,

pe(t) ~ pr _(0)' B (36)

Ey> E., (35

for

~ J(w)
———dw < wy,
/Qg (@ — Q,)?

Especially, if the conditions (37) hold and if Q, = Ey = E,,
the oscillations disappear and the coherence term approaches
the initial value, p; _(t) ~ p4+ —(0), over long times,
t > 1/ws. Qualitatively, the first of the conditions (37) can
be obtained slightly above the ohmic regime, oy 2 1, where
the dominant low-frequency contribution to the integration is
small, or if the scale frequency wy is adequately larger than
the negative second moment of the auxiliary function of the
spectral density.

The above analysis shows how coherence can be maintained
in a degenerate two-level system interacting with a fermionic
environment if the energy E of the nanosystem is less than or,
in the superohmic regime, equal to the critical energy E.. This
behavior exhibits analogies with the fractionalized steady-
state inversion phenomena that appear in a two-level atom
embedded in a photonic band-gap material [40—42]. In fact, the
quantity fé: J(w)/ (a) — Qg) dw, belonging to the expression
of the critical energy E, can be interpreted as a negative energy
shift in the energy E, of the nanosystem that is due to the
interaction with the fermionic reservoir. In this way, the per-
sistence of coherence can be explained via the mutual interplay
between the band-gap energy €2, of the fermionic reservoir and
the “dressed” energy E, that is defined as follows:

g
E = Ey— / @ 4. (38)
Qg w — Qg

Eo=E., ap> 1. (37)

If the dressed energy is below the band-gap energy, E; < €2,
oscillating or stable coherence is maintained in the nanosystem
over long times. If the dressed energy exceeds the band-gap
energy, E; > €2,, coherence is entirely lost over long times.
If the dressed energy equals the band-gap energy, E; = €2,
threshold effects appear and the loss of coherence depends
on the structure of the environmental spectral density in
the band-gap frequency. As reported above, coherence
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is completely lost in the subohmic regime and persists
asymptotically in superohmic conditions.

IV. INVERSE POWER-LAW RELAXATIONS

The long-time behaviors of the coherence term p _(t) are
determined by the decays of the transient functions [ (w;t)
and s (wst). We intend to analyze the dependence of these
decays on the low-frequency structure of the spectral density.
Usually, the spectral densities are shaped as power laws at
low frequencies with an exponential cutoff at high frequencies
[3,38]. Here, we consider a class of spectral densities with
a band gap that are super- or subohmic in the band-gap
frequency. For the sake of simplicity, this class is defined by
imposing certain constraints over the auxiliary function A(v)
introduced in the previous section. The constraint concerning
the low-frequency behavior is the following:

o0
A(v) ~ Zan vy — 0F, (39)
n=0

where oy > 0, o+ > o, and o, # |o,] for every natural
value of the index n. The functions A(v) are regular and
continuously differentiable (o] + 2) times, at least, in
(0,00). The spectral densities are shaped quite arbitrarily
at high frequencies by requiring the physical constraints of
summability, sup{é | A(v) = O '%,v - +o0} > 0, and
the convergence of the integral [~ [A®(v)|dv for every
[=0,1,...,lao] +2.

In the following, we analyze the behavior of the coherence
terms that are induced by the above class of spectral densities.
If the degenerate energy level of the nanoelectric system is
below the critical energy of the reservoir the transient term
I (wyt) exhibits inverse power-law decays that are arbitrarily
faster than 1/ (wst). The resulting coherence term behaves for
t > 1/wy as follows:

P~ (1) ~ py —(0)e! FOTEN [y e B - p(eyr) ™I 7],
EO < EC. (40)
The coefficient 7 is defined in the Appendix.

If the degenerate energy level of the nanoelectric system
is equal to the critical energy of the reservoir, if the spectral
density belongs to the above class and is superohmic in the
band-gap frequency, the transient term /g (w,t) exhibits long-

time arbitrarily slow inverse power-law decays. Consequently,
for t > 1/w; the resulting coherence term reads

P (D) ~ i (0 N [y, + ne(wsn) ],
Ey=FE. oy>1. (41)
The coefficient 7, is defined in the Appendix.

If the degenerate energy level of the nanoelectric system
is equal to the critical energy of the reservoir and the spectral
density belongs to the above class and is subohmic in the
band-gap frequency, the transient term [(wy?) decays over
long times according to arbitrarily slow inverse power laws.
The resulting coherence term is described for ¢ > 1/w, by
the following form:

P (1) ~ My () PO FN (1) 7
Ey=E. 1>a>0. (42)
The coefficient 7, is defined in the Appendix.
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If the degenerate energy level of the nanoelectric system
is above the critical energy of the reservoir and the spectral
density belongs to the above class, the transient term [ (wst)
results over long times in inverse power-law decays. These
relaxations are arbitrarily faster than 1/ (wst) and forz > 1/w;
the coherence term reads

pa~(1) ~ mpo —(0) 7N (1) 7170,

In occurrence of the resonance Ey = E. the relaxations
to the asymptotic configurations become arbitrarily slow by
approaching the boundary between sub- and superohmic
regime, i.e., g — 17 in the subohmic regime and atyp — 17 in
the superohmic condition. This behavior has been found in the
general non-Markovian open system dynamics of finite dimen-
sional open quantum systems in bosonic environments [43].

Ey> E.. (43)

V. SPECIAL CASES

We study the quantum coherence that exists between the
two states |+) and |—) of the nanosystem by considering two

J
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special forms of spectral densities. The spectral density J;(w)
is defined by the following expression:

. (00— \ X
i (55)
Sw) = =2 2
1 )\2 + (a)ng)Z

Wy

1>a>0, 44)

and is subohmic in the band-gap frequency. The spectral
density J>(w) is defined as follows:

wQ)ﬂ

ey = — 25

L+ 222+ (5]

for 2 > B > 0, it is superohmic in the band-gap frequency
for 2 > B > 1 and subohmic for 1 > 8 > 0. The parameters
Jj1 and j, depend on the coupling between open system and
environment and on the reservoir correlation time [2].

The time evolution of the coherence term is described in
terms of the Fox H-function [44]. This special function is
defined by the following expression:

(45)

Hmn (Cll,Al),...,(Clp,Ap) :L/ HT:lr(bj‘i‘Bjs)H?:]F(l—Llj—AjS)Z_s
(bla 1)»...,(bq,Bq) 21 CH(;:erlF(l—bj—BjS)H§:n+1r(Clj+AjS) ’

under the conditions that the poles of the I functions, appearing in the denominator, do not coincide. The empty products are
interpreted as unity. The natural numbers m,n, p,q fulfill the following constraints: 0 < n < p, 1 <m < g, A}, By € (0,+00),
forevery j = 1,...,pandk = 1, ... ,q. For the sake of shortness, we refer to [44] for details on the contour path C, the existence,
and the properties of the Fox H-function. If the environmental spectral density is described by the form J;(w) the coherence
term results in

pi (1) = py._(0)e'Fo=9r Z Z Z Corj (

n=0 k=0 j=0
-n,1
X (Hllv’; [”2‘”“‘[ Hiz [”2”“ Eo,l) ,)(—2n —ktaj— 2,1)] ) (46)

(=n,1) 2
©0,1), (=21 — k +aj,1)| ~ s
If the environmental spectral density is described by the form J,(w) the coherence term reads
o0 n k J
pr(t) = pi (O ETON TN TN NN CR ) (H ’ [lqswsr
n=0 k=0 j=0 m=0

(—=n,1)
,1), (=2n — k

Wy t)2n+k—aj

(=n,1)
0,1),(—2n — k

—j+,3m,1):|

—lla)stHll_’zl |:lq3a)st

—j+ﬂm—l,l)}

(—n,1)
— A (wst)*H 12[“13“* 0,1),(=2n —k — j + Bm — 21)}
(—n,1)

0,1),(=2n — @7

2 3711
+ 13 (w5t) H [lqwst k—j+ pm— 3,1)])'

The coefficients C fll,){ and C ;2,)( _m are defined in the Appendix. Since the spectral densities Ji (@) and J>(w) belong to the general

class defined in the prev10us sectlon the long-time behaviors are included in the cases reported above. The corresponding critical
energies E. | and E., read

T . 42 To
Ec.1=Qp+ = jir csc|l — ), 48)
2 2
T _ _ 7B _ B
Eop=9Q,+ m[%ﬁ Vese (mB) + 11P % csc <7> — 1P sec (7) } (49)
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FIG. 1. (Color online) The ratio |p; _(t)/p+.—(0)] vs (wst) for
different values of py = (Ey — Q)/ws, pc = (E. — Q) /w5, , p1 =
ji/wg, A. Curve (1) corresponds to the values pg =A =1, p. =~
50.83, @ =1/5, p; = 10; curve (2) corresponds to py = A =1,
pe =10, o =1/3, p; = 10; curve (3) corresponds to py = A =
1, p ~9.71, a0 = 3/5, p1 = 5; curve (4) corresponds to pg = A = 1,
pe =371210m, @ = 2/3, p; = 10; curve (5) corresponds to py =
A =1, p. =57 sec(/8), « = 3/4, pp = 10; curve (6) corresponds
to pp=A=1, p. 2 16.52, « =4/5, p, = 10. Each curve shows
persistence of quantum coherence over long times.

Simplified forms are obtained if the powers o and B take
rational values p/q. In this cases the coherence term results in
a finite sum,

P4, —(1)

)
njoom

= P-s—,—(())el(EO_Qg)t Z Z @?fz(wst)(ml—kﬂ—q)/q
I=1 k=1

i)
(0’1)’(f1—m;’;+k—1 ’i)i|’ (50)

1,1 j
X Hl;Q |:_O,l(])(th)1/q
q

where j = 1,2. The case j = 1 refers to the spectral density
Ji(w) and j =2 to Jo(w). The involved parameters n;, m}j ),
0", ®\7). are defined in the Appendix.

The numerical analysis shows long-time persistence of
coherence in the condition Ey < E, and in the superohmic
regime of the resonance Ey = E., in accordance with the
theoretical analysis performed in the previous section. See
Figs. 1 and 2. Furthermore, the inverse power-law decays
of the coherence term are confirmed by the asymptotic lines
appearing in the log-log plots of Figs. 3 and 4. Each slope
coincides with the power of the inverse power-aw decay that
is theoretically predicted in the previous section.

VI. BOSONIC ENVIRONMENT

The Feynman-Vernon influence functional approach in the
coherent states representation provides an efficient way to
describe the open dynamics of a nanodevice [45]. For a
quantum dot coupled to a fermionic environment the master
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FIG. 2. (Color online) The ratio |p; _(t)/p4+.—(0)] vs (wst) for
different values of the parameters py, p., B, p2, A, [. Curve (1)
corresponds to the values pg = 1/2, p. =~ 0.71, B =7/6, p = L =
[ =1; curve (2) corresponds to py = 1/2, p. ~0.70, B =6/5,
p2 = A =1 =1; curve (3) corresponds to py = 1/2, p. >~ 0.68, § =
5/4, p» = A =1 = 1; curve (4) corresponds to pg = 1/2, p. =~ 0.66,
B =4/3, po =Ar=1=1; curve (5) corresponds to py = 1/2, p. =~
0.65, B =3/2, pp = 2 =1 = 1; curve (6) corresponds to py = 3/2,
pe =m/2, 8 =5/2, pp = A =1= 1. Each curve shows persistence
of quantum coherence over long times.

equation of the reduced density matrix is given by the following
expression:

p(t) = —1[H'(t),p(1)] + ve(H)[2ap(t)a’ — p(t)a'a
—a'ap(®)] + 7e(Olap(t)a’ + a' p(t)a — a'ap(1)
— p(t)a'al, (51)

[In|p, —()/p+-(0)]|
l4r ©® ®
12F

10 @)

3)

(3]

\S] -~ (o)) oo
T T T

3 4 5

In(w,t)

FIG. 3. (Color online) The quantity |In|ps _(#)/p+-(0)]] vs
In(wyt) for different values of the parameters py, p., o, p1, 2. Curve (1)
corresponds to the values py = p, = 27127 o = 1/2, pp=Ar=1;
curve (2) corresponds to pp =10, p. =m, a =1/3, py =1 =1;
curve (3) corresponds to py = p. = wcsc(w/8) /2, o = 1/4, p =
A = 1; curve (4) corresponds to py = 10, p. = wcsc(7/8) /2, a =
1/4, p1 = A =1; curve (5) corresponds to py = 10, p, =7, a =
1/3, pi = A = 1; curve (6) corresponds to py = 10, p. = 27"2x,
o = 1/2, py = A = 1. For each curve the asymptotic line corresponds
to the inverse power-law decay of the coherence term and the slope
coincides with the theoretically predicted power.
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FIG. 4. (Color online) The quantity |In|p; _(¢)/p+—(0)|| vs
In(w,t) for different values of the parameters pg, o, B, P2, A,
[. Curve (1) corresponds to pp = po =A=[1=1, p. ~0.96, B =
11/5; curve (2) corresponds to pp=po=r=101=1, p. =0.71,
B =17/6; curve (3) corresponds to pg = p, = A =1=1, p. ~ 0.68,
B = 5/4; curve (4) corresponds to py = 10, p. =~ 0.96, 0, = A =1 =
1, B = 11/5; curve (5) corresponds to pg = 4, p. >~ 0.66, B = 4/3
p» = A =1 =1; curve (6) corresponds to py =5, p. ~ 0.65, 8 =
3/2, p» = A =1 = 1. For each curve the asymptotic line witnesses
the appearance of the inverse power-law decay of the coherence term
and the slope coincides with the theoretically predicted power.

where a' and « are the creation and annihilation operator, re-
spectively. See Refs. [22,25-33,38] for details. The renormal-
ized Hamiltonian H'(¢) reads H'(t) = —Im{u(H)u~'(t)}a'a.
The master equation (51) is time local and the two nonunitary
terms drive the dissipation and fluctuation process. The dissi-
pation coefficientis y.(t) = —Re{i(t)u~'(¢)}, while the fluctu-
ation coefficient reads 7 (¢) = w.(t) — 2u.(t)Re{u()u='(¢)}.
The functions u(¢) and u.(¢) are the nonequilibrium retarded
and correlation Green’s function of the system, respectively,
and are defined in Sec. III via Egs. (14) and (16). Following
Ref. [31], the reduced dynamics of a nanocavity that is
embedded in photonic crystals is also described by the master
equation (51). In this case the creation and annihilation
operators fulfill the bosonic commutation rule. This theoretical
construct has been generalized to systems of noninteracting
bosons (fermions), consisting of N single-particle energy
levels, that are coupled to different bosonic (fermionic)
reservoirs [22]. Following Refs. [22,31], every feature of the
open dynamics is determined by the retarded and correlation
Green’s functions of the system. Especially, the nonvanishing
asymptotic behavior of the retarded Green’s function provokes
a suppression of the decoherence process [31]. Section III is
devoted to the constraints on the energy that guarantee non-
vanishing long-time behavior of coherence or, equivalently,
of the retarded Green’s function. These conditions hold also
for a bosonic system with one single-particle energy level
E\ that interacts with a bosonic environment. Consequently,
coherence persists in this bosonic open system if £y < E. orin
the superohmic regime of the resonance Ey = E.. Obviously,
the critical energy E. is defined by Eq. (24) with the bosonic
environmental spectral density.

In the following we consider the decoherence process
of a two-state system (qubit), |0) and |1), that interacts
with a reservoir of bosonic modes under the rotating wave
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approximation [2,46-48]. By choosing h = 1, the Hamiltonian
of the whole system is Hy + Hp + Hpp, where

o0
Hyg=wyos0o_, Hy=)» wblb, (52)
k=1
o0
Hop =Y [8 ol + (8) 0-b]].  (53)
k=1

The rising and lowering operators, o, and o_, respectively, act
on the Hilbert space of the qubit and are defined as follows:
oy = ol = [1)(0], while b,i and by, represent the creation and
annihilation operators acting on the Hilbert space of the kth
bosonic mode. The coupling between the transition |0) < |1)
and the kth bosonic mode is represented by the constant g,({b),
while g is the qubit transition frequency. If the qubit is
initially unentangled from the vacuum state |0) g of the bosonic

reservoir,
[W(0)) = [c0|0) + c1(0)I1)] ® |0) 5, (54)
the density matrix of the qubit evolves as follows [2,48]:
p11(0) =1 = poo(t) = p11(0) IG@)I, (55)
p1o(t) = pg1(t) = p1,0(0) e G(1). (56)

The function G () is the solution of the convolution equation

G(t)+ / ft —t)G(tHdt' =0, (57)
0

where the initial condition is G(0) = 1, while f (t) is the
correlation function,

f(r) = / ” J(w)e @707 g,
0

and J(w) is the spectral density of the bosonic reservoir [2,48].

Similarly to the scenario of the fermionic environment, the
persistence or undamped oscillations of coherence depends
on a critical frequency w, that is determined by the spectral
density and the band-gap frequency 2, of the bosonic
Ieservoir,

© J(w)
e = Q do. 58

8
If the transition frequency of the qubit is less than the critical
frequency the coherence term results in

p1.0(t) = p1.0(0)e " H [ype 2 + (wyt)], @y < .

(59)

The coefficients y;, and A, are defined in the Appendix in
terms of the auxiliary function A(v) introduced in Sec. III.
The transient function I(wst) refers to the expression (26)
where J(w) is the spectral density of the bosonic envi-
ronment. The transient function vanishes over long times
and undamped oscillations of the coherence term appear
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fort > 1/wy,

1(Apwy—Q)t
b

P1,0(t) ~ vpp1,0(0)e wy < . (60)

Especially, if the band-gap frequency coincides with the value
Ajpw; stable persistence of coherence is obtained for t > 1/w;,

Qg = Ab(x)s.

P1o(t) ~ Ypp10(0), wo < we,

The above features of the reduced dynamics holds also if the
critical frequency is infinite, v, = +00.

If the transition frequency of the qubit is equal to the
critical frequency the appearance of persistence, undamped
oscillations, or total loss of coherence over long times is again
determined by the structure of the spectral density at low
frequencies. For bosonic spectral densities that are superohmic

in the band-gap frequency the coherence term results in
p1o() = pro(@e™ % [y + Is(wsn)] oo > 1.

(61)

(UO = wcv

The transient term Ig(wst) is given by the expression (31),
where J(w) is the spectral density of the bosonic reservoir,
and vanishes over long times. Consequently, the coherence
term exhibits undamped oscillations for r > 1/wsy,

L oo > 1. (62)

01,0(t) = Yep1,0(0)e Wy = W,

The frequency of the oscillations coincides with the band-gap
frequency and vanishes for 2, = 0. In this case coherence
persists over long times, t > 1/w;,

Q, =0, ap>1.

p1,0 (00) ~ vcp1,0(0), @y = w,

(63)
If the transition frequency of the qubit is equal to the critical

energy of the reservoir and the spectral density is subohmic in

the band-gap frequency the coherence term results in
p1o() = p1o(0)e™ H I(wst), 1> 0 >0,

(64)

a)O = wL‘9

and vanishes over long times, ¢ >> 1/w,. If the transition
frequency of the qubit exceeds the critical frequency the
coherence term reads

p1.0(t) = p1,0(0)e ™ ¥ I (wyt), (65)

and vanishes for # > 1/w,. Similarly to the decoherence
process in fermionic environment, a “dressed” energy €, can

be defined
o0
J
€4 = wy — / (@) dw, (66)
Q w — Qg

such that oscillating or stable coherence persists in the two-
level system over long times if the dressed energy is below
the band-gap energy, €; < £2,. Coherence is entirely lost if the
dressed energy exceeds the band-gap energy, €5 > 2,. The
loss of coherence depends on the structure of the environmental
spectral density in the band-gap frequency if the dressed energy
equals the band-gap energy, €¢; = €2,. In fact, coherence is
completely lost in the subohmic regime and persists over long
times in superohmic environments.

By considering bosonic spectral densities that belong to
the general class defined in Sec. IV, J(w + 2,) = A(v), the
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coherence term exhibits inverse power-law relaxations to the
asymptotic regimes. If the transition frequency of the qubit
is less or greater than the critical frequency the long-time
relaxations to the oscillating regime are described by inverse
power laws that are arbitrarily faster than 1/(w;t?),

p1.0(t) ~ p1.o(0)e " H [ype' M + np(wst) 7], w < @,
(67)

Pa— (1) ~ py O™ ¥ (w,1) 77, wp > @, (68)

The coefficient 5, is defined in the Appendix. If the transition
frequency of the qubit is equal to the critical frequency the
long-time relaxations to the oscillating regime are described
by arbitrarily slow inverse power laws,

pro(®) ~ p1o(0)e ™ [ye + ne(wst) =1,
@0 = e, 00> 1L, (69)
p1.0(t) ~ mpl,o(O)e"Qg’(wsz)ao—l,

1>a9>0. (70)

(UO = wm

The present analysis of the general evolution and long-time
persistence of coherence improves the description of the open
dynamics performed in Ref. [49].

By dropping the rotating wave approximation a referential
model of a two-level system coupled to a bosonic environment
is the so-called spin-boson model. This system has been
widely studied with the most various approaches and the
related literature is vast [3,50-60]. In Ref. [61] a relevant
and detailed analysis of the spin-boson model shows that an
increase of the coupling strength between the system and the
bosonic environment hinders the decoherence process via a
transition from vanishing relaxations to lossless oscillations.
Persistence of coherence has been also observed at vanishing
temperatures [62] and, recently, under certain approximations,
in the delocalized phase regime of the spin-boson model [63]
by considering the spectral density (44). In the latter scenario
we intend to generalize the conditions that protect coherence
via the approach adopted in Sec. III.

The Hamiltonian of the spin-boson model is

€ Q 8b,k t 1
HSB = E o3 — EO’] + Xk: T O’3(bk + bk) + Xk:wkbkbk’

(71)

where the sums are performed over the bosonic modes of
the reservoir. The parameters € and €2 refer to the energy
difference and the transition amplitude between the two levels,
respectively, and 2 = 1. The Pauli operators o}, 07, 03, act
on the Hilbert space of the two-level system. Following
Ref. [61], the unitary transformation U; = exp {—imwo,/4}
and the successive rotating wave approximation leads, for
vanishing €, to the following exactly solvable Hamiltonian:

Q
Hewa = 5 03+ Y 25 @b+ b)) + Y anblby.
k k

(72)

The initial condition is |W(0)) = |4) ® |0) g, and corresponds
to [V1(0)) = U|¥(0)) = |+); ® |0)p in the rotated frame.
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The time evolution [61] is

| (1)) = &' /? (2‘”2|—> ® 10)5 + c(t)|+) ® 0) 5

+ Y d()]-) ® |1k>E) : (73)
k

where |1;)p = b,t|0)3 for every k = 1,2, ..., and o|%), =
+|+£),. The coherence between the two levels is analyzed
via the expectation value of the operator o). This value
corresponds to the polarization (W(¢)|o3|W(¢)) in the original
frame, which means P,(t) = (V(¢)|o;|W;(¢)). For this reason
the subindex z is chosen. Starting from the initial value P,(0) =
1, under the rotating wave approximation, the polarization
reads

P.(t) = 2" Re {c(1)}, (74)

where the function c¢(¢) is the solution of the following
convoluted equation:

t
é(t) +1920c(t) +/ fo (t = 1') c(thdt’ = 0, (75)
0
where the initial condition is ¢(0) = 27!/2
the correlation function of the reservoir.
Various perturbation approaches to the spin-boson model
are based on unitary transformations [59-61]. Consider the
transformed Hamiltonian Hg, that is obtained from the
Hamiltonian (71) via the unitary transformations U; and U, =
exp{D _; ¢x8h k01 (b}: — bi)/(2wy)}. The resulting Hamiltonian
is Hgp = Hy + H| + H,, where
Hj = AL > wxblby + Co, (76)
k

, while f;, denotes

2

H{ =g (o1 by + 0_b}). (77)
k

Q Q
H2’ = 5 o3(cosh y —0) —1 > ox(sinh y — 0x). (78)

The expressions of the parameters ¢y, 0, g;, x., Co, are defined
in the Appendix.

The spin-boson interaction disappears at the zero-order
approximation, Eq. (76), in the transformed Hamiltonian H’
and the renormalized transition amplitude is €2, = 6$2. The
delocalized phase regime [61] refers to nonvanishing values
of the parameter 6. The first-order perturbation terms are
collected in Hj, Eq. (77), while the second- and higher-order
perturbation terms appear in H,, Eq. (78). The contribution of
the term H; to the open dynamics can be neglected in the weak-
coupling limit at zero temperature [60] and the transformed
Hamiltonian is well approximated by the following form:

02
Heir = > z+;g1:(g—®b}:+o'+®bk)

+ > wblby + Co. (79)
k

The Hamiltonian (79) is evidently similar to the Hamiltonian
(72) and is suitable for the analysis of the dynamics of the spin-
boson model when the rotating-wave approximation is relaxed.
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The initial condition in the transformed frame is |[+), ® |0)p
and the polarization results in P, () = 2!/2Re {h(t)}, where the
function A(#) is solution of the convoluted structure equation,

h(t) + 102h(1) + / £t —tHh(tdt' = 0, (80)
0

with the initial condition 4(0) = 27!/2. The function f, is the
transformed correlation function of the reservoir,

fr(0) = /OO Jr(w)e™ " dw,
0

and is defined in terms of the renormalized spectral density
J(@) = (@4m)7" Y1 (81)*8 (@ — wy). See Ref. [61] for details.

Similarly to the scenario found in the fermionic environ-
ment, the appearance of undamped oscillations in the polar-
ization P,(t) depends on the critical value Q) of the transition
amplitude. This value is defined in terms of the renormalized
spectral density and the band-gap frequency €2, of the bosonic
IeServoir,

o0
J,
QO =@, + / O (81)

Q, C()—Qg

If the critical value () exceeds the value OS2 the polarization
results in

P.(t) = Re{e™ ' [ype' ™" + Ip(@D)]}, 0 < Q.

(82)

The coefficients yg, and Ay, are defined in the Appendix in
terms of the auxiliary function A, (v). Similarly to the previous
cases, the auxiliary function A,(v) is defined in terms of
the renormalized spectral density as A,(v) = J.(w + £2,) for
every w > 0. The transient function Iy, (w;t) is also defined in
terms of the renormalized spectral density,

Igp(wst) = /OO e (0 + Qy)/ (fo — 62
0

o+

+Q + Ho [ (@ + Q) 0]}
+ 72T 0+ Q) do, (83)

and vanishes over long times. Consequently, undamped oscil-
lations of the polarization appear for ¢ > 1/wsy,

P(t) ~ Refygpe' Ao@ =2 9Q < Q. (84)

The frequency of the undamped oscillations is constant,
[ Agpws — 2|, and vanishes for a special value of the band-gap
frequency, 2, = Agws. In this case the polarization persists
fort > 1/wy,

P.(1) ~ Re{ya},

Again, the above analysis holds if the critical value of the
transition amplitude is infinite, Q) = 4-oo.

If the critical value Q(© is equal to the value 6 the
long-time behavior of the polarization depends on the structure
of the renormalized spectral density at low frequencies,
Jr(w) ~ apg(w — 2,)* for v — Q; For renormalized spec-
tral densities that are superohmic in the band-gap frequency
the polarization results in

P(t) = ye,r cos(Qt) + Re{e™ %! I, (w; 1)},
00 = Q9. wy > 1, (86)

0Q < Q9. Q, =Agpws.  (85)
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where the transient term /g . (ws?) reads

© J(w + Qy)e ' JTZJrz(a) + Q,)
IS,r(wst) 2/ k -
0

+ w? w?

/ 2
+(1 +H+[W,w]) ]dw, (87)

while the parameter y, , is defined in the Appendix. The tran-
sient term I ,(w,t) vanishes over long times and undamped
oscillations of the polarizations appear for r > 1/ws,

02 =09, ay>1. (88)

P(t) ~ Ve, cOs(£2,1),

The oscillations disappear if the renormalized spectral density
has no band gap,

P(t) ~ Ve,

If the critical value Q© equals the value AQ and the
renormalized spectral density is subohmic in the band-gap
frequency the polarization results in

P(t) = e ¥ Ig(wst), Q= Q,

Q=09 ay>1, Q,=0. (89

1>oa9>0.

and vanishes over long times, > 1/w,. If the value 69
exceeds the critical value Q) the polarization reads

P,(t) = Refe ™% Iy (wst)}, (90)

and vanishes over long times.
Starting from the renormalized transition energy 6€2 and
the renormalized spectral density J,(w), a “dressed” energy

€4 can be defined
o0
Jr
o) zesz—/ CR 1)
Q, w — Qg

Over long times coherence persists in the two-level system if
the dressed energy is below the band-gap energy, effb) < Qg,
and is entirely lost if the dressed energy exceeds the band-gap

energy, el(;b) > Q,. If the dressed energy equals the band-gap

energy, eifb) = (2, the loss of coherence is determined by the
structure of the renormalized spectral density in the band-gap
frequency. Again, coherence is completely lost in the subohmic
regime and persists over long times if the renormalized spectral
density is superohmic in the band-gap frequency.

If the renormalized spectral density belongs to the general
class defined in Sec. IV the open dynamics exhibits inverse
power-law relaxations to the asymptotic configurations. In fact,
the transient terms exhibit oscillations enveloped in inverse
power-law profiles. The power laws are arbitrarily faster than
1/(wyt) for 0 # Q)

P.(1) ~ Refyge! @+~ — Ing (1)1 7%

X sin(Q,t + wap/2), 2 < Q©, 92)

P.(t) ~ — el (wst) ™' 7% sin(Qt + matp/2), 02 > Q,
93)
and arbitrarily slow for 0Q = Q©,
P.(t) ~ . cos(Qt) + e, [(51)' ™ sin(Qt + warg/2),
0Q =Q9, oy > 1, 94)
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P(t) ~ —nsl(wst)™ " sin(Qt — matg/2),
Q0 =Q9, 1 >a>0. (95)

The coefficients 71w, 7., are defined in the Appendix.
The present analysis of the conditions inducing undamped
oscillation or persistence of the polarization improves the study
performed in Ref. [63].

VII. CONCLUSIONS

We have considered a two-state nanoelectronic system
that interacts with a fermionic environment. Coherence is
maintained in the nanodevice by simple conditions that
involve the corresponding degenerate energy level and a
critical energy. This energy is defined via integral properties of
the spectral density of the fermionic reservoir. If the degenerate
energy level is less than or, in the superohmic regime, equal to
the critical energy of the open system, undamped oscillation or
persistence of coherence between the two states is maintained
over long times for every initial coherent configuration of
the nanosystem. Additional conditions induce coherence to
approach asymptotically the initial value. The appearance
of the oscillating or stable asymptotic nonvanishing regime
depends on the value of the band-gap frequency of the
reservoir. Furthermore, a dressed energy of the nanosystem
can be defined such that coherence is maintained uniquely if
the dressed energy is less than or, in the superohmic regime,
equal to the band-gap energy of the reservoir. The behaviors
of coherence reported above are found also in a nanocavity
that is embedded in photonic crystals and, more generally,
in a bosonic system with one single-particle energy level that
interacts with a bosonic environment or in a two-level system
that is coupled to a bosonic environment.

Following Ref. [38], the present model of a nanodevice
interacting with a fermionic environment refers to a double
quantum dot that is coupled to electrodes. Each dot has a
single active energy level and all the spins are polarized both
in the dots and electrodes. Alternatively, the model mimics
a single-level quantum dot that is coupled to electrodes with
possible spin-flip configurations in opposite directions. Single
and double quantum dots are realized via semiconducting
nanowires with tunable couplings [64]. The energy and
decoherence of a pseudospin qubit in a semiconductor double
quantum dot can be manipulated via a high-speed voltage
pulse [65]. The description of an experimental apparatus that
might detect the coherent behavior described above is out of
the purposes of the present paper. Still, the critical energy
that causes the transition from full decoherence to undamped
oscillations or persistence of coherence might be observed in
a nanosystem with a tunable degenerate energy level that is
coupled to an electron reservoir.
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APPENDIX: DETAILS

The study of the evolution of the coherence term p, _(¢) is
performed via Eq. (20), where the function u(¢) is obtained by
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solving Eq. (14). It is convenient to analyze the function v (),
defined as v(¢) = exp{t12,t}u(t), and its Laplace transform,
(s) = fooo exp {—st}v(t)dt. The equality v(t) = wsk(wst)
defines the function k (§) and its Laplace transform reads

k(@) = l1(Eo — Q) + o0 —1S[AW), =11} (AD

The symbol S represents the Stieltjes transform [66-68],
S[AWw),z] = fooo A(W)/ (v +z) dv for |argz| < . The sin-
gularities of the function k(¢) are determined by solving the
following equation:

(Eo — ) — 1058 — S[A(v),—1£] = 0. (A2)

The transcendental equation (A2) has been studied in Ref. [69].
The existence of the solution depends on the critical value
E., given by Eq. (24), of the degenerate energy level E|.
This solution is imaginary, £ =:A with A > 0, and exists
uniquely for Ey < E.. Consequently, the complex valued
function k(¢) is well defined in the complex plane cut
along the negative imaginary axis, ¢ # 1y for every y < 0,
and exhibits uniquely one singularity, ¢ =1 A, for Ey < E..
This singularity contributes to the Laplace inversion via the
corresponding residue,

y = wsRes[k(¢),1A], Ey < E.. (A3)

The function & (&) is evaluated via the Laplace inversion of the
function k(¢),

Xo+1Yo

k()= lim b eSS k()de, (A4)

Yo 400 271 iy

where xo and y, are positive parameters. The above in-
tegration is performed via the corresponding line integral
over the path QABCDEFP in the complex plane, where
Q=x0—1y9, A=€ —1yy, B=¢€(1—1), C=—€(l+1),

D=—(e+1y)), E=1R, F=u1y,, P=xp+1yy, and
. 1 1 S[A(W)/v?,
k() = [— -
ws + 2 [ ¢ ws + W2

gives the Laplace inversion

k(&) = {+ /e*'fvi;) [<1+—
Wy o+ Vv w.

The parameter y, is defined as y, = w,/(ws + w2), where
Uy = fooo A(v)/v2dv, and results in the expression (30). In
this way, Eqgs. (29) and (31) are found. Notice that the integral
that defines the constant u, exists finite due to the superohmic
behavior of the spectral density. The integral appearing on
the right-hand side of Eq. (A7) vanishes for £ > 1. In this
way we find Egs. (32) and (33). For the class of auxiliary
functions A(v) introduced in Sec. IV, the integral appearing
on the right-hand side of Eq. (A7) exhibits inverse power-law
decays [67] as & > 1 and Eq. (41) is found, where

B VCZaOF (Olo _ 1)6171(1—010)/2

c =

s

In Sec. V the special spectral densities (44) and (45)
correspond to auxiliary functions A;(v) and A,(v) that are

gt .
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R = (€% + y3)'/%. The counterclockwise circular arc BC is
centered in the origin with radius r = 2!/?¢. The clockwise
circular arc DE is centered in the origin with radius R = (y7 +
€)!/2, respectively. The remaining paths are segments. For
yo — 400 and € — 07 the contributions of paths QA, DE,
EF, FP,vanish.If Eyg # E.,orif Eg = E.and 1 > ap > 0,
the contribution of the path ABCD in the limits ¢ — 0" and
Yo — +oo is the following integral:

Lnpen (&) = / e AW)/((HA[AW ) v ]+ 0 — Eo+- Q)
0+

+ 72 A (v))dv, (A5)
and results in Eq. (26) by considering the definition of the
auxiliary function A(v) reported in Sec. III. No singularity of
the function k() exists inside or belongs to the closed contour
of integration QABCDEFP if Ey > E.. One singularity
appears inside the closed contour for Ey < E. and contributes
to the integration via the residue. This approach leads to
Egs. (25), (34), (35).

The integral (AS) vanishes for £ >> 1 and Egs. (27) and (28)
are found. The residue provides the undamped oscillations of
Egs. (25) and (27) and the persistent nonvanishing asymptotic
behavior of Eq. (28). For the class of spectral densities
introduced in Sec. IV, the integral I45¢cp (£) decays according
to inverse power laws [67] and leads to Egs. (40), (42), (43),
where

M —17(l4a0)/2
(Eog — E.)*
@5 SIN(TQ0) 1y—1)2

maol (ap)

If Eg = E. and oy > 1 the following form,

2 _
L ESIAW)/V, zc]>]’ (A6)
ws + U2

AO) TV ve )" A2(v)
H+[(U,)2,v}> 42 (w_> ~ :Idv}. (A7)
[

defined by the following forms:

o

J1v
A](U)_vz—i—)ﬂ’ 1>a>0, (A8)
JovP
Ar(v) = 2>8>0, (A9)

v+ D2 4212’

where A,/ > 0. The corresponding forms of the function k(¢)
are

~ . (§2 _)\2)/0).&

kl(;)— §3+l}"2§2+71{ +rae—m(l+a)/2§a+lr07
3 .2 a2 2

];2(§) _ ¢ e AL+ 1lA)  ws

Tt 1q383 + qot? — qpe PP g1 ¢ + g0
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where

1 (mjA%csc(ma/2
o= — ("fw 238, — Eo)>,

Ws

mjicsc(ra) Eo— Q,
Yo = ) ry = )
Wy Wy

Tjhr " sec(ma/2)  ,
rp = -7,
2wy

and
qo = {mjp[21P 2% csc(mB) — 1A TP sec(B/2)
+ 23 ese(B/2))/ 12017 + A7)
+1%(R, — Eo)}/ oy,

q1 = [\ — Eo) — mjad? " sec(np/2)/21/ w,

+122, qp = mwjresc(np)/ws,
¢ = (mplrf esc(mB/2))2 + WP~  sec(np/2)/2

— 17 ese(mB)]/ (1> + 2%) + 1(Eq — Qg)}/w; — 12,
g3 = =1 + (Eg — Q,)/ ;.

The term by term Laplace inversion [70] of the series
expansions of the functions k;(¢) and k,(¢) for large ¢ leads
to Egs. (46) and (47), where

(_l)nrn—krk*jro{em(k72jfo¢j)/2

C(>1)~ — 1 0
nk.j jln =)'k — j)! ’
—k _k—j j— —j—
® B (_1)11+mq§1 kql Jqé mqgnelﬂ(k Jj—Bm)/2
nk,jm —

m!(n — k)!(k — HI(j — m)!
For rational values p/q of the powers « and 8, the functions

k1(&) and k(&) are obtained as the Laplace inversions of the
rational functions K;(w) and K>(w),

Ki(w) = [(w* — 2 /o) /(w* + 1w + riw?
+rge  TIFO2P ),

Kr(w) = [(w¥ — ilw? — 22w 4+ 113%) ) w,]/(w¥
+1q3w + gow® — gge” PPwl +agiw? + qp),

where w = ¢!/4. Let the roots of the denominators of the
rational function K;(w) be o\, ... o), with multiplicity

R A
m(lj ). ,mffj), for every j = 1,2. The Laplace inversion of

the decomposition of the rational functions leads to Eq. (50),
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where
%) 1 d-!
Q) = 0] k—1
(k — D(m;” — k)1 dw

X [(w — Ul(l))m/ K_,-(w)] s (A10)

U):O']

foreveryl =1,...,nj, k=1, ...,m}j), and j = 1,2.
The study of coherence of a qubit interacting with a bosonic
environment is performed by solving Eq. (57). The functions

vp(?) and kp(7) are defined as follows: v,(r) = ' (Qe—wo)r G()
and 0, (t) = k;, (s /w;). The latter Laplace transform reads

kp(£) = {t(wo — ) + ¢ —1S[AW), =g}, (Al
and is analyzed with the approach reported above. In this way,
Egs. (58)—(70) are obtained, where

Vo = wsRes[ky(£),1A], (A12)

oy < W,
and
n — M o1 (H0)/2.
(wo — @)

The polarization of the delocalized phase regime of the
spin-boson model is studied by solving Eq. (80). The functions
Ush(1) and kg (2) are defined as follows: vy (7) = %' h(t) and
Dsp(2) = kgp (s/wy). The latter Laplace transform results in

ko(2) = RO)1(OR — Q) —1S[AW),—1¢]  + o g},
(A13)

and is analyzed with the approach reported above. The
involved parameters are

2 9
8b.1 P , 0Qgpkpx
6=exp{— E 2a),% }, gk:w—k’
p

4o,

2
8b kP 8bkPk ,, t
Co=) 2= (-2, x=§j—w (b} — by).
X k 3 k

See Ref. [61] for details. In this way we find Eqgs. (81)—(95),
where

Yoo = osRes[kyp(0),1Agp], 02 < Q9,  (Ald)
and
wsaol’' (1 +00) (14w
N = 240 3 et (Ha)2
OQ — Q)
wy
Yer

- ws + [0 A (v)/v2dy

This concludes the demonstrations of the results reported in
the paper.
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