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The implementation of weak-value amplification requires the pre- and postselection of states of a quantum
system, followed by the observation of the response of the meter, which interacts weakly with the system.
Data acquisition from the meter is conditioned to successful postselection events. Here we derive an optimal
postselection procedure for estimating the coupling constant between system and meter and show that it leads
both to weak-value amplification and to the saturation of the quantum Fisher information, under conditions
fulfilled by all previously reported experiments on the amplification of weak signals. For most of the preselected
states, full information on the coupling constant can be extracted from the meter data set alone, while for a small
fraction of the space of preselected states, it must be obtained from the postselection statistics.
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I. INTRODUCTION

The notion of weak-value amplification (WVA), introduced
in the pioneer work of Aharonov, Albert, and Vaidman [1], has
been frequently associated with the possibility of amplifying
weak signals, as small birefringence effects [2,3], the spin
Hall effect of light [4], tiny deflections of light produced
by moving mirrors in optical setups [5–8], slow-velocity
measurements [9], small phase-shift time delays [10–12], tiny
optical angular rotations [13,14], or the measurement of small
frequency changes in the optical domain [15].

As shown in Ref. [1], and further elaborated in Ref. [16],
WVA may also lead to exotic results, like obtaining for the
measurement of a component of a spin 1

2 a value as high
as 100� [1], or having a displacement in the average photon
number of a field in a cavity much larger than one, after the
passage of a single atom [17]. This last example has played
a pioneer role in the development of the theory of quantum
random walks [18].

The procedure for attaining an amplification of the weak
value, which has as essential ingredient a conditional measure-
ment procedure, can be divided into two steps: (i) the system
to be measured, prepared in a preselected initial state, first
interacts weakly with a meter, through a bilinear coupling—
quantified by a coupling constant g—between observables Â

of the system and M̂ of the meter, and then is postselected
in a predetermined state, usually taken as almost orthogonal
to the initial state of the system; (ii) the weak value (real
part or imaginary part) is determined by observation of the
meter, whenever the postselection in the predetermined state
is successful. In this procedure, the amplification of the weak
value is not deterministic. It is assumed that the width of the
initial distribution of eigenvalues of the pointer is much larger
than the spectrum of eigenvalues of A, and that the interaction
between system and meter takes place during a short time
interval, so that the free evolution of system plus meter can be
safely neglected.

The possibility of amplifying very weak signals via WVA
leads quite naturally to the question as to whether such
measurements may be used to enhance metrological protocols
that aim to estimate the coupling constant g. However, such
procedures may lead not only to amplification of the signal,
but also to the mitigation of the number of experimental data

(statistics) that may be used to estimate g. This has led to
debate on the possible advantages of weak measurements
over the standard quantum-measurement procedure [19–25]
and to proposals for improving the WVA method [26–29].
Proper treatment of this problem requires the machinery of
quantum metrology, which establishes general bounds for
the uncertainty in the estimation of parameters [30–34],
defined by the mean-square estimation error and expressed
in terms of the corresponding quantum Fisher information.
From Refs. [20,23,32] and the above discussion, it is clear
that the amount of information on g cannot be superior to that
quantified by the corresponding quantum Fisher information.
This is an upper bound valid for any kind of measure-
ment, including probabilistic measurements, like weak-value
amplification and abstention procedures [35]. Moreover, as
shown in Ref. [32], this bound is saturated by projective
measurements. This implies that one can always find a standard
measurement procedure that is at least as good as a weak
measurement in estimating a given parameter. In spite of this,
practical advantages of weak measurements have been pointed
out [19,24].

Here we address the formalism of WVA itself and propose
an optimized postselection procedure, which actually saturates
the quantum Fisher information corresponding to the estima-
tion of g, in the weak-coupling limit, and can be applied to
all previously reported experiments involving amplification
of weak signals. This procedure leads to a postselected state
that is not, in general, quasi-orthogonal to the initial state,
as opposed to the usual approach. We also show that proper
handling of the conditions of weak coupling between quantum
system and meter involves a limiting procedure concerning
two small quantities, the coupling constant and the overlap
between initial and postselected states, which when tackled
properly leads to results at variance with previously published
analyses. These results imply that WVA, even though relying
on a reduced data set, may lead, under proper choice of the
detection procedure, to the same information on the parameter
to be estimated as optimal quantum measurement protocols.

This paper is organized as follows: Section II reviews basic
concepts in quantum metrology and their application to a
typical WVA Hamiltonian. In Sec. III, we discuss a general
quantum metrological approach to parameter estimation with
postselection, which takes into account the degradation of
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information in the meter due to the loss of statistical data,
and implies that the information on the parameter is shared
between the meter and the postselection statistics. In Sec. IV,
which concentrates the main results of this paper, we analyze
the limiting situation of weak coupling and derive the best
postselection procedure, which saturates the quantum Fisher
information up to corrections of second order in the coupling
constant g. In the same section, we also show that, depending
on the ratio between g and the overlap of initial and
postselected states, the information may get concentrated on
the meter or on the postselection statistics. These results
are applied to a two-level system in Sec. V, which also
contains a discussion on how our results help to improve WVA
experiments. Our conclusions are summarized in Sec. VI. In
order to make the paper more readable, we have moved detailed
calculations to the appendixes.

II. QUANTUM METROLOGICAL LIMITS

We consider now the ultimate precision limit in the
estimation of g for the WVA Hamiltonian. We assume that
the meter M and the quantum system A couple through the
interaction ĤI (t) = �gδ(t − t0)ÂM̂ , with g being positive and
dimensionless, without loss of generality. The delta function
accounts for the assumption that the interaction takes place
around time t0 and within a short interval of time compared to
the free evolution of the total systemA + M. The correspond-
ing evolution operator is Û (g) = exp[−(i/�)

∫
ĤI (t)dt] =

exp(−igÂM̂). A and M are initially prepared in the state
|�i〉 = |ψi〉 ⊗ |φi〉, where |ψi〉 is the initial quantum state of
A and |φi〉 is the initial state of M.

If one estimates the value of a general parameter x through ν

repeated measurements on the system that carries information
about it, then the minimum reachable uncertainty on unbiased
estimatives of the parameter is determined by the Cramér–Rao
limit [36–38],

δx � 1/
√

νF (x). (1)

Here δx = 〈(x − xest)2〉1/2 is the mean-square estimation error,
the average is taken over all possible experimental results, and
xest is an estimate of the parameter x, based on the observed
data. F (x) is the Fisher information, defined by

F (x) =
∑

k

1

Pk(x)

[
dPk(x)

dx

]2

, (2)

where Pk(x) is the probability distribution of obtaining an
experimental result k, assuming that the value of the parameter
is x. The Fisher information F (x) depends, through Pk(x), on
the state of the system and on the measurement performed
on it.

The maximization of F (x) over all possible measurements
leads to the quantum Fisher information [30–32] F(x), which
depends only on the x-dependent state of the system, and yields
in Eq. (1) the minimum possible value of δx. For a pure state
|�(x)〉, it is given by [30]

F(x) = 4

[
d〈�(x)|

dx

d|�(x)〉
dx

−
∣∣∣∣d〈�(x)|

dx
|�(x)〉

∣∣∣∣
2]

. (3)

This quantity yields the maximum amount of information
about the parameter x retrievable via measurements on the
state |�(x)〉.

If |�(x)〉 = exp(−ixĤ )|�i〉, with Ĥ independent of x, it
follows from Eq. (3) that

F(x) = 4[〈�i |Ĥ 2|�i〉 − 〈�i |Ĥ |�i〉2]. (4)

For |�i〉 = |ψi〉 ⊗ |φi〉 and Û (g) = exp(−igÂM̂),

F(g) = 4[〈Â2〉〈M̂2〉 − 〈Â〉2〈M̂〉2], (5)

where from now on the averages of operators corresponding
to A and M are taken respectively in the states |ψi〉 and |φi〉.
We compare now this expression to the one corresponding to
the WVA protocol.

III. PARAMETER ESTIMATION WITH POSTSELECTION

For the evolution corresponding to Û (g), the probability of
detecting system A in the state |ψf 〉 immediately after t0 is

pf (g) = ‖〈ψf |Û (g)|�i〉‖2. (6)

If A is detected in the state |ψf 〉, M is left in the normalized
state

|φf (g)〉 = 〈ψf |Û (g)|ψi〉|φi〉/
√

pf (g). (7)

The original WVA strategy involves measuring the meter M
only when the system A is postselected in |ψf 〉. The posts-
election statistics—described by the postselection probability
pf (g) in the asymptotic limit ν → ∞—is ignored in the esti-
mation of g. Full consideration of the postselection procedure
should take it into account. As shown in Ref. [21,23], this can
be described through a set of generalized measurement opera-
tors {|ψf 〉〈ψf | ⊗ Êj ,(1̂A − |ψf 〉〈ψf |) ⊗ 1̂M}, j = 1,2, . . . n,
where the set {Êj }, with

∑n
j=1 Êj = 1̂M, acts on the states of

M. The corresponding Fisher information for the estimate of
the coupling constant g, as defined by Eq. (2), is [21,23]

Fps(g) = Fm(g) + Fpf
(g), (8)

where

Fm(g) = pf (g)
n∑

j=1

1

Pj (g)

[
dPj (g)

dg

]2

, (9)

with Pj (g) = 〈φf (g)|Êj |φf (g)〉, and

Fpf
(g) = 1

pf (g)[1 − pf (g)]

[
dpf (g)

dg

]2

. (10)

The function Fm(g) is the Fisher information associated
with measurements on the state of the meter after postselection
times the probability pf (g) that the postselection succeeds.
It quantifies the performance of the estimate of the original
WVA procedure and takes into account both the enhancement
provided by the postselection, through the state (7), and the
degradation due to the loss of statistical data, through the
probability pf (g).

The term Fpf
(g) stands for the information on g encoded in

pf (g). It quantifies the amount of information on g acquired
from pf (g) itself. The total Fisher information Fps(g) is
obtained with the best unbiased estimative of g that considers
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all available data in the experiment, when the meter is
monitored only if the postselection of the system is successful.

The optimal measurement on the meter is independent
of whether the postselection statistics is considered for the
estimation of g. An optimal set of measurements for the meter
can be built with the eigenvectors of the symmetric logarithmic
derivative operator associated with the state (7) [30,32]. Details
are given in Appendix A.

The maximal value Fm(g) of Fm(g) over all positive-
operator valued measures (POVMs) acting in the Hilbert space
of the meter is obtained by inserting |φf (g)〉 into Eq. (3), with
x ≡ g, and multiplying the result by pf (g), yielding

Fm(g) = 4[〈Q̂(g)†Q̂(g)〉 − |〈Q̂(g)†Ô(g)〉|2/pf (g)], (11)

where Ô(g)=〈ψf |e−igÂM̂ |ψi〉 and Q̂(g)=
〈ψf |ÂM̂e−igÂM̂ |ψi〉 are operators that act in the Hilbert
space of the meter. Note that Fm(g) is a functional
of |�i〉 and of |ψf 〉, the postselected state. We define
Fps(g) ≡ Fm(g) + Fpf

(g). Since in all reported WVA
experiments only the meter is measured, a challenging
question is whether the quantum Fisher information given in
Eq. (5) can be attained by Fm(g) alone. If not, can this be
accomplished by Fps(g)?

In the next section we examine these questions, as we
specialize these results to the weak-coupling regime.

IV. WEAK-COUPLING REGIME WITH
BALANCED METERS

We solve the problem of maximizing Fps(g) over the state
|ψf 〉 in the weak-coupling limit, with the condition 〈M̂〉 = 0
(balanced meter). Then � ≡ 〈M̂2〉1/2 is the standard deviation
of the initial distribution of eigenvalues of M̂ , and the quantum
Fisher information becomes F(g) = 4〈Â2〉�2. Under these
conditions, and for separable initial states, we show that it
is always possible to find a postselected state |ψf 〉, such
that Fps(g) reaches, up to first order in g, the quantum
Fisher information F(g). Those conditions are fulfilled in
all experiments reported so fare that aimed to amplify weak
signals [2–8,15].

We discuss first the situation where Fm(g) alone reaches
F(g). For g sufficiently small, we show in Appendixes A
and B that Fm(g) = 4�2|〈ψi |Â|ψf 〉|2[1 + O(g)]. This im-
plies that the ansatz |ψopt

f 〉 = Â|ψi〉/〈Â2〉1/2 leads toFm(g) →
Fopt

m (g) = F(g) + O(g2), where the superscript opt specifies
quantities corresponding to the above postselection. Therefore,
Fopt

m (g) coincides with the quantum Fisher information, up to
first order in g. For this optimal postselection (which does not
have any dependence on the initial state of the meter, other
than the balanced-meter requirement), the correction must be
necessarily nonpositive, independently of the sign of g, which
excludes corrections of O(g).

Quantifying the meaning of “g sufficiently small” requires
careful consideration of the relative magnitudes of δ ≡
〈ψopt

f |ψi〉 = 〈Â〉/〈Â2〉1/2 and g, since |δ| may become much
smaller than one, for some initial states, as discussed in the
following. We shall show however that, except for very small

values of |δ|, as compared to g, the information from the meter
is enough to saturate the quantum Fisher information F(g).

It is worthwhile to note that, for any Â and |ψi〉, Â|ψi〉 =
〈Â〉|ψi〉 + [〈Â2〉 − 〈Â〉2]1/2|ψi〉⊥, where |ψi〉⊥ is orthogonal
to |ψi〉. Therefore, |ψopt

f 〉 is not, in general, necessarily quasi-
orthogonal to the initial state, which is typically assumed in
the WVA literature to be the ideal postselected state. Indeed,
depending on |ψi〉, |ψopt

f 〉 may vary continuously from a state

parallel to the initial state (when |ψi〉 is an eigenstate of Â) to
a state orthogonal to |ψi〉 (when 〈Â〉 = 0).

The weak value of Â is defined as Aw =
〈ψf |Â|ψi〉/〈ψf |ψi〉 [1]. For |ψf 〉 = |ψopt

f 〉, this becomes

Aw = 〈Â2〉/〈Â〉 which, for any state that is not an eigenstate
of Â, is larger than the average value of Â, i.e., there is
amplification of the signal. In general, the magnitude of Aw

depends on the smallness of the absolute value of the scalar
product of the pre- and postselected states of the system. The
limit of amplification, in order that the weak value be well
defined, was discussed earlier in the literature [16,39]. In
particular, it is required that g|Aw|� 
 1. Indeed, the signal
obtained from the measurement of the meter is de-amplified
as one tries to get very close to the orthogonal postselection,
which has been named the inverted region [39]. The optimal
postselected state |ψopt

f 〉, which leads to the best precision
in the estimation of g, does not provide the largest possible
amplification established by Ref. [16], since |δ| is not
necessarily much smaller than one.

We show now that, in two limiting cases, the information
on g gets concentrated either in Fopt

m or F
opt
pf

. We assume in
the following balanced meters and the postselection of |ψopt

f 〉.
We have then, as shown in Appendix C:

(a) If |δ| 
 g〈Â2〉1/2�, or equivalently g|Aw|� � 1, then
F

opt
pf

(g) = F(g)[1 + O(ε)], and Fopt
m (g) = O(ε), where ε =

Max{|δ|,g2,(δ/g)2}. In this case, full information on g can
be obtained from the statistics of successful postselection
detections in |ψopt

f 〉. One should note, however, that this is the
region of parameters for which the usual weak-value theory
breaks down [39]. Furthermore, this condition holds in a small
region of overlap δ, since the convergence of the expansion
in g requires that g〈Â2〉1/2� 
 1 [39]. Typical experimental
values of g〈Â2〉1/2� range from 10−3 [4,9] to 10−8 [5].

(b) If |δ| � g〈Â2〉1/2�, or equivalently g|Aw|� 
 1
(regime of validity of the weak-value theory), Fopt

m (g) =
F(g)[1 + O(g2)], and F

opt
pf

(g) = O(g2). Therefore, full in-
formation on g is now obtained by considering just the best
measurement on the pointer after postselection.

One should note that condition (a) includes the region of
initial states where |ψopt

f 〉 becomes orthogonal to |ψi〉. This
implies, surprisingly, that even though exact orthogonality
is avoided in typical WVA treatments, it actually leads to
saturation of the quantum Fisher information, with the infor-
mation on g fully concentrated in the statistics of successful
postselection events. Then, measurements on the meter, the
ones considered in most WVA analysis, yield no information
on g. This is contrary to the conclusions attained in previous
work, such as, for instance, in Ref. [21], where the limit g → 0
is taken irrespectively of the value of δ, thus leading to the
misleading conclusion that the information on g is always
concentrated on the meter.
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All these results were obtained for postselection in |ψf 〉 =
|ψopt

f 〉. As shown in Appendix D, the choice |ψf 〉 = |ψi〉 also
leads to Fps(g) = F(g) + O(g2). In this case, the informa-
tion obtained from the statistics of successful postselection
becomes important in a broader region of initial states. One
should note, however, that in this case Aw = 〈ψi |Â|ψi〉, and
therefore there is no weak-value amplification. This shows
that, even in a postselection procedure, WVA is not needed in
order to increase the precision in the estimation of g.

The example discussed in the following illustrates the
results of this section and shows that experiments already
realized [4,5,13] could be improved by using the present
approach.

V. WEAK-VALUE AMPLIFICATION OF A SPIN

Consider a two-level system, which interacts with the
meter in such a way that Â = σ̂z. We parametrize the
pre- and postselected states by the angles {θi,θf ,φi,φf },
so that |ψi〉 = cos(θi/2)|0〉 + eiφi sin(θi/2)|1〉 and |ψf 〉 =
cos(θf /2)|0〉 + eiφf sin(θf /2)|1〉, where |0〉 and |1〉 are the
eigenvectors of σ̂z corresponding to the eigenvalues +1 and
−1, respectively. Since Â2 = 1̂, the small-coupling condition
requires that g� 
 1. Also, Eq. (5) with 〈M̂〉 = 0 implies that
F(g) = 4�2, which does not depend on the initial state of the
system.

According to the previous discussion, the bound F(g) can
be approached when |ψf 〉 = σ̂z|ψi〉, 〈M̂〉 = 0, and if terms
of O(g2) are neglected. For this postselected state, θf =
θi = θ and φ ≡ φf − φi = π (δ = cos θ ). Notice that Fopt

m (g),
Fpf

(g), and Fopt
ps (g) are invariant under the transformation

θ → π − θ .
For θ → 0, the probability of postselection is approxi-

mately equal to one, and all the information on g is in the
meter—consistent with case (b) in Sec. IV.

As θ approaches π/2, one gets into the region where
|δ| 
 g�, so that, according to condition (a), all the informa-
tion on g gets concentrated on the statistics of postselection.
Outside this region, the quantum Fisher information is also
saturated by Fps(g), but it quickly concentrates on the meter.

Figure 1 illustrates this balance of information between
meter and postselection statistics by plotting the contributions
of Fopt

m (g)/F(g) (dashed line) and F
opt
pf

(g)/F(g) (dotted-
dashed line) as a function of θi , for g� = 0.1. We have
assumed that the initial state of the meter is a pure state
with a Gaussian distribution of the eigenvalues of M̂ , with
width � = 〈M̂2〉1/2. The corresponding analytical results are
derived in Appendix E. For |δ| 
 g� (case (a) in Sec. IV),
the major contribution to the quantum Fisher information
comes from F

opt
pf

(g). As |δ| increases, the contribution Fopt
m (g)

becomes more relevant [case (b) in Sec. IV]. The point where
the two contributions coincide is very close to |δ| = g�, or
equivalently |Aw| = (g�)−1, as one should expect from the
above analysis.

Figure 2 illustrates the behavior of Fm(g)/F(g) and
Fps(g)/F(g) (inset), as a function of θf , for several values of
g�. As discussed before, θf = θi corresponds to an optimal
postselection procedure. Figure 2 displays a dip in Fm(g),
which corresponds to the region where Fpf

(g) must be taken

FIG. 1. Bounds for the information from the meter, Fopt
m (g)

(dashed line) and from the probability of postselection, F opt
pf

(g)
(dotted-dashed line), normalized by the quantum Fisher information,
as a function of θi , for g� = 0.1. The full line, also displayed in the
inset, is the sum of the two contributions. It does not reach the value
one, since saturation of F(g) is up to errors of O(g2).

into account. This dip becomes wider as g� increases, a
behavior that is analytically described in the Appendix. The
inset shows that the maximum of Fps(g) is reached for
θf = θi ≈ π/3, for the values of g� considered. For g� 
 1,
the meter information dominates over practically the whole
range of values of θf , except for a very narrow dip, which
is compensated by a corresponding sharp increase of the
information in Fpf

(g), so that the full postselection Fisher
information Fps(g), displayed in the inset, has a smooth
behavior.

Postselection in the initial state also leads to the saturation
of F(g). In this case, as shown in the Appendix, one has sim-
ply Fm(g)/F(g) = cos2 θ + O(g2�2) and Fpf

(g)/F(g) =
sin2 θ + O(g2�2). It is evident that, for this postselection,
information from the postselection statistics must be consid-
ered over a broader range of initial states, as compared to
the previous case. However, as mentioned before, there is no
weak-value amplification in this case.

FIG. 2. (Color online) Fm(g) normalized to F(g) as a function
of θf for θi = π/3 and φ = π. The inset shows the full postselected
Fisher information Fps(g), showing that Fpf

(g) fills the dip of Fm(g).
g� = 10−1 (dotted-dashed blue line), 10−2 (dashed red line), 10−3

(full black line).
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These results have a direct impact on experiments relying on
postselection and weak interactions between meter and system,
like those reported in Refs. [4,5,13]. For instance, in Ref. [13]
the authors estimate g with Â = σ̂z through measurements
on a pointer conditioned to the postselection of a state in the
equatorial plane. The initial state is determined by the angle
θi . As θi → π/2, the postselected state becomes orthogonal to
the initial state, and the authors comment that, in this region,
the data are not reliable. Also, the precision in their estimate
depends on the initial state. Our approach indicates that the
best postselection should be in the state σ̂z|ψi〉, the resulting
maximal precision being then independent of θi . Furthermore,
as we have shown, maximal precision could be obtained for
the initial state in the equatorial plane from the postselection
statistics alone.

VI. CONCLUSION

We have shown that the information on the coupling
constant between system and meter, obtained through a
postselection procedure that leads to weak-value amplification,
saturates the quantum Fisher information in the weak-coupling
regime. As the post- and preselected states get orthogonal to
each other, the information on the parameter gets transferred
from the meter to the postselection statistics, which then plays
the dominant role in the estimation protocol, albeit restricted
to a small fraction of the space of preselected states. One
should note that measurement procedures that discard less
information then the one described in this paper could at
best increase the information about the parameter by terms
of O(g2), which are negligible in the weak-coupling regime.
These results imply that the ability to amplify signals of the
meter, through postselection, does not spoil the estimation
precision, even though it relies on the reduced data set
corresponding to the conditional observation of the meter.
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APPENDIX A: OPTIMAL MEASUREMENT
ON THE METER

An optimal set of measurements for the meter can be built
with the eigenvectors of the symmetric logarithmic derivative
operator associated with the state (7) [30–32]. In the case of a
pure state, ρ̂(g) = |φf (g)〉〈φf (g)|, the symmetric logarithmic
derivative operator, L̂(g), has an analytic expression:

L̂(g) = 2
dρ̂

dg
. (A1)

For the case where the meter information matters [case (b) in
Sec. IV], and |ψf 〉 = |ψopt〉, one can compute the zeroth-order
projectors from the eigenvectors of Eq. (A1):

Ê± = |φ±〉〈φ±|, (A2)

|φ±〉 = 1√
2

(|φi〉 ± i|φi⊥〉), (A3)

where, as before, |φi〉 is the initial state of the meter, and

|φi⊥〉 = M̂|φi〉√
〈M̂2〉

(once 〈M̂〉 = 0) (A4)

is a state orthogonal to |φi〉.
Notice that the above solution is not unique; see, for

instance, the discussion in Ref. [40]; and also it might be a
difficult task to implement it experimentally.

As a side example, consider the (canonical) case where
the meter has a Gaussian distribution of the eigenvalues of the
observable M̂ , with zero mean and variance �. We show in the
following that the measurement of the conjugate observable
Ŵ (such that [M̂,Ŵ ] = i) is the best measurement in this case,
providing the quantum Fisher information of the meter (Fm),
which coincides with the quantum Fisher information for the
entire process (F), up to first order in the coupling constant
[still in case (b)]. The measurement of Ŵ shifts its mean by a
quantity proportional to the real part of Aw, while the variance
remains the same [1,41]:

〈Ŵ 〉f ≈ −gRe{Aw} = −g〈Â2〉/〈Â〉, (A5)

(�Ŵ )f = 1/(2�), (A6)

which implies that the meter state is transformed according to

φi(w) = 4

√
2�2

π
exp{−�2w2},

�→ φf (w) = 4

√
2�2

π
exp{−�2(w + g〈Â2〉/〈Â〉)2}. (A7)

Therefore, the Fisher information associated with the post-
selected measurements of w, occurring with probabilities
Pw(g) = |φf (w)|2, will be given by

Fm(g) = pf

∫
dw

(∂gPw)2

Pw

= pf

(
4�2 〈Â2〉2

〈Â〉2

)
≈ 4〈Â2〉�2, (A8)

recalling that, in the WVA regime, pf ≈ |〈ψopt
f |ψi〉|2 =

〈Â〉2/〈Â2〉.
Equation (A8) coincides with the expression for F(g), as

defined in Sec. IV.

APPENDIX B: EXPRESSIONS FOR Fm(g) AND Fps(g)

We assume here, as in the main text, that system A
and meter M are initially prepared in the separable state
|�i〉 = |ψi〉 ⊗ |φi〉. The maximization of Fm(g), and also of
Fps(g), over all possible POVMs {Êj } yields the information
Fm(g) and, respectively, Fps(g). Fm(g) can be obtained
through the expression of the quantum Fisher information of
the state |φf (g)〉 defined by Eq. (7) of the main text. After a
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straightforward calculation, we get

Fm(g) = 4pf (g)

[
d〈φf (g)|

dg

d|φf (g)〉
dg

−
∣∣∣∣d〈φf (g)|

dg
|φf (g)〉

∣∣∣∣
2]

= 4

[
〈Q̂†(g)Q̂(g)〉 − |〈Q̂†(g)Ô(g)〉|2

pf (g)

]
, (B1)

Fpf
(g) = 4Im2{〈Q̂†(g)Ô(g)〉}

pf (g)
+ 4Im2{〈Q̂†(g)Ô(g)〉}

1 − pf (g)
,

(B2)

where

Q̂(g) = 〈ψf |ÂM̂e−igÂM̂ |ψi〉, (B3)

Ô(g) = 〈ψf |e−igÂM̂ |ψi〉, (B4)

pf (g) = 〈Ô(g)†Ô(g)〉, (B5)

and we have used the notation 〈X̂〉 to denote the average (over
the initial state) in the Hilbert space where the operator X̂ acts.
The coupling constant g is assumed to be dimensionless.

The above expressions imply that

Fps(g) = Fm(g) + Fpf
(g)

= 4

[
〈Q̂†(g)Q̂(g)〉 − Re2{〈Q̂†(g)Ô(g)〉}

pf (g)
+ Im2{〈Q̂†(g)Ô(g)〉}

1 − pf (g)

]
. (B6)

Here we present the expansions for the relevant quantities used in the main text. We adopt the notation (Ân)f i ≡ 〈ψf |Ân|ψi〉,
assuming that (Ân)f i is bounded, and define δ ≡ 〈ψf |ψi〉 as real and positive (without loss of generality). Then we have

〈Ô†(g)Ô(g)〉 = pf (g) = δ2 + 2gδIm{Âf i}〈M̂〉 + g2[|Âf i |2 − δRe{(Â2)f i}]〈M̂2〉 − g3/3Im{δ(Â3)f i + 3(Â2)∗f iÂf i}〈M̂3〉
+ g4/12[Re{δ(Â4)f i − 4Â∗

f i(Â
3)f i} + 3|(Â2)f i |2]〈M̂4〉 + O(g5), (B7)

〈Q̂†(g)Q̂(g)〉 = |Âf i |2〈M̂2〉 − 2gIm{(Â2)∗f iÂf i}〈M̂3〉 + g2[|(Â2)f i |2 − Re{(Â3)∗f iÂf i}]〈M̂4〉 − g3/3[Im{(Â4)f iÂ
∗
f i

− 3(Â3)f i(Â
2)∗f i}]〈M̂5〉 + g4/12[Re{(Â5)f iÂ

∗
f i − 4(Â4)f i(Â

2)∗f i} + 3|(Â3)f i |2]〈M̂6〉 + O(g5), (B8)

〈Q̂†(g)Ô(g)〉 = δA∗
f i〈M̂〉 + ig[δ(Â2)∗f i − |Âf i |2]〈M̂2〉 + g2/2[2(Â2)∗f iÂf i − (Â2)f iÂ

∗
f i − (Â3)∗f iδ]〈M̂3〉

− ig3/6[δ(Â4)∗f i − 3(Â3)∗f iÂf i + 3|(Â2)f i |2 − Â∗
f i(Â

3)f i]〈M̂4〉 + g4/24[δ(Â5)∗f i − 4(Â4)∗f iÂf i

+ 6(Â3)∗f i(Â
2)f i − 4(Â2)∗f i(Â

3)f i + Â∗
f i(A

4)f i]〈M̂5〉 + O(g5). (B9)

We assume here that the above expansions converge, for g sufficiently small and, as in the main text, that the initial state of the
meter satisfies the condition that we call balanced meter:

〈M̂〉 = 0. (B10)

APPENDIX C: ANALYSIS OF Fm(g) AND Fp f (g) FOR A
FIXED POSTSELECTED STATE |ψ f 〉 AS A FUNCTIONAL

OF THE INITIAL STATE |ψi〉
In analyzing the behavior of (B1), (B2), and (B6) we should

consider the dependence on δ of pf (g). It is easy to show that,
by using the balanced-meter condition, we may write

pf (g) = δ2 + g2Z(δ) + R(g,δ), (C1)

where R(g,δ) is of order g3 and Z(δ) = [|Âf i |2 −
δRe{(Â2)f i}]〈M̂2〉, which we assume to be different from zero.
Thus,

Fpf
(g) = 4g2Z(δ)2 + O(g3)

δ2 + g2Z(δ) + O(g3)
+ 4g2Z(δ)2 + O(g3)

1 − δ2 − g2Z(δ) + O(g3)
,

(C2)

Fm(g) = 4|Âf i |2〈M̂2〉 − 8gIm{(Â2)∗f iÂf i}〈M̂3〉
+4g2[|(Â2)f i |2 − Re{(Â3)∗f iÂf i}]〈M̂4〉 + O(g3)

−4g2[Z(δ)2 + δ2Im2{(Â2)f i}〈M̂2〉2] + O(g3)

δ2 + g2Z(δ) + O(g3)
.

(C3)
Comparison of the magnitude of δ2 and 1 − δ2 with the two
terms of g2Z(δ)—the largest terms in the denominators of
Fm(g) and Fpf

(g)—leads to the following limiting cases:
(i) If δ2 � g2|Âf i |2�2 (assuming |Âf i | �= 0) and

1 − δ2 � max{g2|Âf i |2�2, g2|Re{(Â2)f i}|�2}, where � ≡
〈M̂2〉1/2 is the standard deviation of the meter eigenvalues
distribution, then Fpf

∼ O(g2) and

Fm(g) = 4|〈ψf |Â|ψi〉|2�2 + O(g). (C4)

(ii) In the small region δ2 � g2|Âf i |2�2 (|Âf i | �= 0) we
should have Z(δ) ≈ |Âf i |2〈M̂2〉 + O(δ) and R(g,δ) ≈ O(g3).
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Hence Fpf
(g) may be well approximated by

Fpf
(g) = 4g2|Âf i |4�4

δ2 + g2|Âf i |2�2
+ O(g), (C5)

which has the maximum value 4|Âf i |2�2 at δ = 0 (postse-
lected state orthogonal to the initial state). Analogously, we
may neglect the term δ2Im2{(Â2)f i}�4 in Eq. (C3), which will
contribute in order g4 (at most) in the numerator, and write

Fm(g) = 4
δ2|Âf i |2�2

δ2 + g2|Âf i |2�2
+ O(g). (C6)

Equations (C5) and (C6) explain the sharp dip in Fm captured
in Fig. 2 of the main text, around the point where |ψf 〉 gets
orthogonal to |ψi〉, and show that in the same region Fpf

has
a sharp peak, so that their sum recovers a smooth function, as
shown in the same figure.

(iii) The situation when 1 − δ2 �
max{g2|Âf i |2�2, g2|Re{(Â2)f i}|�2} is more subtle. We
analyze it in the following, for specific choices of the
postselected state.

APPENDIX D: ANALYSIS OF F ps(g), Fm(g), AND Fp f (g)
FOR THE POSTSELECTED STATE |ψ f 〉 = |ψopt

f 〉 AS A
FUNCTIONAL OF THE INITIAL STATE |ψi〉

We consider now that the postselected state of the system
A is chosen as |ψf 〉 = |ψopt

f 〉 = Â|ψi〉/〈Â2〉1/2. As before, we

assume the initial state of the meter to be such that 〈M̂〉 = 0.
We focus on the physically relevant quantities, which are the

information extracted from the meter,Fm(g), given by Eq. (B1)
and from the postselection probability, Fpf

(g), as expressed by
Eq. (B2). Assuming the convergence of the expansions around
g = 0, one has

〈Q̂†(g)Q̂(g)〉 = 〈Â2〉〈M̂2〉 − g2

[
1 − 〈Â3〉2

〈Â2〉〈Â4〉

]
〈M̂4〉〈Â4〉

+O(g4), (D1)

Re2{〈Q̂†(g)Ô(g)〉}
pf (g)

=
1
4

(
1 − δ

〈Â4〉
〈Â2〉1/2〈Â3〉

)2〈Â3〉2〈M̂3〉2g4 + O(g6)

δ2 + (
1 − δ

〈Â3〉
〈Â2〉3/2

)〈Â2〉〈M̂2〉g2 + O(g4)
, (D2)

Im2{〈Q̂†(g)Ô(g)〉}
pf (g)

=
[
1 − δ

〈Â3〉
〈Â2〉3/2

]2〈M̂2〉2〈Â2〉2g2 + O(g4)

δ2 + (
1 − δ

〈Â3〉
〈Â2〉3/2

)〈Â2〉〈M̂2〉g2 + O(g4)
, (D3)

Im2{〈Q̂†(g)Ô(g)〉}
1 − pf (g)

=
[
1 − δ

〈Â3〉
〈Â2〉3/2

]2〈M̂2〉2〈Â2〉2g2 + O(g4)

1 − δ2 − (
1 − δ

〈Â3〉
〈Â2〉3/2

)〈Â2〉〈M̂2〉g2 + O(g4)
, (D4)

where δ ≡ 〈ψopt
f |ψi〉 = 〈Â〉/〈Â2〉1/2.

We show now that Fps(g) saturates the quantum Fisher
information, up to terms of first order in g. We notice from
Eq. (D1) that the first term on the right-hand side of Eq. (B6)
already saturates the quantum Fisher information F , up to first
order in g. From Eq. (D2), the second term on the right-hand
side of Eq. (B6) is at most of O(g2). Furthermore, the third
term on the right-hand side of Eq. (B6) is always positive, and
therefore must be of O(g2), since Fps cannot be larger than
F . Therefore,

Fps(g) = 4〈Â2〉�2 + O(g2). (D5)

We analyze now two limiting cases, for which the infor-
mation on g is obtained either from the meter or from the
postselection statistics.

(a) For |δ| = 〈Â〉/〈Â2〉1/2 
 g〈Â2〉1/2�, the contribution
from Eq. (D2) is of O(g2), as well as that from Eq. (D4). On
the other hand, Eq. (D3) contributes with O(g0) in this limit.
In this regime, and assuming also that δ〈Â3〉/〈Â2〉3/2 
 1,
Eq. (D3) can be written as

Im2{〈Q̂†(g)Ô(g)〉}
pf (g)

= g2〈Â2〉2�4

δ2 + g2〈Â2〉�2
+ O(Max{δ,g2})

� 〈Â2〉�2 + O[Max{δ,g2,(δ/g)2}],
(D6)

such that we end up with

Fm(g) = O[Max{δ,g2,(δ/g)2}], (D7)

Fpf
(g) = 4〈Â2〉�2 + O[Max{δ,g2,(δ/g)2}]. (D8)

This expression coincides, up to first order in g, with the
quantum Fisher information. Therefore, in this limit, the
information on g is obtained solely from the postselection
statistics.

(b) For |δ| � g〈Â2〉1/2�, the contribution from Eq. (D2)
is of O(g4) and that of Eq. (D3) is of O(g2).

We show now that the contribution from Eq. (D4) is of
O(g2). This is trivially true if 1 − δ2 is not much smaller than
one: then, it will be the dominating term in the denominator,
and the right-hand side of Eq. (D4) will be of O(g2). We
show in the following that this still holds if 1 − δ2 
 1. In the
limit δ → 1, |ψi〉 → |a〉, where |a〉 is some eigenstate of Â

with eigenvalue a. Therefore, for small values of 1 − δ2, |ψi〉
should be of the form

∣∣ψε
i

〉 = |a〉 + ε|b〉√
1 + ε2

, (D9)

where Â|a〉 = a|a〉, 〈b|a〉 = 0, and ε is chosen as real
(without loss of generality), with ε 
 1. This implies that
δ2 = 〈ψε

i |Â|ψε
i 〉2/〈ψε

i |Â2|ψε
i 〉 = 1 − O(ε2), that is, 1 − δ2 =

O(ε2). Also, the term of O(g2) in the denominator of Eq. (D4)
can be written as

g2Z(δ) ≡ (1 − δ〈Â3〉/〈Â2〉3/2)〈Â2〉〈M̂2〉g2

= g2ε2〈M̂2〉[2a2(Â2)bb − a(Â3)bb − a3Âbb + O(ε2)]

(1 + ε2)[a2 + ε2(Â2)bb]

= O(ε2g2), (D10)
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so that

g2|Z(δ)|
1 − δ2

= O(g2), (D11)

implying that, in the denominator of Eq. (D4), the term 1 −
δ2 always dominates over g2Z(δ). Furthermore, in the same
region 1 − δ2 
 1, the numerator of Eq. (D4) is of O(ε4g2),
so that Eq. (D4) is indeed of O(g2). From Eqs. (B1) and (B2),
one has then, for |δ| � g〈Â2〉1/2�,

Fm(g) = 4〈Â2〉�2 + O(g2), (D12)

and

Fpf
(g) = O(g2). (D13)

Therefore, in this limit, the information on g stems from the
meter alone.

APPENDIX E: ANALYSIS OF F ps(g), Fm(g), AND Fp f (g)
FOR THE POSTSELECTED STATE |ψ f 〉 = |ψi〉 AS A

FUNCTIONAL OF THE INITIAL STATE |ψi〉
The Fisher information Fps(g), Fm(g), and Fpf

(g) can
be analyzed for |ψf 〉 = |ψi〉, in the limit of weak coupling,
for 〈M̂〉 = 0, by using the expansions (B7)–(B9). For |ψf 〉 =
|ψi〉, these expansions yield, respectively,

〈Q̂†(g)Q̂(g)〉 = 〈Â〉2〈M̂2〉 + g2(〈Â2〉2 − 〈Â3〉〈Â〉)〈M̂4〉
+O(g4), (E1)

〈Q̂†(g)Ô(g)〉 = ig(〈Â2〉 − 〈Â〉2)〈M̂2〉

+ g2

2
(〈Â2〉〈Â〉 − 〈Â3〉)〈M̂3〉 + O(g3), (E2)

pf (g) = 1 − g2(〈Â2〉 − 〈Â〉2)〈M̂2〉 + O(g4). (E3)

One gets, up to order g2:

Fm(g) = 4〈Â〉2〈M̂2〉 + g2〈M̂4〉〈Â2〉2

(
1 − 〈Â〉〈Â3〉

〈Â2〉2

)

−
4
(

1 − 〈Â〉2

〈Â2〉

)2
〈Â2〉2〈M̂2〉2g2 + O(g4)

1 +
(

〈Â〉2

〈Â2〉 − 1
)
〈Â2〉〈M̂2〉g2 + O(g4)

+ O(g4),

(E4)

Fpf
(g) =

4g2〈M̂2〉2〈Â2〉2
(

1 − 〈Â〉2

〈Â2〉

)2
+ O(g4)

g2〈M̂2〉〈Â2〉
(

1 − 〈Â〉2

〈Â2〉

)
+ O(g4)

+ O(g2).

(E5)

Therefore,

Fm(g) = 4〈Â〉2�2 + O(g2), (E6)

and

Fpf
(g) = 4(〈Â2〉 − 〈Â〉2)�2 + O(g2), (E7)

so that the total quantum Fisher information corresponding to
the postselection strategy is

Fps(g) = 4〈Â2〉�2 + O(g2), (E8)

which shows that the postselection in the state |ψf 〉 = |ψi〉
also saturates the quantum Fisher information, up to terms of
first order in g. One should note, however, that in this case the
repartition of information between the meter and the postse-
lection statistics differs markedly from that corresponding to
the postselection strategy previously discussed: in particular,
even though the probability of postselection is close to one, the
information on g is obtained from the postselection statistics
alone if the initial state of the system is such that 〈Â〉 = 0.

APPENDIX F: EXACT EXPRESSIONS FOR F ps(g), Fm(g),
AND Fp f (g) FOR A TWO-LEVEL SYSTEM AND A

GAUSSIAN METER

We take U (g) = e−igσ̂3M̂ , where σ̂3 is a Pauli operator
of the two-level system and M̂ is an operator of the me-
ter. We assume a balanced meter with an initial Gaussian
probability distribution of eigenvalues of M̂ , with a width
given by � = (〈M̂2〉)1/2. The initial and postselected states are
parametrized as |ψi〉 = cos(θi/2)|0〉 + exp(iφi) sin(θi/2)|1〉,
|ψf 〉 = cos(θf /2)|0〉 + eiφf sin(θf /2)|1〉, where |0〉 and |1〉
are eigenvectors of σ̂3 corresponding respectively to the eigen-
values +1 and −1. We may easily obtain analytic expressions
for the quantities in Eqs. (11), (B5), and (B2). Defining A =
cos(θi/2) cos(θf /2) and B = eiφ sin(θi/2) sin(θf /2), where
φ ≡ φf − φi , one has

pf (g) = A2 + |B|2 + 2ARe{B}e−2g2�2
, (F1)

Fm(g) = 4�2

{
A2 + |B|2 − 2ARe{B}e−2g2�2

(1 − 4g2�2)

− 16A2Re2{B}g2�2e−4�2g2

A2 + |B|2 + 2ARe{B}e−2g2�2

}
, (F2)

Fpf
(g) = 64g2�4A2Re2{B}e−4g2�2

pf (g)[1 − pf (g)]
. (F3)

1. Analytical results for the postselection state |ψ f 〉 = |ψopt
f 〉

In this case, one should take θi = θf = θ and φ = π, so that
A = cos2(θ/2), B = − sin2(θ/2). From Eqs. (F2) and (F3),
one gets

Fm(g)

F = 1

2
(1 + cos2 θ ) + 1

2
(1 − 4g2�2)e−2g2�2

sin2 θ

− 2g2�2e−4g2�2
sin4 θ

1 + cos2 θ − e−2g2�2 sin2 θ
, (F4)

Fpf
(g)

F = 4g2�2e−4g2�2
sin2 θ

(1 + cos2 θ − e−2g2�2 sin2 θ )(1 + e−2g2�2 )
. (F5)

For g� 
 1, expand Eqs. (F4) and (F5) and obtain

Fm(g)

F = δ2

δ2 + (1 − δ2)g2�2
[1 + O(g2)], (F6)

Fpf
(g)

F = (1 − δ2)g2�2

δ2 + (1 − 2δ2)g2�2
[1 + O(g2)], (F7)
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where δ2 = cos2 θ . We notice that Fpf
contributes to the Fisher information only in a very small region �θ ≈ O(g�) near the

equatorial plane in the Bloch sphere. Outside this region Fm(g)/F(g) ≈ 1. Indeed Fm(g) is larger than Fpf
(g) as θ increases

from zero up to the value (π/2 − g�), when their contributions to the Fisher information coincide, if one neglects contributions
of O(g2).

2. Analytical results for the postselection state |ψ f 〉 = |ψi〉
In this case, one should take θi = θf = θ and φ = 0. From Eqs. (F2) and (F3) one gets

Fm(g)

F = 1

2
(1 + cos2 θ ) − 1

2
(1 − 4g2�2)e−2g2�2

sin2 θ − 2g2�2e−4g2�2
sin4 θ

1 + cos2 θ + e−2g2�2 sin2 θ
, (F8)

Fpf
(g)

F = 4g2�2e−4g2�2
sin2 θ

(1 + cos2 θ + e−2g2�2 sin2 θ )(1 − e−2g2�2 )
. (F9)

Expansion of these expressions for g� 
 1 leads to

Fm(g)

F ≈ cos2 θ − g2�2(sin4 θ − 3 sin2 θ ), (F10)

Fpf
(g)

F ≈ sin2 θ + g2�2(sin4 θ − 3 sin2 θ ). (F11)

Therefore, in this case the Fisher information corresponding to the postselection statistics must be taken into account over a
broader range of initial states, as compared to the postselection strategy considered before.
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