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Alessandro Sergi1,2,* and Konstantin G. Zloshchastiev3,†
1School of Chemistry and Physics, University of KwaZulu-Natal in Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa

2KwaZulu-Natal Node, National Institute for Theoretical Physics, Private Bag X54001, Durban 4000, South Africa
3Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa

(Received 18 December 2014; published 9 June 2015)

We introduce a formalism for time-dependent correlation functions for systems whose evolutions are governed
by non-Hermitian Hamiltonians of general type. It turns out that one can define two different types of time
correlation functions. Both these definitions seem to be physically consistent while becoming equivalent only
in certain cases. Moreover, when autocorrelation functions are considered, one can introduce another function
defined as the relative difference between the two definitions. We conjecture that such a function can be used
to assess the positive semidefiniteness of the density operator without computing its eigenvalues. We illustrate
these points by studying analytically a number of models with two energy levels.
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I. INTRODUCTION

Quantum dynamics of systems governed by non-Hermitian
(NH) Hamiltonians is currently a very popular field of research.
For example, this includes areas such as quantum transport
and scattering by complex potentials [1–10], resonances
and decaying states [11–15], multiphoton ionization [16–19],
optical waveguides [20,21], and the theory of open quantum
systems [22–35]. Notwithstanding the long history, the core
of the formalism of non-Hermitian quantum dynamics is still
a topic of active research [33–38]. From the viewpoint of the
general formalism, one can divide the whole field of research
into two main branches: pseudo-Hermitian quantum dynamics
(together with the synonymous or sister theories, such as quasi-
Hermitian and PT -symmetric quantum mechanics) [39–42]
and general non-Hermitian formalism. The former branch
deals mainly with a class of NH Hamiltonians that have purely
real eigenvalues. The latter branch, to which the study reported
in this paper belongs, attempts to find a way to adopt general
NH Hamiltonians as an effective tool for the description of
dissipative processes. As regards this goal, the real valuedness
of the spectrum of the Hamiltonian operator is not compulsory;
on the contrary, in some cases, it would be too restrictive.
Indeed, the real parts of the eigenvalues can be related to the
energy, as usual, whereas the imaginary parts can be linked to
decay rates.

In this paper we continue along the line of research started
in Ref. [33]. Our aim is to build a consistent formalism of
quantum-statistical mechanics when the dynamics is generated
by non-Hermitian Hamiltonians. In Ref. [33] we adopted
a well-defined quantum evolution equation for the density
operator and considered a definition of statistical averages
that allows one to retain the probabilistic interpretation of the
density matrix. Here our interest is devoted to the definition and
study of the multitime correlation functions since they are often
directly related to measurable quantities, such as structure
factors, fluctuation spectra, and scattering rates [43,44].
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This paper is structured as follows. In Sec. II we give a brief
outline of the quantum non-Hermitian approach. In Sec. III A
we sketch the formalism for multitime correlation functions in
the conventional (Hermitian) case. In Sec. III B we generalize
the formalism for multitime correlation functions to the case of
quantum dynamics generated by non-Hermitian Hamiltonians.
In Sec. IV we apply such a formalism to a specific example:
We compute the two-point correlation functions for a number
of two-level systems (TLSs), which were also considered in
[33]. A summary is given in Sec. V.

II. NON-HERMITIAN DYNAMICS AND AVERAGES

Let us consider a non-Hermitian Hamiltonian Ĥ �= Ĥ †,
which can be always written in the form

Ĥ = Ĥ+ − i�̂, (1)

where Ĥ+ = Ĥ
†
+ and �̂ = �̂†. It can be shown that the

evolution equation for the non-normalized density matrix �̂

can be written as

d

dt
�̂(t) = − i

�
[Ĥ+,�̂(t)] − 1

�
{�̂,�̂(t)}, (2)

where the square brackets on the right-hand side of Eq. (2)
denote the commutator while the curly brackets denote the
anticommutator. In the context of the theory of open quantum
systems the evolution equation for the density operator �̂

effectively describes the original subsystem (with Hamiltonian
Ĥ+) together with the effect of environment (represented by
�̂). Upon taking the trace of Eq. (2) one obtains

d

dt
tr�̂(t) = −2

�
tr[�̂(t)�̂], (3)

which shows that the trace of �̂ is not conserved during
the evolution governed by a NH Hamiltonian. Defining the
normalized density matrix as

ρ̂(t) = �̂(t)

tr�̂(t)
(4)
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and using Eq. (3), we can obtain a nonlinear equation of motion
for ρ̂(t),

d

dt
ρ̂(t) = − i

�
[Ĥ+,ρ̂(t)] − 1

�
{�̂,ρ̂(t)} + 2

�
ρ̂(t)tr[ρ̂(t)�̂],

(5)

which can be put back into a linear form by using (4) as an
ansatz [provided the initial condition trρ̂(t0) = 1 is assumed].
The evolution equation for the normalized density operator
effectively describes the original subsystem (with Hamiltonian
Ĥ+) together with the effect of environment (represented by �̂)
and the additional term that restores the overall probability’s
conservation. For a detailed discussion of important features of
time evolution driven by NH Hamiltonians, such as the purity’s
nonconservation and independence from the absolute value of
the energy, the reader is referred to Refs. [33,35]. Given an
arbitrary operator χ̂ , its statistical average can be defined as

〈χ̂ (t)〉 ≡ tr[ρ̂(t)χ̂] = tr[�̂(t)χ̂]

tr�̂(t)
, (6)

which reduces to the standard quantum-statistical rule in the
case of Hermitian Hamiltonians.

III. TIME CORRELATION FUNCTIONS

In the following we sketch the formalism for the two-time
correlation functions in the Hermitian case in Sec. III A. Its
generalization to the non-Hermitian case is given in Sec. III B.

A. Hermitian case

Given two arbitrary operators χ̂ and ξ̂ , it is known that their
time-dependent correlation function in the Heisenberg picture
of Hermitian quantum mechanics is defined as

Cχξ (t2,t1) ≡ 〈χ̂ (t2)ξ̂ (t1)〉 ≡ tr[χ̂(t2)ξ̂ (t1)ρ̂(0)]. (7)

Now, assuming that the evolution takes place under
the Hermitian operator Ĥ+, upon using the defini-
tion of the time-dependent Heisenberg operator [χ̂(t) ≡
exp( it

�
Ĥ+)χ̂ exp(−it

�
Ĥ+)], and the properties of the trace, the

Hermitian correlation function (7) can be rewritten as

Cχξ (t2,t1) = tr

{
χ̂ exp

[−i(t2 − t1)

�
Ĥ+

]
ξ̂ ρ̂Ĥ+ (t1)

× exp

[
i(t2 − t1)

�
Ĥ+

]}
, (8)

where

ρ̂Ĥ+ (t1) ≡ exp

[−it1

�
Ĥ+

]
ρ̂ exp

[
it1

�
Ĥ+

]
. (9)

The definition given in Eq. (8) represents the correlation
function written in the Schrödinger picture, where the time
dependence has been transferred from the operators to the
density matrix. We take the Schrödinger form of the correlation
function as the basis for the generalization to the non-
Hermitian case, which is treated in Sec. III B.

B. Non-Hermitian case

When the Hermitian Hamiltonian Ĥ+ is augmented by a
non-Hermitian part Ĥ− = −i�, a natural generalization of
Eq. (8) is

Cξχ (t1,t2) = tr{χ̂K(t2,t1)ξ̂K(t1,t0)ρ̂(t0)}
= tr{χ̂K(t2,t1)ξ̂ ρ̂(t1)}
= tr{χ̂K(t2,t1)[ξ̂ �̂(t1)/tr�̂(t1)]}, (10)

where χ̂ and ξ̂ are operators in the Schrödinger presentation
and K is the (generalized) evolution operator defined as
follows. When K(tb,ta) is applied to anything on its right, it
evolves it from time ta up to time tb using Eq. (5). Hence, in the
expression above, the first application ofK evolves ρ̂ from time
t0 to time t1 as a solution of (5). The second application of the
evolution operator acts on the operator ξ̂ ρ̂(t1) and propagates
it from the initial condition at t1 until the final time t2, using
Eq. (5). Equation (10) has the obvious properties that it reduces
to the correlation function of Hermitian quantum mechanics
when �̂ = 0 and to the normalized average of χ̂ when ξ̂ is the
identity operator. The correlation function that is defined by
Eq. (10) is founded on the time evolution of the density matrix
in terms of a non-Hermitian Hamiltonian and a nonlinear
equation of motion. Naturally, the nonlinear equation (5) may
invalidate the properties of the correlation function, which are
related to linearity. Moreover, the linearizing ansatz (4), often
adopted in calculations, can be applied only if the input of the
evolution operator K has a unit trace. Otherwise, one should
use other analytical (or numerical) approaches.

There is also the possibility of defining the correlation
functions in terms of the linear non-Hermitian evolution given
by Eq. (2):

C(L)
ξχ (t1,t2) = tr{χ̂KL(t2,t1)ξ̂KL(t1,t0)�̂(t0)}

tr �̂(t2)

= tr{χ̂KL(t2,t1)[ξ̂ �̂(t1)]}
tr �̂(t2)

, (11)

where KL is the evolution operator defined as follows. When
KL(tb,ta) is applied to an operator on its right, it evolves
it from time ta up to time tb using the linear equation (2).
Hence, in the expression above, the first application of KL

evolves the non-normalized density matrix �̂ from time t0
to time t1 as a solution of Eq. (2). The second application
of the evolution operator acts on the product ξ̂ �̂(t1) and
propagates it from the initial condition at t1 until the final
time t2, using the Eq. (2). The denominator of the correlation
function defined in Eq. (11), i.e., tr �̂(t2), takes into account
the final normalization since, in this case, the time evolution
is realized in terms of the non-normalized density matrix.
Also the definition in (11) reduces to the correlation function
of Hermitian quantum mechanics when �̂ = 0 and to the
normalized average of χ̂ when ξ̂ is the identity operator. We
propose Eqs. (10) and (11) as legitimate definitions of two-time
correlation functions in the case of quantum dynamics realized
by means of non-Hermitian Hamiltonians.

In the case of autocorrelation functions, when the initial
time is taken as t1 = 0 (which is equivalent to all times being
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counted from the moment t = t0 = t1), the definitions in (10)
and (11) can be reduced to

Cχχ (t) = tr{χ̂K(t,0)χ̂ ρ̂(0)}, (12)

C(L)
χχ (t) = tr{χ̂KL(t,0)χ̂�̂(0)}

tr �̂(t)
, (13)

assuming that tr �̂(0) = tr ρ̂(0) = 1. We will use the defini-
tions in Eqs. (12) and (13) in Sec. IV.

The generalization of the definitions of correlation func-
tions in (10) and (11) to the multitime case is straightforward.
In order to do this, first one can introduce the ordered sets
of times tn > · · · > t1 � t0 and sm > · · · > s1 � t0, as well
as their time-ordered union {τ }: τu > · · · > τ1 � t0 where

u � n + m. Next, for any set of operators χ̂j (j = 1, . . . ,m)
and ξ̂k (k = 1, . . . ,n) in the Schrödinger picture, we define the
superoperator �l (l = 1, . . . ,u) through its action upon the
operator D̂, which can be either ρ̂ or �̂ [43,44]:

�lD̂ =

⎧⎪⎨
⎪⎩

ξ̂kD̂ if τl = tk �= sj for some k and all j

D̂χ̂j if τl = sj �= tk for some j and all k

ξ̂kD̂χ̂j if τl = tk = sj for some k and j,

(14)

Then, in the case of the definition in (10), one can introduce
the multitime correlation functions in the standard way:

C(t1, . . . ,tn; s1, . . . ,sm) ≡ 〈χ1(s1) · · · χm(sm)ξn(tn) · · · ξ1(t1)〉
= tr {�uK(τu,τu−1)�u−1K(τu−1,τu−2) · · · �1K(τ1,t0)ρ̂(t0)} , (15)

where the evolution operator K is defined as in the paragraph after Eq. (10). In the case of the other definition, given in (11), one
can adopt the following generalization:

C(L)(t1, . . . ,tn; s1, . . . ,sm) ≡ 〈χ1(s1) · · · χm(sm)ξn(tn) · · · ξ1(t1)〉L

= tr{�uKL(τu,τu−1)�u−1KL(τu−1,τu−2) · · · �1KL(τ1,t0)�̂(t0)}
tr�̂(τu)

, (16)

where the evolution operator KL is defined in the paragraph
after Eq. (11).

Finally, it should be mentioned that notwithstanding the
mathematical equivalence of the evolution equations, which
underlie the definitions of the correlation functions, these
definitions themselves represent different physical points of
view. The definition given in Eq. (15) [whose special cases
are found in Eqs. (10) and (12)], implies that the actual
time evolution is driven by the normalized density operator ρ̂

whereas the non-normalized density �̂ is an auxiliary quantity.
The definition given in Eq. (16) [whose special cases are found
in Eqs. (11) and (13)] is based on the alternative point of view:
It is the non-normalized density operator that actually drives
the time evolution.

IV. CORRELATIONS IN TWO-LEVEL SYSTEMS

In this section we consider as a specific example a number
of non-Hermitian TLS models, which were already studied in
Ref. [33]. For these models the Hermitian part is common and
is described by the Hamiltonian

Ĥ+ = −�	σ̂x, (17)

	 being a positive-valued constant parameter, whereas the
anti-Hermitian part (the so-called decay rate operator) �̂

varies. The models of such a kind are quite general: They
are often used in order to effectively describe the dissipative
and measurement-related phenomena in open quantum-optical
and spin systems, such as the direct photodetection of a driven
TLS interacting with the electromagnetic field [44].

Here we are going to compute the correlation functions
using the definitions in Eqs. (10) and (11). In particular, we

are going to explicitly consider the case of the autocorrelation
functions, defined in Eqs. (12) and (13). Some other two-time
correlation functions are presented in the Appendix.

With the goal of obtaining exact analytical results, and
considering the comment after Eq. (10), we restrict our study
only to those initial density matrices satisfying

tr[σ̂kρ̂(0)] = tr[σ̂k�̂(0)]/tr�̂(0) = 1, (18)

where k = x,z, so that σ̂k will denote a Pauli matrix operator in
the Schrödinger picture. The initial conditions for the density
matrix, which are labeled by the index k, do not need to be
satisfied simultaneously. In general, such conditions restrict the
physical situations that one can describe. However, we are not
aiming at providing a general solution of the dynamics but we
want to illustrate the formalism of the correlation function, in-
troduced in Sec. III B, by providing several specific examples.
Hence, for what follows, it is useful to define the following
density matrices that satisfy (18) for k = x,z, respectively:

ρ̂x = 1

2
(I + σx − νσy)

= 1

2

∑
j,m=g,e

|j 〉〈m| + i

2
ν

(
0 1

−1 0

)
, (19)

ρ̂z = 1

2
(I + σz − νσy) = |e〉〈e| + i

2
ν

(
0 1

−1 0

)
,(20)

where ν is some real-valued constant parameter and we use
the standard qubit notation

|e〉〈e| =
(

1 0
0 0

)
,

∑
j,m=g,e

|j 〉〈m| =
(

1 1
1 1

)
.
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In order to describe physical situations, the initial conditions
(19) and (20) must be supplemented with the condition of
positive semidefiniteness of the density matrix ρ̂(0). In this
case, such a condition is equivalent to

ν = 0. (21)

The condition in Eq. (21), relating the value of the parameter
ν to the positive semidefiniteness of the density matrix at the
initial time, can be deduced by inspecting the eigenvalues of
the density matrices in Eqs. (19) and (20):

λ±[ρ̂x] = λ±[ρ̂z] = 1
2 (1 ±

√
1 + ν2). (22)

In what follows we will call Eq. (21) the “on-shell” condition:
It makes sure that the probabilistic interpretation of the
density operator is preserved. Hence, the parameter ν can be
regarded as a measure of the deviation of the solutions from
those that are physically permitted. However, as it will be
explained in detail later, it is convenient to first obtain the
solutions off shell (i.e., at ν �= 0).

A. Evolution with conserved average energy (exponential decay)

Let us consider the model specified by the sum of the
Hermitian Hamiltonian in Eq. (17) and the anti-Hermitian part
given by

�̂(ed) = �	(a2σ̂y + σ̂z + γ Î ), (23)

where a2 and γ are two constant parameters. This model was
considered in Sec. 4.1 of [33].

As discussed previously, in order to compute analytically
the autocorrelation functions Cσxσx

and C(L)
σxσx

, defined as in (12)
and (13), we must impose the initial conditions in Eq. (19) on
the density operator. As a result, the analytical expressions of
the averages of the spin operators have the following form:

〈σ̂x〉 = a2
2

S
(ed)
ν (t)

, (24)

〈σ̂y〉 = 1

S
(ed)
ν (t)

{[
ν
(
1 − a2

2

) − 1
]

cosh (αt)

− a2
2 sinh (αt) + 1 − ν

}
, (25)

〈σ̂z〉 = a2(1 − ν)

S
(ed)
ν (t)

(e−αt − 1), (26)

where α = 2a2	 and we introduced the function S
(ed)
b (t) =

(a2
2 − b + 1) cosh (αt) + a2

2b sinh (αt) + b − 1, with b being
an index.

It is worth noting that the observable values do not depend
on the parameter γ . This arises from the independence of
Eq. (5) on the absolute value of the energy, as it was
already discussed in [33,35]. Another thing to note is that the
value 〈σ̂x〉 ∝ 〈H+〉, though vanishing at long times (as shown
below), is not identically zero, since the initial condition (19)
was used. Such a condition is different from the one used in
[33]. The form of the autocorrelation functions is

Cσxσx
(t) = a2

2

[(
a2

2 + iνa2 + 1
)

cosh (αt)

+ iνa2 sinh (αt) − iνa2 − 1
]−1

, (27)

C(L)
σxσx

(t) = a2
2

S
(ed)
ν (t)

= 〈σ̂x〉. (28)

The long-time asymptotic values of Eqs. (24)–(28) are

lim
t→+∞〈σ̂x〉 = 0, (29)

lim
t→+∞〈σ̂y〉 = −

(
1 − a2

2

1 + a2
2

)θ(−α)

, (30)

lim
t→+∞〈σ̂z〉 = 2θ (−α)a2

1 + a2
2

, (31)

lim
t→+∞ Cσxσx

(t) = lim
t→+∞ C(L)

σxσx
(t) = 0, (32)

where θ (x) is the Heaviside step function. The comparative
plots of different observables for several values of the
parameters are shown in Fig. 1.

In order to compute analytically the autocorrelation func-
tions Cσzσz

and C(L)
σzσz

, the initial condition in Eq. (20) is imposed.
As a result, the analytical expressions of the averages of the
spin operators have the form

〈σ̂x〉 = 0, (33)

〈σ̂y〉 = a2 − 1

T
(ed)
ν (t)

[
[1 − ν(a2 + 1)] cosh (αt)

− a2 sinh (αt) − ν

a2 − 1
− 1

]
, (34)

〈σ̂z〉 = a2(1 − ν)

T
(ed)
ν (t)

(
e−αt + a2

1 − ν
− 1

)
, (35)

where we introduced the function T
(ed)
b (t) = (a2

2 − a2 − b +
1) cosh (αt) − a2(1 − a2b) sinh (αt) + a2 + b − 1. The form
of the corresponding autocorrelation functions is

Cσzσz
(t) = a2

T
(ed)

0 (t)
(e−αt + a2 − 1), (36)

C(L)
σzσz

(t) = a2

T
(ed)
ν (t)

(e−αt + a2 − 1). (37)

The long-time asymptotic values of Eqs. (33)–(37) are

lim
t→+∞〈σ̂x〉 = 0, (38)

lim
t→+∞〈σ̂y〉 = −

(
1 − a2

2

1 + a2
2

)θ(−α)

, (39)

lim
t→+∞〈σ̂z〉 = 2θ (−α)a2

1 + a2
2

, (40)

lim
t→+∞ Cσzσz

(t) = 2θ (−α)a2

1 + a2
2

, (41)

lim
t→+∞ C(L)

σzσz
(t) = 2θ (−α)a2

1 + a2
2

1

1 − ν
. (42)

In this set of solutions, it is clear that the autocorrelation
function C(L)

σzσz
(t) depends on the initial conditions. It is also
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FIG. 1. (Color online) Profiles of 〈σ̂x〉 (solid line), 〈σ̂y〉 (dashed
line), and 〈σ̂z〉 (dot-dashed line) for the “on-shell” value ν = 0 and,
from top to bottom, a2 = 1,0,−1. The curves for Cσxσx

and C(L)
σxσx

coincide with 〈σ̂x〉.

worth noticing that the ratio

limt→+∞ Cσzσz
(t)

limt→+∞ C(L)
σzσz

(t)
= 1 − ν

does not depend on the parameters of the Hamiltonian but it
depends on the parameter ν whose nature was discussed after
Eq. (22).

The comparative plots of different observables for several
values of parameters are shown in Fig. 2. It is easy to see
that the difference between the two functions Cσkσk

(t) and

0 2 4 6 8 10 12 14
1.0
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0.0

0.5

1.0

2 t

i
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1.0
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i
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i

FIG. 2. (Color online) Profiles of 〈σ̂y〉 (solid line) and 〈σ̂z〉
(dashed line) for the “on-shell” value ν = 0 and, from top to bottom,
a2 = 1.0001,0,−1. The value 〈σ̂x〉 is identically zero and the curves
for Cσxσx

and C(L)
σxσx

coincide with 〈σ̂z〉.

C(L)
σkσk

(t) for each case k = x,z disappears when ν → 0. The
implications of this feature are discussed in Sec. V.

B. Evolution with conserved average energy (polynomial decay)

Here we consider the model specified by the sum of the
Hermitian Hamiltonian (17) and the anti-Hermitian part given
by

�̂(pd) = �	(σ̂z + γ Î ), (43)
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where the parameter γ is specified as in Sec. IV A. This model
was considered in Sec. 4.2 of [33].

As discussed previously, in order to compute analytically
the autocorrelation functions Cσxσx

and C(L)
σxσx

, we use the
initial condition specified by Eq. (19) on the density operator.
Consequently, the analytical expressions of the averages of the
spin operators have the form

〈σ̂x〉 = 0, (44)

〈σ̂y〉 = 1 − ν

S
(pd)
ν (t)

− 1, (45)

〈σ̂z〉 = 2	(ν − 1)t

S
(pd)
ν (t)

, (46)

where we introduced the function S
(pd)
b (t) = 2	2(1 − b)t2 +

1. The form of the autocorrelation functions is

Cσxσx
(t) = [

S
(pd)
0 (t) + 2iν	t

]−1
, (47)

C(L)
σxσx

(t) = 1/S(pd)
ν (t). (48)

The long-time asymptotic values of Eqs. (44)–(48) are

lim
t→+∞〈σ̂x〉 = lim

t→+∞〈σ̂z〉 = 0, (49)

lim
t→+∞〈σ̂y〉 = −1, (50)

lim
t→+∞ Cσxσx

(t) = lim
t→+∞ C(L)

σxσx
(t) = 0. (51)

The graphs of different observables, corresponding to several
values of the parameters, can be found in the middle plot of
Fig. 1.

In order to compute analytically the autocorrelation func-
tions Cσzσz

and C(L)
σzσz

, we impose the initial condition given by
Eq. (20) on the density operator. It follows that the analytical
expressions of the averages of the spin operators are

〈σ̂x〉 = 0, (52)

〈σ̂y〉 = 1 − ν

T
(pd)
ν (t)

− 1, (53)

〈σ̂z〉 = 1 − 2	(1 − ν)t

T
(pd)
ν (t)

, (54)

where T
(pd)
b (t) = 2	[	(1 − b)t − 1]t + 1. The autocorrela-

tion functions have the form

Cσzσz
(t) = 1 − 2	 t

T
(pd)

0 (t)
, (55)

C(L)
σzσz

(t) = 1 − 2	 t

T
(pd)
ν (t)

. (56)

The long-time asymptotic values of Eqs. (52)–(56) are

lim
t→+∞〈σ̂x〉 = lim

t→+∞〈σ̂z〉 = 0, (57)

lim
t→+∞〈σ̂y〉 = −1, (58)

lim
t→+∞ Cσzσz

(t) = 0, (59)

lim
t→+∞ C(L)

σzσz
(t) = δ1ν, (60)

where δab is the Kronecker symbol.

The graphs of different observables, corresponding to
several values of the parameters, can be found in the middle
plot in Fig. 2. As before, the difference between the two
functions Cσkσk

(t) and C(L)
σkσk

(t) for each case k = x,z disappears
when ν → 0. The implications of this feature are discussed in
Sec. V.

C. Evolution with asymptotic dephasing

Let us consider the model specified by the sum of the
Hermitian Hamiltonian in Eq. (17) and the anti-Hermitian part
given by

�̂(dph) = −�	[σ̂y − γ (σ̂z + Î )], (61)

where γ is a constant parameter. This model was proposed
in Sec. 6 of [33]. Since in Eq. (61) the parameter γ does not
appear only in the Î term, it is going to appear in all of the
expressions for the observables.

As discussed previously, in order to compute analytically
the autocorrelation functions Cσxσx

and C(L)
σxσx

, we use the
initial condition specified by Eq. (19) on the density op-
erator. Consequently, solving the evolution equation yields
the following components of the (non-normalized) density
matrix:

(�̂)11 = 1

2
e−2�t , (62)

(�̂)12 = (�̂)∗21 = e−2�t

2γ
[(γ + i(νγ − 1))e�t + i], (63)

(�̂)22 = (e−�t − 1)2 + 2νγ (e−�t − 1) + γ 2

2γ 2
, (64)

where � = 2γ	. It is worth recalling that for the model
given by Eqs. (17) and (61), the off-diagonal components
of the density matrix vanish at large times. Furthermore, the
analytical expressions of the averages of the spin operators
have the form

〈σ̂x〉 = γ 2

S
(dph)
ν (t)

, (65)

〈σ̂y〉 = γ

S
(dph)
ν (t)

(1 − νγ − e−�t ), (66)

〈σ̂z〉 = γ 2e−�t

S
(dph)
ν (t)

− 1, (67)

where γ̃ 2 = γ 2 + 1 and we have introduced the func-
tion S

(dph)
b (t) = (γ̃ 2 − bγ ) cosh (�t) − bγ sinh (�t) + bγ − 1.

The autocorrelation functions have the form

Cσxσx
(t) = γ 2

S
(dph)
0 (t) + iν[γ 2 sinh (�t) − cosh (�t) + 1]

,

(68)

C(L)
σxσx

(t) = γ 2

S
(dph)
ν (t)

. (69)
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The long-time asymptotic values of Eqs. (65)–(69) are

lim
t→+∞〈σ̂x〉 = 0, (70)

lim
t→+∞〈σ̂y〉 = −2γ θ (−�)

γ̃ 2
, (71)

lim
t→+∞〈σ̂z〉 = −

(
1 − γ 2

γ̃ 2

)θ(−�)

, (72)

lim
t→+∞ Cσxσx

(t) = lim
t→+∞ C(L)

σxσx
(t) = 0, (73)

where the function θ (x) has been defined in Sec. IV A. The
comparative plots of different observables for several values
of parameters are shown in Fig. 3.

In order to compute analytically the autocorrelation func-
tions Cσzσz

and C(L)
σzσz

, the initial condition in Eq. (20) is imposed.
As a result, the analytical expressions of the averages of the
spin operators have the form

〈σ̂x〉 = 0, (74)

〈σ̂y〉 = γ

T
(dph)
ν (t)

(2 − νγ − 2e−�t ), (75)

〈σ̂z〉 = 2γ 2e−�t

T
(dph)
ν (t)

− 1, (76)

where we have introduced the function T
(dph)
b (t) = (γ̃ 2 −

bγ + 1) cosh (�t) − γ (γ + b) sinh (�t) + bγ − 2. The auto-
correlation functions have the form

Cσzσz
(t) = 4[1 − cosh (�t)]

T
(dph)

0 (t)
+ 1, (77)

C(L)
σzσz

(t) = T
(dph)

0 + 4[1 − cosh (�t)]

T
(dph)
ν (t)

. (78)

The long-time asymptotic values of Eqs. (74)–(78) are

lim
t→+∞〈σ̂x〉 = 0, (79)

lim
t→+∞〈σ̂y〉 = −2γ θ (−�)

γ̃ 2
, (80)

lim
t→+∞〈σ̂z〉 = lim

t→+∞ Cσzσz
(t) = −

(
1 − γ 2

γ̃ 2

)θ(−�)

, (81)

lim
t→+∞ C(L)

σzσz
(t) =

{
(νγ − 1)−1 if � > 0
(1 − γ 2)/γ̃ 2 if � < 0,

(82)

where θ (x) has been defined in Sec. IV A.
The comparative plots of different observables for several

values of parameters are shown in Fig. 4. As in the previous
sections, the difference between the two functions Cσkσk

(t) and
C(L)

σkσk
(t) for each case k = x,z disappears when ν → 0. The

possible implications of this feature shall be discussed in the
next section.

V. DISCUSSION AND CONCLUSION

Having as a final goal the proper foundation of the statis-
tical mechanics of systems with non-Hermitian Hamiltonians
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FIG. 3. (Color online) Profiles of 〈σ̂x〉 (solid line), 〈σ̂y〉 (dashed
line), and 〈σ̂z〉 (dot-dashed line) for the “on-shell” value ν = 0 and,
from top to bottom, γ = 1,0,−1. The curves for Cσxσx

and C(L)
σxσx

coincide with 〈σ̂x〉.

(which is a research endeavor that we started in Ref. [33]),
in this paper we have introduced a formalism for multitime
correlation functions. The approach is general: It depends
neither on the number of degrees of freedom in the system
nor on the dimensionality of the Hilbert space itself; it is also
valid if the degrees of freedom are continuous. We have found
that such a formalism can lead to two different definitions of
the time correlation function. Notwithstanding the equivalence
of the evolution equations underlying these definitions, the
different time correlation functions represent distinct physical
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FIG. 4. (Color online) Profiles of 〈σ̂y〉 (solid line) and 〈σ̂z〉
(dashed line) for the “on-shell” value ν = 0 and, from top to bottom,
γ = 1,0,−1. The value 〈σ̂x〉 is identically zero and the curves for
Cσxσx

and C(L)
σxσx

coincide with 〈σ̂z〉.

points of view. The first definition is presented in Eq. (15)
and its special cases are given by Eqs. (10) and (12). Such a
definition presumes that the actual dynamics is defined in terms
of the normalized density operator. The second definition is
presented in Eq. (16) and its special cases are given by Eqs. (11)
and (13). Alternatively, this second definition assumes that the
dynamics is defined in terms of the non-normalized density
operator.

In the case of one-point time correlation functions (which
provide basically statistical averages), both definitions lead to

the same results. However, in general (i.e., for multiple-time
correlation functions), the two definitions do not coincide, as
it has been illustrated by explicitly studying various two-level
models.

As we have already remarked at the end of Secs. IV A–
IV C, the relative difference between the two definitions of
autocorrelation functions 	Ci = 1 − Cσiσi

/C(L)
σiσi

(i = x,y,z)
tends to zero when ν approaches the “on-shell” value (21)
at any time t . As it is known, the probabilistic interpretation
of a density operator requires the matrices (19) and (20)
to be positive semidefinite. The parameter ν indicates the
deviation from such a property, as it has been discussed
after Eq. (22). Therefore, one can naturally propose the
conjecture that functions such as 	Ci are useful in order to
assess the positive semidefiniteness of the density operator
without actually computing its eigenvalues. In particular, such
a conjecture could be especially useful when the number
of density matrix eigenvalues is rather large (e.g., when the
Hilbert space is infinite). In this paper we have verified by
studying various two-level models that, indeed, the positive
semidefiniteness of the density matrix holds whenever the
functions 	Ci vanish. The further investigation of this problem
is an interesting direction of future work.
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APPENDIX: OTHER CORRELATION FUNCTIONS
FOR TLS

Apart from the autocorrelation functions computed in
Sec. IV, one can of course compute other types of corre-
lation functions for each of the two-level systems we have
considered above. For instance, below we present the two-time
correlations Cσzσx

, C(L)
σzσx

, Cσzσy
, and C(L)

σzσy
, where we assume the

notation

Cξχ (t) = tr{χ̂K(t,0)ξ̂ ρ̂(0)}, (A1)

C(L)
ξχ (t) = tr{χ̂KL(t,0)ξ̂ �̂(0)}

tr �̂(t)
(A2)

and set the initial time to zero, which is equivalent to all times
being counted from the moment t = t0 = t1. Further, as long
as the operator, which is first from the right in the definitions
of functions Cσzσx

, C(L)
σzσx

, Cσzσy
, and C(L)

σzσy
, is σ̂z, below we are

going to use ρ̂z, as defined in Eq. (20), as the initial value for
the density operator, for the reasons specified above.

1. Evolution with conserved average energy (exponential decay)

For the model from Sec. IV A we obtain

Cσzσx
(t) = ia2

2ν

T
(ed)

0 (t)
, (A3)

C(L)
σzσx

(t) = ia2
2ν

T
(ed)
ν (t)

(A4)
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and

Cσzσy
(t) = a2 − 1

T
(ed)

0 (t)
[cosh (αt) − a2 sinh (αt) − 1], (A5)

C(L)
σzσy

(t) = a2 − 1

T
(ed)
ν (t)

[cosh (αt) − a2 sinh (αt) − 1], (A6)

where we have used the notation from Sec. IV A.

2. Evolution with conserved average energy
(polynomial decay)

For the model from Sec. IV B we obtain

Cσzσx
(t) = iν

T
(pd)

0 (t)
, (A7)

C(L)
σzσx

(t) = iν

T
(pd)
ν (t)

(A8)

and

Cσzσy
(t) = 2	(1 − 	t)t

T
(pd)

0 (t)
, (A9)

C(L)
σzσy

(t) = 2	(1 − 	t)t

T
(pd)
ν (t)

, (A10)

where the notation of Sec. IV B is implied.

3. Evolution with asymptotic dephasing

For the model from Sec. IV C we obtain

Cσzσx
(t) = iγ 2ν

T
(dph)

0 (t)
, (A11)

C(L)
σzσx

(t) = iγ 2ν

T
(dph)
ν (t)

(A12)

and

Cσzσy
(t) = 2γ (1 − e−�t )

T
(dph)

0 (t)
, (A13)

C(L)
σzσy

(t) = 2γ (1 − e−�t )

T
(dph)
ν (t)

, (A14)

where the notation of Sec. IV C is implied.
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