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Resonance of the exchange amplitude of a photon by an electron scattering in a pulsed laser field
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Resonant scattering of a photon by an electron in the presence of the field of the low intensity circularly
polarized pulsed laser wave is studied theoretically. The approximation used the case in which a laser-pulse
duration is significantly greater than the characteristic oscillation time. The resonance conditions of the exchange
diagrams by electron and positron intermediate states were determined. The probability of such a process is
calculated. It is demonstrated that the resonant probability may be six to ten orders of magnitude higher than
the probability of the Compton effect in the absence of the external field. Obtained results can be verified
experimentally in the framework of modern research projects (SLAC, FAIR, XFEL, and ELI).
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I. INTRODUCTION

The characteristic feature of electrodynamics processes of
the second order in the fine-structure constant in a laser field
is associated with the possibility of their resonant modes.
Resonant character relates to the fact that processes of the first
order, such as spontaneous emission or one-photon production
and annihilation of electron-positron pairs, are allowed in the
field of a light wave. Therefore, within a certain range of energy
and momentum values, a particle in an intermediate state may
fall within the mass shell. Then the considered process of
the second order effectively decomposes into two consecutive
processes of the first order.

The resonant behavior of the processes of the second
order in the fine-structure constant is one of the fundamental
problems of quantum electrodynamics in the presence of an
external field, whose analysis was started in the mid-1960s
(see, for example, reviews [1–5], monographs [6–8], and
[9–24]).

Oleinik [9,11] was the first to mention the resonances in
the Compton effect in the presence of the field of a plane
monochromatic wave but the corresponding analysis was frag-
mentary. In [19,20] we considered the resonance of the direct
and exchange diagrams in the relativistic system for the field of
the low-intensity plane monochromatic electromagnetic wave.
We considered the resonance of the direct diagram [12,13]
and nonresonant Compton scattering [14,15] in the field of the
plane pulsed electromagnetic wave.

Generally speaking, strong-field quantum electrodynamics
processes can be classified into two categories: either induced
or modified by the laser field. Whereas laser-induced processes
do not occur in the absence of the field, the laser-modified
processes are possible, even though their properties can change
significantly under the influence of the field. Thus, the problem
of scattering of electrons by a laser pulse (the process of the
first order in the fine-structure constant), which in the absence
of an external field does not occur, was considered in [25–29].

Experimental verification of QED effects in the laser field
was carried out only for the laser-induced processes (processes
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of the first order in the fine-structure constant) at the facility
SLAC National Accelerator Laboratory (Stanford, California,
USA) [30,31], and also is included into the scientific program
of the FAIR international project based on the laser system
PHELIX [32]. Experiments were not carried out for the
laser-modified processes because their conduct has a greater
complexity. However, for such processes is possible a resonant
mode where a particle in an intermediate state may fall within
the mass shell. At this rate the resonant probability may exceed
the corresponding probability in the external field absence in
several orders of the magnitude. That is why studying of the
laser-modified processes causes a great scientific interest. High
power pulsed lasers whose field cannot be simulated using a
model of the plane monochromatic wave are used in mod-
ern experiments on verification of quantum electrodynamics
effects [30–37]. Thus, theoretical works widely employ the
model of the pulsed electromagnetic field that represents the
four-potential with an envelope function (see, for example,
works studying elementary quantum processes in the presence
of the pulsed field [12–15,25–29,38–47], and tunnelling and
multiphoton ionization of atoms and ions in the presence of a
strong laser field [48–50]).

This paper contains a study of laser-modified Compton
scattering. We consider the external field as a circularly
polarized pulsed electromagnetic wave, propagating along the
z axis with a polarization plane xy. The four-potential of such
a field has the form

A(ϕ) = g(φ)A0(ϕ), A0(ϕ) = a(ex cos ϕ + δelley sin ϕ).

(1)

Here

ϕ = (kr) = ωt − kr (2)

is the wave phase; r = (t,r) is the four-radius vector; φ =
ϕ/ϕ0, ϕ0 = ωtimp, timp is the pulse duration in the laboratory
frame of reference; a = F/ω, F, and ω are the field strength
at the center of pulse and wave frequency in the laboratory
coordinates; δell = ±1; ex,y = (0,ex,y) and k = (ω,k) are the
four-polarization vector and four-momentum of the external
field photon, such that k2 = 0, e2

x,y = −1, (ex,yk) = 0; g(ϕ)
is the envelope of potential that satisfies the conditions g(0) =
1 and g → 0 at |φ| � 1 (|ϕ| � ϕ0).
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The relativistic system of units, where � = c = 1 and
standard metric (ab) = a0b

0 − ab, will be used throughout
this paper.

The following condition is satisfied in the range of the
optical frequency and pulse durations of tens of femtoseconds
and above:

ϕ0 = ωtimp � 1. (3)

Thus, the spectral density of the four-potential (1) represents a
sharp peak with an amplitude in order with ϕ0 and a width in
order with ϕ−1

0 . Therefore, it is expedient to consider ω as the
frequency of the quasimonochromatic field. For the theoretical
analysis, we choose the wave envelope given by

g(φ) = exp(−4φ2). (4)

The intensity of the process is governed by the classical
relativistic-invariant parameter [51]:

η = eF/mω, (5)

where e and m are the electron charge and mass. Note that
the parameter is introduced when the elementary quantum
processes in the presence of the electromagnetic wave field
are studied (see, for example, [1–51]).

In this work, we study the resonance of the exchange ampli-
tude of Compton scattering in the pulsed electromagnetic field.

II. AMPLITUDE OF THE PROCESS

The scattering amplitude of the photon with the four-
momentum ki = (ωi,ki) by electron with four-momentum
pi = (Ei,pi) in the presence of external field (1) is given by
(see [12–15], and also Fig. 1)

Sf i = S
(d)
f i + S

(e)
f i , (6)

S
(e)
f i = −ie2

∫
d4rd4r ′�̄pf

(r)γ μG(r,r ′)γ ν�pi
(r ′)

×A∗
ν(kf r ′)Aμ(κir), (7)

where indexes d and e belong to the direct and exchange
diagrams, respectively; pf = (Ef ,pf ) and kf = (ωf ,kf ) are
the four-momenta of the final electron and photon; γ μ

(μ = 0,1,2,3) are Dirac matrices. The direct amplitude S
(d)
f i

+

ip

fp ik

fk

eq

ip

fp ik

fk

dq

FIG. 1. Feynman diagram for the Compton effect in the field
of the pulsed light wave for the direct (a) and exchange (b) parts.
Incoming and outgoing double lines correspond to the Volkov
function of an electron in initial and final states, and the dashed
lines represents the wave function of a photon; inner lines designate
the Green’s function of an electron in the pulsed field.

[Eq. (6)] is obtained from exchange amplitude S
(e)
f i [Eq. (7)]

by replacement ki ←→ −kf . The four-potential of the initial
photon is given by

Aμ(kir) =
√

2π/ωieμ exp[−i(kir)], (8)

where eμ is the polarization four-vector of the photon. The
four-potential of the final photon A∗

ν(kf r ′) is obtained from
Eq. (8) by complex conjugation, as well as the replacement
indices μ → ν, i → f . The wave function of an electron
�pi

(r ′) in the field (1) (see [51,52]) in the zero approximation
with respect to parameter φ−1

0 is given by (see [23,51–54])

�pi
(r ′) = Bpi

(r ′)e−iSpi
(r)upi

/

√
2V Ẽi, (9)

Bpi
(r ′) = 1 + e

2(kpi)
k̂Â, (10)

Spi
(r) = (pir) + η2 m2

2(kpi)

∫ φ

−∞
g2(φ)dφ

− mηg(φ)

(kpi)
[δell(piey) cos ϕ − (piex) sin ϕ], (11)

and �̄pf
(r) is obtained from �pi

(r ′) [Eqs. (9) and (11)] by
renaming indices and Dirac conjugation. G(r,r ′) is the Green’s
function of the electron in the field (1) (see [51,52]):

G(r,r ′) = 1

(2π )4

∫
d4q(e)Bq(e) (r)

q̂(e) + m

(q(e))2 − m2
B̄q(e) (r ′)

× exp{−i[Sq(e) (r) − Sq(e) (r ′)]}, (12)

where hats above notations stand for the scalar product
(for example, k̂ = kνγ

ν), upi
and ūpf

are Dirac bispinors,
V = LxLyLz is the normalization volume, Lx and Ly are
the normalization lengths in the plane that is perpendicular
to the wave vector, Lz is the normalization length along the
direction of the wave propagation that must be no less than
the pulse duration Lz � timp, Spi

(r) is the classical action
whose components correspond to the systematic motion along
a smooth curve and the oscillatory motion with frequency ω

around the curve [25,53], and Ẽi is written as

Ẽi = Ei + η2 m2

2(kpi)

(
ϕint

ωLz

)
, (13)

ϕint =
∫ ∞

−∞
g2(φ)dϕ =

√
π

2
ϕ0. (14)

Let us consider the case of the low-intensity field:

η2 � 1. (15)

In this case, we can neglect the second term in expression (13)
and assume that Ẽj ≈ Ej , j = i,f . The expression for the res-
onant amplitude of the exchange diagram (6) for condition (15)
is written as

S
(e)
f i ≈ AI (β±,l∗)e∗

νeμ

(
ūpf

Mνμupi

)
× δ(2)(pi,⊥+ki,⊥ − pf,⊥ − kf,⊥)

× δ(pi,− + ki,− − pf,− − kf,−), (16)
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Mνμ = Mν
−1(pf ,q(e))(q̂(e) + m)Mμ

1 (q(e),pi), (17)

A = − ie2(2π )3ϕ2
0

2
√

ωiEiωf Ef V 2ω2
, (18)

where pi,⊥, ki,⊥, pf,⊥, and kf,⊥ are the projections of
the corresponding vectors along the wave polarization
plane;

pi,− = Ei − pi,z, ki,− = ωi − ki,z,
(19)

pf,− = Ef − pf,z, kf,− = ωf − kf,z

are differences between the zero components of the cor-
responding four-momenta and their projections along the
wave propagation direction; and q(e) is the momentum of
the intermediate particles that correspond to the exchange
diagrams in Fig. 1. Using the conservation of four-momenta,
we obtain

q(e)
⊥ = pi,⊥ − kf,⊥, q

(e)
− = pi,− − kf,−. (20)

The parameter l∗ in expression (16) can be determined from
the equation

pi + ki + l∗k = pf + kf , (21)

β± is the resonance parameter:

β± = q(e)2 − m2

4(kq(e))
ϕ0. (22)

Here β+ corresponds to the positron intermediate state, and
β− corresponds to the electron intermediate state.

Matrices Mν
±1(p,q) in expression (17) are the terms which

are proportional to the first power of parameter η. They
determine the corrections related to the process involving one
photon of the wave:

Mν
±1(p,q) = ±y0(p,q)

2
e∓iχγ ν + m

2(kq(e))
[ε̂∓kν − k̂ε∓ν]

+ m

4

[
1

(kp)
− 1

(kq)

]
ε̂∓k̂γ ν, (23)

Here ε± = ex ± iδey ; y0(p,q) and χ ≡ χ (p,q) are parameters
which have the form

y0(p,q) = mη
√

−Q2, χ = δϕ′,
(24)

Q ≡ Q(p,q) = p

(kp)
− q

(kq)
,

where ϕ′ is the angle between the perpendicular com-
ponent of the vector Q and axis x. Mν

−1(pf ,q(e)) and
M

μ

1 (q(e),pi) are obtained from Eqs. (23) and (24) by re-
placements p → pf , q → q(e) and p → q(e), q → pi, re-
spectively. Function I (β±,l∗) in the expression (16) has the
form

I (β±,l∗) = 4

π2

∫ ∞

−∞
f2(ξ,l∗)

1

(1 + ξ ) − 2β±/ϕ0 + i0
f1(ξ )dξ.

(25)

Functions f1(ξ ) and f2(ξ,l∗) in expression (25) can be
written as

f1(ξ ) =
∫ ∞

−∞
dφg(φ) exp

{
iϕ0

[
− (1 + ξ )φ

+ η2 vf i

df

∫ ϕ

−∞
g2(φ′)dφ′

]}
, (26)

f2(ξ,l∗) =
∫ ∞

−∞
dφg(φ) exp

{
iϕ0

[
(ξ − l∗ + 1)φ

− η2 vif

df

∫ ϕ

−∞
g2(φ′)dφ′

]}
, (27)

where

vif = (kki)

(kpf )
, vf i = (kkf )

(kpi)
, df = 2(kf pi)

m2
,

0 � vif � df , 0 � vf i � df , (28)

and ξ is the parameter determined from the equation

pi − kf = q(e) − ξk. (29)

In the sequel study the wave intensity has to be restricted
by a condition that is more rigorous than Eq. (15):

η2 � ϕ−1
0 . (30)

Then, the simple analytical representation of functions (26)
and (27) is written as

f1(ξ ) = f̃ (1 + ξ ), f2(ξ,l∗) = f̃ (l∗ − ξ − 1), (31)

where

f̃ (x) =
∫ ∞

−∞
g(φ) exp(−iϕ0xφ)dφ =

√
π

2
exp

(
−ϕ2

0x
2

16

)
.

(32)

It follows from expression (32) that the significant range of
variables is ξ ∼ ϕ−1

0 . Hence, in the zero approximation with
respect to parameter ϕ−1

0 one can assume l∗ = ±1 (for the
positron and electron intermediate state, respectively). In this
case from Eq. (21) the frequency of the scattered photon is
given by

ω
(∓)
f = (piki) + l∗[(kpi) + (kki)]

([pi + ki + l∗k]nkf
)

≈ (piki) ± [(kpi) + (kki)]

([pi + ki ± k]nkf
)

, (33)

where

nkf
= kf

ωf

= (1,nkf
). (34)

The integration with respect to ξ in Eq. (25) yields

I (β,l∗) = −iπexp

[
−ϕ2

0 l2∗ + 8
(
β + ϕ0l∗

4

)2

16

]

×
{

erfi

[√
2

2

(
β + ϕ0l∗

4

)]
+ i

}
, (35)

where erfi(z) is the error function of the imaginary argument.
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III. KINEMATICS OF RESONANCE OF EXCHANGE
AMPLITUDE

Taking into account the condition (30) the resonance
parameter (22) is given by (see also [12,13])

β+ = ϕ0

2

(
l′ − (pikf )

(kpi) − (kkf )

)
,

(36)

β− = −ϕ0

2

(
l − l′ + (pf ki)

(kpi) − (kkf )

)
,

where l, l′ are the integer numbers which determine the
total intermediate number of the external wave photons,
respectively. It follows from the expression (36) that the
resonance of the exchange diagram under (kpi ) > (kkf ) allows
the processes, which satisfy the inequality

l′ > 0, l < l′. (37)

In this case the resonance is realized by means of the electron
intermediate state. There are the following four-momenta
conservation laws:

pi + l′k = q(e) + kf , q(e) + ki = pf − (l − l′)k. (38)

Resonance occurs for processes satisfying

l′ < 0, l > l′ (39)

when (kpi) < (kkf ) is valid. In this case, the resonance is
realized by means of the positron intermediate state and the
following four-momenta conservation laws hold:

pi + (−q(e)) = kf + l′k, ki + (
l − l′

)
k = pf + (−q(e)).

(40)

For the processes (l′ = ±1, l = 0), which allow the res-
onance of the exchange diagram via electron (l′ = 1) and
positron (l′ = −1) intermediate states, the resonance parame-
ters β∓ are given by

β∓
ϕ0

= 1

2

υ ′ ± 1

[uf (1 − ω
(∓)
f /ω

(∓)
f,res) ± 1]

(
1 − ω

(∓)
f

ω
(∓)
f,res

)
, (41)

where the upper (lower) sign corresponds to the electron
(positron) intermediate state and invariant parameter uf and
frequency of the resulting photon ω

(∓)
f,res that correspond to the

resonance maximum are represented as

uf = (kkf )

(pikf )
, (42)

ω
(∓)
f,res = (kpi)

(Ei − pinf )(uf ± 1)
. (43)

It follows from expression (43) that the resonance via the
positron intermediate state can be observed under limitations
on parameter uf :

uf > 1. (44)

In accordance with conservation law (21), the frequency of
the scattered photon at the resonance maximum is

ω
(∓)
f = (piki)

(Ei − pinf )(1 ± dif )
. (45)

In the case of the resonance through the positronic inter-
mediate state we can rewrite a process as a consequence of
two subprocesses: production of an electron-positron pair by
the indent photon in the field of the wave with consequent
annihilation of the electron-positron pair in the field of the
wave. The terms that are proportional to the second power of
parameter η2 determine the corrections related to the process
involving two photons of the wave.

Assuming that expressions (43) and (45) are equal, we
conclude that the resonance maximum can be observed when
the directions of the scattered photon belong to the surface of
the cone (see Fig. 2) whose axis coincides with vector j∓ and
the cone angle is α = ∠(j∓,nf ):

cos α = j∓
0 /|j∓|,

j∓ = (j∓
0 ,j∓) = (kpi)[pi + ki] − (piki)[k ± pi]. (46)

The dependence of the resonance polar angle θ̃f = ∠(k,kf )
of the final photon on the azimuthal angle ψ̃f = ∠(kf ⊥,ex) is
given by

θ̃f = 2 arctan

(
cos θj∓ cos(ψj∓ − ψ̃f ) ± √

D

cos α + cos θj±

)
, (47)

D = sin2 θj∓ cos2(ψj∓ − ψ̃f ) + cos2 θj∓ − cos2 α, (48)

where θj∓ and ψj∓ are the polar and azimuthal angles of the
vector j∓.

One can conclude from Fig. 2 that the resonant emission
angle of the photon is not determined within the full variation
range of the corresponding azimuthal angle. It considerably
depends on the initial geometry (whether the axis z occurs
within the specified cone or not).

It follows from expression (46) that the four-vector must
be spacelike (j∓)2 � 0 and the following condition must be
satisfied:

d2
i (1 − uiv) ∓ 2div + v2 � 0, (49)

where

ui = (kki)

(piki)
, v = 2(kpi)

m2
, di = 2(piki)

m2
. (50)

In expression (49) sign “−” corresponds to the electron
intermediate state, and “+” corresponds to the positron
intermediate state. For the electron intermediate state from
Eq. (49) we obtain the limitation on the initial parameter
di under which the resonance of the exchange diagram is
observed:

v

1 + √
vui

� di � v

1 − √
vui

, ui < v−1

di � v

1 + √
vui

, v−1 < ui < v (51)

When parameter di does not satisfy conditions (51) the
resonance of exchange diagram is absent.

For the positron intermediate state, the resonance is possible
in the range

di � di,lim, v−1 < ui � v, (52)
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FIG. 2. The geometry of the final photon emission in the case of exchange diagram resonance (top) and corresponding dependencies (bottom)
of the polar angle θ̃f on the azimuthal angle of the final photon ψ̃f [Eq. (47)] for the polar angle of electron entrance θi = ∠(k,pi) = 163◦ and
azimuthal angles of the particle entrance ψi = ψ̃i = 0◦. The left illustration corresponds to the photon entrance polar angle θ̃i = ∠(k,ki) = 164◦,
and the right one corresponds to θ̃i = 130◦.

where the threshold value of parameter di,lim is

di,lim = v√
vui − 1

. (53)

The resonance region can be represented as the condition
for the frequency of the incident photon. In particular, for the
electron intermediate state, we have

ωf

1 + √
vui

� ωres
i � ωf

1 − √
vui

, ui < v−1

ωres
i � ωf

1 + √
vui

, v−1 < ui < v (54)

Here function f is represented as

f = 1 − υi cos θ̃i

1 − υi cos θi

, (55)

where υi is electron velocity.
For the positron intermediate state, we have

ωres
i � ωf√

vui − 1
, v−1 < ui < v. (56)

Figure 3 shows the resonant range of the initial photon
frequency ωres

i (in the units of the initial electron energy Ei) de-
termined by the system of equations and inequalities (54), (56)
at ω = 2.36 eV, Ei = 48 GeV, and θi = 163◦, as a function of

the parameter α, which has the form

α = (θi − θ̃i)(Ei/m). (57)

The chosen geometry of the process is that the momenta of the
initial photon and electron and the wave propagation direction
belong to the same plane.

FIG. 3. (Color online) The resonant frequency range of the initial
photon ωi [see Eqs. (54) and (56)] in the units of the initial electron
energy Ei as a function of the parameter α [Eq. (57)].
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IV. RESONANCE PROBABILITY FOR EXCHANGE
AMPLITUDE

Let us determine the differential probability over all the
process observation time of the laser-modified Compton
scattering using the amplitude (16)–(18):

dW (∓) = ∣∣S(e)
f i

∣∣2 d3kf

(2π )3

d3pf

(2π )3
. (58)

We search for the resonance probability of the exchange
diagram using the resonance approximation, [i.e. in Eq. (58)
assume that q

(e)
∓ 2 = m2 except for function I (β∓,l∗)]:

dW (∓)
res = e4

16(2π )3ωiEiV (kq
(e)
∓ )2

ϕ4
0

ω4
H (∓)|I (β∓,l∗)|2

× δ(2)(pf ⊥ − (pi⊥ + ki⊥ − kf ⊥))

× δ(pf − − (pi− + ki− − kf −))
d3kf dpf ⊥dpf −

ωf pf −
.

(59)

The averaging procedure over the initial and summation
procedure over final polarizations of photons (ki , kf ) and
electrons (pi , pf ) gives

H (∓) = 1

4
Sp{(p̂f + m)M±1

ν (pf ,q
(e)
∓ )(q̂(e)

∓ + m)M∓1
μ (q(e)

∓ ,pi)

× (p̂i + m)M±1
ν (pf ,q

(e)
∓ )(q̂(e)

∓ + m)M∓1
μ (q(e)

∓ ,pi)}.
(60)

Calculating Eq. (60) we find

H (∓) = 128η4m4K (∓), (61)

K (∓) = f ′(v(∓)
f i ,d

(∓)
f )f ′(v(∓)

if ,d
(∓)
f ) + g′(v(∓)

f i ,d
(∓)
f )g′(v(∓)

if ,d
(∓)
f )

− 2v
(∓)
if v

(∓)
f i

(d (∓)
f )2

(di − d
(∓)
f ) + 2v

(∓)
if v

(∓)
f i

(v(∓)
if ± 1)(v(∓)

f i ± 1)

×
(

v
(∓)
if + v

(∓)
f i

d
(∓)
f

− 2v
(∓)
if v

(∓)
f i

(d (∓)
f )2

)
, (62)

where parameters v
(∓)
f i , v

(∓)
if , and d

(∓)
f [Eq. (28)] have the form

v
(∓)
f i = 1 ∓ di

v(1 + dif )
, v

(∓)
if = u

1 + u − v
(∓)
f i

,

d
(∓)
f = di

uf ± 1
. (63)

Here

u = (kki)

(kpi)
, dif = (kikf )

(pikf )
. (64)

Functions f ′ and g′ in Eq. (62) are represented as

f ′(v(∓)
f i ,d

(∓)
f ) = 2 + v

(∓)2
f i

1 + v
(∓)
f i

− 4
v

(∓)
f i

d
(∓)
f

(
1 − v

(∓)
f i

d
(∓)
f

)
, (65)

g′(v(∓)
f i ,d

(∓)
f ) = (2 + v

(∓)
f i )(d (∓)

f − 2v
(∓)
f i )d (∓)

f

2d
(∓)
f (1 + v

(∓)
f i )

. (66)

The integration in expression (59) to dpf ⊥dpf − is relatively
simple owing to the presence of three δ functions:

d3kf dpf ⊥dpf −
pf −ωf

δ(2)(pf ⊥ − [pi⊥ + ki⊥ − kf ⊥])

× δ(pf − − [pi− + ki− − kf −]) → ωf

pf −
dωf d�f ,

(67)

where d�f = sin θ̃f dθ̃f dψ̃f is the element of a solid angle in
which the final photon is emitted. Taking into account that

ωf − ωi = l∗
(kpi) + (kki) − (kkf )(

[pi + ki]nkf

) − l∗(knkf
)

≈ l∗
(kpf )

(piki)
ωi (68)

we have

dωf ≈ ωi

(kpf )

(piki)
dl∗. (69)

Thus, the differential probability (59) of the process is
represented as

dW (∓)
res

d�f

= 4e4m2η4ũ1

ωiEiV (d (∓)
f )2

m2

(pinkf
)2

× K (∓)

(1 + dif )2
ϕ2

0Pres(β∓)τimp, (70)

Pres(β∓) = 1

2π

∫ ∞

−∞
|I (β∓,l∗)|2d(ϕ0l∗). (71)

For estimation of the resonance width we expand the func-
tion, which determines the profile of the resonant peak, near
the resonance maximum β∓ = 0. Considering this condition
the function (71) can be transformed into the form of the
Breit-Wigner formula:

Pres(β∓)=16a0(kq(e))2

a2ϕ
2
0

1

(q(e) − m2)2 + 4m2�2
ω

, β∓ � 1, (72)

where �ω is transit width, specified by the pulsed character of
the external wave:

�ω = 2√
a2

(kq(e))

m

1

ϕ0
, (73)

and coefficients are specified by the following expressions:

a0 = πPres(0), a1 = −π

2
P

′′
res(0), a2 = a1/a0. (74)

Taking into account Eq. (74) we have

�ω = 1.7mdf

1

ϕ0
. (75)

We compare the transit width of resonance related to the
pulse character of the field [expression (75)] with the radiation
width:

�R = e2m

4
√

π
η2F (df ), (76)
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where function F (df ) is given by

F (df ) =
(

1 − 4

df

− 8

d2
f

)
ln(1 + df )

+ 1

2
+ 8

df

− 1

2(1 + df )2
. (77)

The ratio is
�ω

�R

≈ 8.5

e2ϕ0η2

df

F (df )
� 103. (78)

Hence, the transit width dominates and the radiative broaden-
ing can be neglected.

The ratio of the differential resonance probability of the
scattering of the photon by electron via exchange diagram (70)
and (71) to the differential probability of the Compton effect
in the absence of the external field (see [55]) in the same
scattering kinematics is

R(∓) = dW (∓)
res

dwCompt
= 16η4ϕ2

0

(d (∓)
f )2

K (∓)

f (dif ,di)

τimp

T
Pres(β

(∓)
i ). (79)

We underline here that the formula (70) contains the
divergence in the infrared spectrum (see [51]), when

v/2 � η2 � 1. (80)

Thus, one has to consider the next order of the perturbation
theory [51] to escape this divergence when studying processes
which are accompanied with emission of long-wavelength
photons with energy ω → 0.

Conditions (80) result in the bottom limit of validity of the
formula (70) for the electron energy:

Ei

m
� η2 ∼ 10–102. (81)

In the sequel we consider the case of the electron intermediate
state to estimate the possible effects. Figure 4 represents
dependencies of the ratio R(−) [Eq. (79)] of the resonant
probability of scattering of a photon by an electron in the
field of the pulsed wave to the probability of the Compton
scattering with absence of the external field influence on the
emission azimuthal angles ϕ̃f of the photon. The results are
given for MeV electron energies and optical petawatt lasers
(for example, the PHELIX facility [32]).

Figure 4 demonstrates that the ratio of the probabilities
may amount to several orders of the magnitude. Thus, for
the electron energy Ei = 5 MeV the excess of the probability
of the studied process in the external field amounts to seven
orders; for the electron energy Ei = 10 MeV it amounts to six
orders. If both electron and photon entrance angles are close
[see the solid line in Figs. 4(a) and 4(b)], then the effect de-
creases. The breaks of the graphs are caused by the restriction
on the emission polar angle of the photon under the resonance
condition [see the formula (47), and graphs in Fig. 2].

It was shown that the variation in the small parameters such
as the broadening of the energy and the angular spread of
the electron and photon beam did not significantly affect the
stability of the resonance peaks.

The obtained results ascertain that the pulsed field character
reduces the effect in comparison with the monochromatic wave
case (see [20]). Thus, for scattering kinematics and electron

0 100 200 300

0.2

0.4

0.6

0.8

1

(deg)f

10 R

(b)

0 100 200 300

0.5

1

1.5

2

2.5

(deg)f

610 R

(a)

FIG. 4. The ratio (79) of the resonant probability of scattering
of the photon by an electron in the field of the pulsed wave
(I = 7 × 1016 W cm−2, τ/T = 1, ω = 2.35 eV) in the resonant peak
β± = 0 to the probability of the Compton scattering, when the
external field influence is absent, as a function of the photon output
azimuthal angle ϕ̃f . The dashed line corresponds to the photon
entrance angle θ̃i = 130◦, and the solid line corresponds to the case
θi = 164◦. (a) Ei = 10 MeV, ωi = 12 eV, θi = 163◦, ψi = ψ̃i = 0.
(b) Ei = 5 MeV, ωi = 11.7 eV, θi = 163◦, ψi = ψ̃i = 0.

energy represented by Fig. 4 the excess of the probability in the
pulsed field is one order less than in the monochromatic field.

For both ultrarelativistic energy Ei � m and the optical
frequency range ω � m when the electron moves within
the narrow cone with the direction of the external wave
propagating, the following characteristic parameter occurs:

δi = Eiθi

m
. (82)
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Consequently, quantities v, ui [Eq. (50)] can be represented
in the form

v = ω

Ei

(
1 + δ2

i

)
, (83)

ui = ω

Ei

(1 − cos θ̃)

(1 − cos θ )
, (84)

where θ = ∠ (pi ,ki).
Considering Eqs. (54) and (55) we obtain that the resonant

frequency of the initial photon belongs to the narrow interval
and is determined as

f ω(1 − δ̃) � ωi,res � f ω(1 + δ̃), (85)

where

δ̃ = ω

Ei

√
(1 + δ2

i )(1 − cosθ̃)

1 − cosθ
. (86)

The condition (80) results in the restriction on the parameter
δi and, consequently, the restriction on the small entrance angle
of the electron:

δi� η

√
2Ei

ω
. (87)

Thus, for Ei = 0.5 GeV and the optical frequency range,

θi ∼ 10−1. (88)

For the case of both electron ultrarelativistic energy and
small entrance angles (88), the expression (79) is simplified
considerably:

R(∓) = dW (∓)
res

dwCompt
= 16η4ϕ2

0

v2

× 2f ′(vif ,v) + vg′(vif ,v)

f ′(u,v)

τimp

T
Pres(β

(∓)
i ), (89)

where

u = 2Eiωi(1 − cos θ̃ )

m2(1 + δ2
i )

, vif = u

1 + u
, (90)

and the parameter v is determined by the expression (83).
Figure 5 represents the dependence of the ratio R(−) [Eq. (89)]
on the parameter δi [Eq. (82)].

One can conclude from Fig. 5 that, for the range of ultra-
relativistic energy of the electron moving within the narrow
cone with the direction of the external wave propagating, the
excess of the resonant probability in the external field over the
Compton scattering probability may amount to ten orders of
magnitude.

The study of the resonant Compton scattering was started
long enough ago [9,11], but there is still no experimental
verification. The reason is either that it is very difficult
to observe or nobody is interested in carrying out the
measurements. In our view there are currently the necessary
conditions for the experimental verification of resonant laser-
modified Compton scattering. We do not give in this paper the
experiment details; these could be made into a separate paper.
We note the following. In order to apply the model of a plane
nonmonochromatic wave [Eq. (1)] the size R of the focal spot

100 120 140 160 180

0

2

4

6

8

i

1010 R

FIG. 5. The ratio of probabilities R(−) [Eq. (89)], as a function
of the parameter δi [Eq. (82)] in the resonance peak β± = 0 under
τ/T = 1, I = 7 × 1016 W cm−2.

must be much greater than the characteristic wavelength λ of
the laser radiation: R/λ � 1. Moreover, the pulse must be
sufficiently short so as to be able to neglect the spreading of
the packet [25].

It should be noted that, in the experiment SLAC E144 [31],
in principle, in secondary processes (when an emitted photon
is scattered by an electron in the laser pulse) resonant
laser-modified Compton scattering could occur. Therefore,
verification of the studied process could be carried out by
modifying the SLAC experiment. We also emphasize that good
prospects for testing the resonance Compton effect appear in
the framework of megaprojects XFEL, FAIR, and ELI.

V. CONCLUSIONS

Analysis of laser-modified Compton scattering through the
exchange diagram has demonstrated the following.

(1) The resonant probability of the Compton scattering
in the field of the weak intensity wave may exceed the
corresponding probability in the external field absence in
several orders of the magnitude. Thus, for the electron energy
Ei = 5 MeV, the photon frequency ωi = 12 eV, the intensity
in the pulse peak I = 7 × 1016 W cm−2, and arbitrary angles
of the entrance of both electron and photon, the ratio R(−)

[Eq. (79)] amounts to seven orders of the magnitude.
(2) The excess of the resonant probability of the Compton

effect for the case of ultrarelativistic energy of the electron
moving in the narrow cone with the direction of the external
wave propagating, but considering the condition (88), may
amount to ten orders of the magnitude.

Obtained results can be verified experimentally in the
framework of modern research projects (SLAC, FAIR, XFEL,
and ELI).
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[18] P. Panek, J. Z. Kamiński, and F. Ehlotzky, Phys. Rev. A 69,

013404 (2004).
[19] A. I. Voroshilo and S. P. Roshchupkin, Laser Phys. Lett. 2, 184

(2005).
[20] A. I. Voroshilo, S. P. Roshchupkin, and O. I. Denisenko, Eur.

Phys. J. D 41, 433 (2007).
[21] V. N. Nedoreshta, A. I. Voroshilo, and S. P. Roshchupkin, Eur.

Phys. J. D 48, 451 (2008).
[22] E. A. Padusenko and S. P. Roshchupkin, Laser Phys. 20, 2080

(2010).
[23] A. A. Lebed’ and S. P. Roshchupkin, Phys. Rev. A 81, 033413

(2010).
[24] A. A. Lebed’ and S. P. Roshchupkin, Zh. Eksp. Teor. Fiz. 140,

56 (2011).
[25] N. B. Narozhny and M. S. Fofanov, Zh. Eksp. Teor. Fiz. 110, 26

(1996).
[26] K. Krajewska and J. Z. Kamiński, Phys. Rev. A 86, 052104
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032125 (2014).
[42] T. N. Wistisen, Phys. Rev. D 90, 125008 (2014).
[43] S. Augustin and C. Müller, Phys. Lett. B 737, 114 (2014).
[44] A. A. Lebed’ and S. P. Roshchupkin, Laser Phys. Lett. 5, 437

(2008).
[45] A. A. Lebed’ and S. P. Roshchupkin, Eur. Phys. J. D 53, 113

(2009).
[46] E. A. Padusenko, S. P. Roshchupkin, and A. I. Voroshilo, Laser

Phys. Lett. 6, 242 (2009).
[47] A. I. Voroshilo, E. A. Padusenko, and S. P. Roshchupkin, Laser

Phys. 20, 1679 (2010).
[48] C. Müller, K. Z. Hatsagortsyan, M. Ruf, S. J. Müller, H. G.

Hetzheim, M. C. Kohler, and C. H. Keitel, Laser Phys. 19, 1743
(2009).

[49] I. A. Burenkov, A. M. Popov, O. V. Tikhonova, and E. A.
Volkova, Laser Phys. Lett. 7, 409 (2010).

[50] A. M. Popov, O. V. Tikhonova, and E. A. Volkova, Laser Phys.
20, 1028 (2010).

[51] V. I. Ritus and A. I. Nikishov, Quantum Electrodynamics
Phenomena in the Intense Field (Trudy FIAN, Moscow, 1979)
[in Russian].

[52] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic
Quantum Theory (Pergamon, Oxford, 1971).

[53] L. D. Landau and E. M. Lifshitz, Mechanics (Butter-worth-
Heinemann, Washington, DC, 1976).

[54] D. M. Volkov, Z. Phys. 94, 250 (1935).
[55] O. Klein and Y. Nishina, Z. Phys. 52, 853 (1929).

062110-9

http://dx.doi.org/10.1088/0034-4885/72/4/046401
http://dx.doi.org/10.1088/0034-4885/72/4/046401
http://dx.doi.org/10.1088/0034-4885/72/4/046401
http://dx.doi.org/10.1088/0034-4885/72/4/046401
http://dx.doi.org/10.1134/S1054660X12060084
http://dx.doi.org/10.1134/S1054660X12060084
http://dx.doi.org/10.1134/S1054660X12060084
http://dx.doi.org/10.1134/S1054660X12060084
http://dx.doi.org/10.1134/S1054660X12100209
http://dx.doi.org/10.1134/S1054660X12100209
http://dx.doi.org/10.1134/S1054660X12100209
http://dx.doi.org/10.1134/S1054660X12100209
http://dx.doi.org/10.1103/PhysRevLett.113.040402
http://dx.doi.org/10.1103/PhysRevLett.113.040402
http://dx.doi.org/10.1103/PhysRevLett.113.040402
http://dx.doi.org/10.1103/PhysRevLett.113.040402
http://dx.doi.org/10.1088/0305-4470/12/5/018
http://dx.doi.org/10.1088/0305-4470/12/5/018
http://dx.doi.org/10.1088/0305-4470/12/5/018
http://dx.doi.org/10.1088/0305-4470/12/5/018
http://dx.doi.org/10.1134/S1054660X11180010
http://dx.doi.org/10.1134/S1054660X11180010
http://dx.doi.org/10.1134/S1054660X11180010
http://dx.doi.org/10.1134/S1054660X11180010
http://dx.doi.org/10.1103/PhysRevA.88.052109
http://dx.doi.org/10.1103/PhysRevA.88.052109
http://dx.doi.org/10.1103/PhysRevA.88.052109
http://dx.doi.org/10.1103/PhysRevA.88.052109
http://dx.doi.org/10.1140/epjd/e2013-30358-5
http://dx.doi.org/10.1140/epjd/e2013-30358-5
http://dx.doi.org/10.1140/epjd/e2013-30358-5
http://dx.doi.org/10.1140/epjd/e2013-30358-5
http://dx.doi.org/10.1088/1054-660X/23/5/055301
http://dx.doi.org/10.1088/1054-660X/23/5/055301
http://dx.doi.org/10.1088/1054-660X/23/5/055301
http://dx.doi.org/10.1088/1054-660X/23/5/055301
http://dx.doi.org/10.1103/PhysRevA.69.013404
http://dx.doi.org/10.1103/PhysRevA.69.013404
http://dx.doi.org/10.1103/PhysRevA.69.013404
http://dx.doi.org/10.1103/PhysRevA.69.013404
http://dx.doi.org/10.1002/lapl.200410165
http://dx.doi.org/10.1002/lapl.200410165
http://dx.doi.org/10.1002/lapl.200410165
http://dx.doi.org/10.1002/lapl.200410165
http://dx.doi.org/10.1140/epjd/e2006-00230-0
http://dx.doi.org/10.1140/epjd/e2006-00230-0
http://dx.doi.org/10.1140/epjd/e2006-00230-0
http://dx.doi.org/10.1140/epjd/e2006-00230-0
http://dx.doi.org/10.1140/epjd/e2008-00093-3
http://dx.doi.org/10.1140/epjd/e2008-00093-3
http://dx.doi.org/10.1140/epjd/e2008-00093-3
http://dx.doi.org/10.1140/epjd/e2008-00093-3
http://dx.doi.org/10.1134/S1054660X10170123
http://dx.doi.org/10.1134/S1054660X10170123
http://dx.doi.org/10.1134/S1054660X10170123
http://dx.doi.org/10.1134/S1054660X10170123
http://dx.doi.org/10.1103/PhysRevA.81.033413
http://dx.doi.org/10.1103/PhysRevA.81.033413
http://dx.doi.org/10.1103/PhysRevA.81.033413
http://dx.doi.org/10.1103/PhysRevA.81.033413
http://dx.doi.org/10.1134/S1063776111050050
http://dx.doi.org/10.1134/S1063776111050050
http://dx.doi.org/10.1134/S1063776111050050
http://dx.doi.org/10.1134/S1063776111050050
http://dx.doi.org/10.1103/PhysRevA.86.052104
http://dx.doi.org/10.1103/PhysRevA.86.052104
http://dx.doi.org/10.1103/PhysRevA.86.052104
http://dx.doi.org/10.1103/PhysRevA.86.052104
http://dx.doi.org/10.1103/PhysRevA.83.032106
http://dx.doi.org/10.1103/PhysRevA.83.032106
http://dx.doi.org/10.1103/PhysRevA.83.032106
http://dx.doi.org/10.1103/PhysRevA.83.032106
http://dx.doi.org/10.1103/PhysRevA.83.022101
http://dx.doi.org/10.1103/PhysRevA.83.022101
http://dx.doi.org/10.1103/PhysRevA.83.022101
http://dx.doi.org/10.1103/PhysRevA.83.022101
http://dx.doi.org/10.1103/PhysRevA.80.053403
http://dx.doi.org/10.1103/PhysRevA.80.053403
http://dx.doi.org/10.1103/PhysRevA.80.053403
http://dx.doi.org/10.1103/PhysRevA.80.053403
http://dx.doi.org/10.1103/PhysRevLett.79.1626
http://dx.doi.org/10.1103/PhysRevLett.79.1626
http://dx.doi.org/10.1103/PhysRevLett.79.1626
http://dx.doi.org/10.1103/PhysRevLett.79.1626
http://dx.doi.org/10.1103/PhysRevLett.76.3116
http://dx.doi.org/10.1103/PhysRevLett.76.3116
http://dx.doi.org/10.1103/PhysRevLett.76.3116
http://dx.doi.org/10.1103/PhysRevLett.76.3116
http://dx.doi.org/10.1007/s00340-009-3855-7
http://dx.doi.org/10.1007/s00340-009-3855-7
http://dx.doi.org/10.1007/s00340-009-3855-7
http://dx.doi.org/10.1007/s00340-009-3855-7
http://dx.doi.org/10.1103/PhysRevD.60.092004
http://dx.doi.org/10.1103/PhysRevD.60.092004
http://dx.doi.org/10.1103/PhysRevD.60.092004
http://dx.doi.org/10.1103/PhysRevD.60.092004
http://dx.doi.org/10.1364/OL.29.002837
http://dx.doi.org/10.1364/OL.29.002837
http://dx.doi.org/10.1364/OL.29.002837
http://dx.doi.org/10.1364/OL.29.002837
http://dx.doi.org/10.1364/OE.16.002109
http://dx.doi.org/10.1364/OE.16.002109
http://dx.doi.org/10.1364/OE.16.002109
http://dx.doi.org/10.1364/OE.16.002109
http://dx.doi.org/10.1103/RevModPhys.78.309
http://dx.doi.org/10.1103/RevModPhys.78.309
http://dx.doi.org/10.1103/RevModPhys.78.309
http://dx.doi.org/10.1103/RevModPhys.78.309
http://dx.doi.org/10.1002/opph.201190134
http://dx.doi.org/10.1002/opph.201190134
http://dx.doi.org/10.1002/opph.201190134
http://dx.doi.org/10.1002/opph.201190134
http://dx.doi.org/10.1103/PhysRevD.88.013005
http://dx.doi.org/10.1103/PhysRevD.88.013005
http://dx.doi.org/10.1103/PhysRevD.88.013005
http://dx.doi.org/10.1103/PhysRevD.88.013005
http://dx.doi.org/10.1103/PhysRevLett.109.100402
http://dx.doi.org/10.1103/PhysRevLett.109.100402
http://dx.doi.org/10.1103/PhysRevLett.109.100402
http://dx.doi.org/10.1103/PhysRevLett.109.100402
http://dx.doi.org/10.1134/1.559160
http://dx.doi.org/10.1134/1.559160
http://dx.doi.org/10.1134/1.559160
http://dx.doi.org/10.1134/1.559160
http://dx.doi.org/10.1103/PhysRevA.89.032125
http://dx.doi.org/10.1103/PhysRevA.89.032125
http://dx.doi.org/10.1103/PhysRevA.89.032125
http://dx.doi.org/10.1103/PhysRevA.89.032125
http://dx.doi.org/10.1103/PhysRevD.90.125008
http://dx.doi.org/10.1103/PhysRevD.90.125008
http://dx.doi.org/10.1103/PhysRevD.90.125008
http://dx.doi.org/10.1103/PhysRevD.90.125008
http://dx.doi.org/10.1016/j.physletb.2014.08.042
http://dx.doi.org/10.1016/j.physletb.2014.08.042
http://dx.doi.org/10.1016/j.physletb.2014.08.042
http://dx.doi.org/10.1016/j.physletb.2014.08.042
http://dx.doi.org/10.1002/lapl.200810013
http://dx.doi.org/10.1002/lapl.200810013
http://dx.doi.org/10.1002/lapl.200810013
http://dx.doi.org/10.1002/lapl.200810013
http://dx.doi.org/10.1140/epjd/e2009-00050-8
http://dx.doi.org/10.1140/epjd/e2009-00050-8
http://dx.doi.org/10.1140/epjd/e2009-00050-8
http://dx.doi.org/10.1140/epjd/e2009-00050-8
http://dx.doi.org/10.1002/lapl.200810121
http://dx.doi.org/10.1002/lapl.200810121
http://dx.doi.org/10.1002/lapl.200810121
http://dx.doi.org/10.1002/lapl.200810121
http://dx.doi.org/10.1134/S1054660X10130177
http://dx.doi.org/10.1134/S1054660X10130177
http://dx.doi.org/10.1134/S1054660X10130177
http://dx.doi.org/10.1134/S1054660X10130177
http://dx.doi.org/10.1134/S1054660X09150316
http://dx.doi.org/10.1134/S1054660X09150316
http://dx.doi.org/10.1134/S1054660X09150316
http://dx.doi.org/10.1134/S1054660X09150316
http://dx.doi.org/10.1002/lapl.201010005
http://dx.doi.org/10.1002/lapl.201010005
http://dx.doi.org/10.1002/lapl.201010005
http://dx.doi.org/10.1002/lapl.201010005
http://dx.doi.org/10.1134/S1054660X1010004X
http://dx.doi.org/10.1134/S1054660X1010004X
http://dx.doi.org/10.1134/S1054660X1010004X
http://dx.doi.org/10.1134/S1054660X1010004X
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1007/BF01366453
http://dx.doi.org/10.1007/BF01366453
http://dx.doi.org/10.1007/BF01366453
http://dx.doi.org/10.1007/BF01366453



