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The generalized Klein-Nishina formula for Compton scattering of charged particles by a finite train of pulses is
derived in the framework of quantum electrodynamics. The formula also applies to classical Thomson scattering
provided that frequencies of generated radiation are smaller that the cutoff frequency. The validity of the formula
for incident pulses of different durations is illustrated by numerical examples. The positions of the well-resolved
Compton peaks, with the clear labeling by integer orders, opens up the possibility of the precise diagnostics of
properties of relativistically intense, short laser pulses. This includes their peak intensity, the carrier-envelope

phase, and their polarization properties.
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I. INTRODUCTION

In order to understand the physics behind the interaction of
strong laser pulses with matter, it is necessary to have well-
characterized interacting pulses. With current technology, this
is accomplished for laser fields in the optical regime provided
that their intensity is no larger than 10'> W/cm?. As pointed
out by many authors (see, for instance, Refs. [1-7]), the same
task becomes particularly challenging at higher intensities,
where any direct measurement is prone to damaging the
equipment. Therefore, different proposals were put forward
to determine properties of ultrastrong and short laser pulses
(e.g., the laser peak intensity [1-5,7] or the carrier-envelope
phase [6]). As we argue in this paper, sensitivity of Compton
scattering to the driving train of pulses can be traced back to
the properties of pulses comprising the train. This can be based
on the generalized Klein-Nishina (GKN) formula, which we
derive in this paper.

A. Klein-Nishina formula

The original Klein-Nishina formula [8] for the Compton
scattering with the electron initial four-momentum p; [p; -
pi = (mec)?, where the centered dot denotes the relativistic
scalar product, a - b = a®°h° — a'b' — a’b* — a’b® = a’b° —
a - b], has the form

w
= pox ;o M
pi-n Wcut

WK

where k = (w/c)n and K = (wg /c)ng are the four-momenta
of the initial and final photons, respectively, n = (1,n), ng =
(1,ng),and k - k = K - K = 0. In this equation,

2)

is the maximum frequency of photons generated in the
Compton process.

Consider the Compton process which takes place in an
intense monochromatic plane wave of the frequency o,
propagating in the direction n. The vector potential of, in
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general, the elliptically polarized plane wave equals
A(k - x) = Agple; cos(k - x)cos § + g sin(k - x)sinéd], (3)

where ¢; (j =1,2) are two real polarization four-vectors
normalized such that ¢; - £ = —§;; and k - £; = 0. Without
the loss of generality, we assume that the time components of
these vectors are zero, i.e., £; = (0,& ). If the electron absorbs

N = 1,2, ... photons from the plane wave it may emit, in the
direction ng, the Compton photon of frequency wg y [9-14],
Nw
OKN = ST s )
pin ¢ pi-n Weut
where

1 mec?)?
U = 22 5)

4" c¢pi-n

has the meaning of the ponderomotive energy of electrons in
the laser field. Here, the relativistically invariant parameter,

_lelAg

meC

, (6)

determines the intensity of the electromagnetic plane wave.
Both U and p are the classical quantities, whereas the term
proportional to w/wey in Eq. (4) accounts for the quantum
recoil of electrons during the Compton process. Such a
recoil of electrons does not take place in the corresponding
classical process, called the Thomson scattering. This allows
us to introduce into the Klein-Nishina formula the classical
Thomson frequency,

C()Th — Nw (7)
K.N Dpink Unng’
pin ¢ pin
such that
Th
@K, N
a)K,N - Th (8)
1+ DK.N

Note that, for a given geometry of the process and for a
given initial electron momentum, the Thomson frequencies
are equally separated from each other. The same is not true
for the Compton frequencies. This scaling law, which relates
the quantum Compton frequency wg y to its classical analog,
the Thomson frequency a);(h - has been discussed recently for
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long laser pulses [15-17]. Its extension to short laser pulses,
together with the investigation of polarization and spin effects,
and the synthesis of ultrashort pulses have been presented in
Ref. [18].

The Klein-Nishina formula (4) can be also expressed in the

form
Un-n
+ = "), ©)
c pi-n

_ WK N Pcut <Pi "k
o(@cut — WK, N) \ pi-n

which, for the given geometry of the scattering process and for
the given frequency of the emitted Compton photon, allows us
to determine the nonlinearity of the process, N. Note that the
quantum nature of this formula is hidden in w.,. Therefore,
we recover the classical result in the limit when wg y < wcy.
Similar formulas can be derived for multichromatic plane-
wave-fronted fields with commensurate frequencies.

B. Spectrally resolved Compton peaks induced by short
laser pulses

If the Compton process occurs in a short and intense
laser pulse, the situation is different. It follows from the
time-frequency uncertainty principle that, if the driving pulse
lasts for time 7}, the frequency scale over which the system
undergoes a significant change cannot be smaller than roughly
27/ T,. For this reason, the individual peaks in the Compton
frequency spectrum are hardly visible if the process occurs
in few-cycle pulses (see, e.g., Refs. [15,16,19-21]). Now,
the question arises: Is it possible to design a short laser
pulse such that the individual peaks in the laser-induced
Compton spectrum are clearly distinguished from each other,
with unambiguously prescribed to them integer orders N?
Although the answer to this question is in general negative, for
suitably designed pulses, one can achieve the limit imposed
by the aforementioned uncertainty relation. The idea of how
to avoid the spectral broadening follows from the Fraunhoffer
diffraction theory as applied to the diffraction gratings, or from
the frequency comb generation, and is based on the application
of modulated laser pulses [22,23]. We demonstrate in this
paper that, by using this technique, it is possible to achieve the
clear spectral resolution of individual peaks in the Compton
spectrum, even if driven by few-cycle laser pulses.

The Compton scattering by short laser pulses is very
sensitive to the precise form of the driving pulse. It was
pointed out in Ref. [6] that this sensitivity can be used to
characterize the driving laser field. In Ref. [6], the angular
distributions of Compton radiation were traced back to the
carrier-envelope phase of the driving pulse. As we point out,
the spectrally resolved peaks in the Compton distribution allow
for determining properties of the driving modulated pulse. This
is done by mapping the positions of the Compton peaks to the
GKN formula that we derive in this paper. It is important to
stress that the modulated pulse is shaped such that it appears as
a finite train of identical subpulses. Hence, the GKN formula
is applicable to an arbitrary, finite train of identical pulses.

The paper is organized as follows. In the next section,
the theory of Compton scattering in finite plane-wave-fronted
pulses is presented, which is then followed by the discussion
of the diffraction formula (Sec. III). In Sec. IV, we present the
GKN formula. It describes the major peaks in the Compton
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spectrum of radiation induced by a finite train of pulses. Since
the formula depends on properties of the individual pulse from
the train, one may exploit the properties of the Compton spectra
in the diagnostics of relativistically intense, short laser pulses.
This is illustrated in Sec. V for one- and three-cycle pulses.
Section VI contains concluding remarks.

In analytic formulas we keep 7 =1 and, hence, the
fine-structure constant becomes o = e?/(4mwegc). Unless
stated otherwise, in numerical analysis we use relativistic
units (rel. units) such that h = m, = ¢ = 1, where m, is the
electron mass.

II. COMPTON SCATTERING

The probability amplitude for the Compton process,
€pii > €p; T VKo, With the initial and final electron mo-
menta and spin polarizations p;A; and pshs, respectively,
equals [21]

Aley, = €y + VEa) = —ie/d4x SR () - A ().

(10)
Here, Ko denotes the Compton photon momentum and
polarization, and

/ 1 .
A(_) — * lK-x’ 11
Ka(x) 280&)KV €ko€ ( )

where V is the quantization volume, wg = cK? = ¢|K| (K -
K =0), and ¢k, = (0,eg,) are the polarization four-vectors
satisfying the conditions K - g, = Oand ek, - ko' = —800'»
for 0,0’ = 1,2. Moreover, j I(]T}:)pi . (x) is the matrix element of

the electron current operator with its v component equal to
S0 @1 = T )y it (). (12)

Here, w;)(x) is the Volkov solution of the Dirac equation
coupled to the electromagnetic field [24].

The Volkov solution of the Dirac equation for electrons of
the four-momentum p = (p°, p), p - p = m2c?, is of the from

By [Mec? ¢ ), —isy" )

Vi (x) = VE, [1 - m//((k . x)kj|’/‘pxe L
(13)

where
ST A@) - p A%(9)
SHx)=p-x +/ |:e —é? }d . (14)
R T R
E, = cp® and ugji) is the free-electron bispinor normalized
=) ()

such that i ,;’u ;) = 8, with A = = labeling the spin degrees
of freedom. The electromagnetic vector potential A(k - x) is
assumed to be an arbitrary function of k - x, with k - k = 0 and
w = ck. Let the laser pulse lasts for time T,,. Therefore, by
choosing w = 27/ T, we can assume that A(k - x) vanishes for
k-x <0andk -x > 2. This allows us to interpret the label
p of the Volkov wave (13) as the electron momentum in the
remote past or future.

In analogy to the Bloch theorem in solid-state physics, we
can introduce the electron quasimomentum p. It describes the
electron dressing by the electromagnetic field,

Sp(x) = p-x + Gk - x), (15)
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where, for the most general, elliptically polarized plane-wave-
fronted pulse,

Ak - x) = Aoler filk - x) + &2 fok - X)), (16)

the laser-dressed momentum has the form [21]

ﬁ=P—MmeC(p Ly + 22 fz)
p-n p-

2 2
+l(umec)2(fl)+<f2>n
2 p-n

a7

Here, the parameter p is defined according to Eq. (6). The
so-called shape functions, fj(k-x), j =1,2, are arbitrary
functions with continuous second derivatives that vanish
outside the interval (0,27). For any of such functions F(¢),
we define

2
(F) =5 [ F@us. (18)
7T Jo
Note that the pulses with plane wave fronts, which are
considered in this paper, very well describe the interaction
of laser fields with energetic electrons. This is provided that
the kinetic energy of electrons is much larger than their
ponderomotive energy in the laser field (see, e.g., Ref. [25]).
Our definition of the laser-dressed momentum (17) follows
directly from the Volkov solution (13). For the plane wave,
the polarization-dependent terms in Eq. (17) vanish, since
(fj) =0. Note that the laser-dressed momentum, as the
quantity defined in the laser field, cannot be a physical
observable. It follows, however, from Eqs. (13) and (15) that
the difference (pr — p;) (up to a four-vector proportional to
k) can be directly measured in an experiment, as it uniquely
determines the Compton frequency wg [see Eq. (30) below].
This means that, in principle, we can redefine the dressed
momentum (17) by adding an arbitrary four-vector that is
independent of p and vanishes outside the laser pulse. By
further assuming that this four-vector is not space and time
dependent, and that it should be determined only by the
four-vectors present in the definition of the laser pulse, one
can consider the following modification [26],

p— p+gie1 + ge2 + gok, (19)

with g; = 0 in the absence of the laser field. It appears that
this dressed momentum is on the mass shell (i.e., p- p is
independent of p) for a particular choice of g;,

8o =0, (20

g1 = umec(f1), g2 = umec(f2),

for which

2U
PP = (ec) = (mec)2[1 + - cz]’ 1)

[

where 77, is called the electron dressed mass, and
U=iwmc[(f7)— (1) + () - (] @

This result has led the authors of Ref. [27] to the conclusion
that the electron mass shift in a laser field could be measured
by comparing the spectrum of Compton radiation induced
by two different pulses, but of the same energy. However, it
follows from our analysis that the electron mass shift can be
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well defined only for the particular choice of the momentum
dressing [Eqs. (19) and (20)]. This can create doubts about
the physical nature of this quantity.

Indeed, the quantity defined in Eq. (22) is the direct
generalization of the ponderomotive energy (5) in the electron
reference frame for the finite laser pulses; in the arbitrary
reference frame the ponderomotive energy can be defined as
the time component of the ponderomotive four-momentum u
multiplied by the speed of light ¢, i.e.,as U = cu®, where (cf.
Ref. [28] for the case when (A) = 0),

L€ (AA) —(4)-(4) ,
w=-= Tk k. (23)

This allows us to define the dressed mass in the relativistically
invariant form [29],

,ﬁz_l( + u)? (24)
e_cgp uy,

which is independent of both the electron momentum p and
the fundamental frequency w, as well as of the laser pulse
polarization vectors ¢;. Equation (24), among others, has
lead Reiss [29] to the critique of the concept of the electron
mass shift in a laser field. Note that such a dressing does
not follow from the prescription (19) if the parameters g;
are p independent and, in general, cannot be related to the
“quasimomentum” for the Volkov solution.

It is not the purpose of this paper to take part in the
discussion concerning the mass shift. However, independent
of the physical interpretation, both the mass shift and the
ponderomotive momentum are uniquely defined by particular
laser pulse characteristics, namely, by w>((f2) + (f2)) and
u{fj) for j =1,2. It appears that also the Compton photon
frequency depends on them (see, e.g., Egs. (29) and (30) in
Ref. [18]). This indicates that there should exist an experimen-
tal method which allows us to determine these parameters from
direct measurements of the frequency spectrum of Compton
photons. This would allow us to determine either mass shift
or the ponderomotive momentum of the electron in the laser
field. It could be also used for the analysis of the peak intensity,
the carrier-envelope phase, or polarization properties of very
intense, short laser pulses.

In this context, we further analyze the probability amplitude
for the Compton process (10) and rewrite it as

B [2mac(mec?)?
Ale,, — €y, + VKo =1 W A, (25)

where
4 ()
A= / d’x Pt)»r<

fz(k x)¢2k>¢1(a

(k- x)f K

— K3

<1+;L

e€ iS(x
o kfz(k-xmk)u”{e S0 (2e)

1k x)E 1k

+u
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with S(x) = S;,i*)(x) - S;,Jfr)(x) — K - x. This phase can be
represented as S(x) = (p; — pr — K) - x + G(k - x), with the
laser-dressed momenta of the initial and final electrons defined
according to Eq. (17). The remaining portion of the phase,
G(k - x), is a periodic function of its argument and is given
by Eq. (43) of Ref. [21]. Next, we introduce a Fourier series
expansion as specified by Eq. (21) in Ref. [21]. In doing so,
we use the Boca-Florescu transformation [19] which allows
us to regularize the integral [ d*x e~ that is multiplied in

Eq. (26) by ';’Xf;é’;(a (+) . The Fourier decomposition makes

it possible to represent A in the form given by Eq. (22) of
Ref. [21]. This leads to

A= Z(2n)35<“(P 8P (Px)Dy ﬂ 27)
lP; ’
where
Py = pi+ Nk—pr— K (28)

and the coefficients Dy are defined in Ref. [21] by Egs. (23)
and (44). Note that the § functions in Eq. (27) determine the
respective conservation conditions. They can be rewritten in
the form

(Pi—pr—K)-n=0, pi—pr—K-=0, (29

where, for an arbitrary four-vector a, we define at=a—(a-
n)n. As a consequence, the Compton frequency,
(K -n)* + (K*)*
K=C—F
2K -n
= _ 5. 512 oL oly2
_ . [(pi — Pr) _n] + (Pi- — pr) ’ (30)
2pi—pr)-n

is uniquely defined by the difference of dressed momenta,
(pr — pi). For this reason one can select any form of the
electron momentum dressing. Below, we adopt our definition,
Eq. (17), as for such a choice the following equations hold:
p-n=p-n,p-g;=p-¢gj,and p* = p*, that significantly
simplify analytical calculations. Based on Egs. (25) and (27),
we derive that the frequency-angular distribution of energy
of the emitted photons for an unpolarized and monoenergetic
electron beam is given by
d*Ec d*Ec 5 (hi,Ap)
Z Z Z da)KdZQK : G

0.
dogd QK 0=1,2 A=t A==

Here,
d*Ec o (Mishp)
da)Kdng

where the scattering amplitude equals

= a|Aco (@K, A Al (32)

Aco(@r M) mecK®
o WK, A, =
ot 2n\/p?k0(k-pf>
e~ 2mi(N—Neir)
x Tme™™ o3
Z NN = Ne)

with Negr = (KO + p? — pP)/k°. These formulas have been
derived by integrating I.A(eljixi — epy Yko)|> over the
final electron states. Therefore, even though we write explicitly
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pr in these formulas, one has to understand that p; is
determined by the conservation conditions (29).

In the following, we consider the linearly polarized laser
pulse such that, for 0 < ¢ = k - x < 2, the vector potential
has a general form A(¢) = Aoef(¢) [i.e., we put € = ¢y,
f(@) = fi(¢), and f>(¢) = 0] and the electric field vector
equals £(¢p) = —wApe f'(¢). The shape function f(¢) is
defined via its derivative,

0, ¢ <0,
['(@) = { N} sin?(Np$) sin(Neep Nose#), 0 < ¢ < 27,
0, ¢ > 2m,

(34
where we assume that f(0) = 0. Note that this pulse consists of
Nirep identical subpulses, with Ny cycles each. Regardless of
its interpretation as a finite train of pulses, it is justified to apply
the theory derived in Ref. [21] for the process driven by a single
pulse, which was recapitulated in the previous paragraph.
Since the modulated pulse (34) lasts for time 7, we can
define its fundamental, w = 27/ T}, and its central frequency,
WL = NiepNoscw. The latter is supposed to be fixed and equal to
wp = 1.55 eV ~ 3 x 107® mc? in all calculations performed
below. In the following, we assume that N} = NrepNose. This
guarantees that the time-averaged intensity carried out by the
laser field is independent of Ny, and N, as for this particular
choice of N } the amplitude of the electric field scales as wp .

Note that, for the rectangular pulse, the sin> envelope is not
present in Eq. (34). Therefore, in this case the laser pulse
depends only on the product Nyep Nosc.

In analogy to the original Klein-Nishina formula [Egs. (4)
and (9)], we present the frequency spectrum as a function of

Un-n
WEK Weut <P1 K+_n K). (35)
WL(Went — WK) \ pi-n c pi-n

In this case, we expect that in the limit of a very long pulse
the peaks in the spectrum will appear for A’s very close to
integers, as it indeed takes place for a monochromatic plane
wave.

In Fig. 1, we present the angular-resolved distributions of
Compton radiation [Eq. (31)] generated by a single pulse, with
Nose = 30 field oscillations. This distribution is presented as
the function of A. One could expect that, for such a long
driving pulse, the Klein-Nishina formula could be successfully
used and that the dominant peaks would correspond to integer
values of V. Clearly, we do not observe such a behavior as the
peaks are red-shifted, independently of the Compton photon
polarization. As we show in the next section, the situation is
changed when a train of incident pulses is considered.

k)

N =

II1. DIFFRACTION FORMULA

It was shown in Ref. [23] that, for a finite train of pulses, the
Compton probability amplitude has the diffraction-type form,

AC,(I(wK5)"ia)\'f)
= expli Pc o (WK, A, A1)]
sin(r 0/ k%)

1 )
X sin(r[ Q+/k0Nrep) |Acyg(a)K’)"l»)"f)|9 (36)
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FIG. 1. (Color online) Shows the spectra of Compton radiation
[Eq. (31)] resulting from the head-on collision of the linearly
polarized laser pulse and an electron of momentum p; = —10°m.ce..
The laser pulse (4 = 1 and w;, = 1.55 eV) propagates along the z
direction and is polarized along the x direction. These two axes
determine the scattering plane. The pulse has a sin?> envelope
[Eq. (34)] with Ny =30 and N, = 1. The Compton photon is
emitted in the direction of 8 = 0.99997 and ¢x = 7, with the
polarization vector either parallel (upper panel) or perpendicular to
the scattering plane (lower panel). The energy spectra are presented
as functions of AV, where the vertical lines mark the integer values of
this argument. For this particular kinematics of the scattering process,
the frequency of emitted photons wg almost linearly depends on A/,
namely, wg = 9.33Nm.c?.

where A . 1s the Compton amplitude for a single pulse and
D¢, {,(a)K,)L,,Ar) is the Compton global phase. In the above
equation QF = pi" — pf — K where, for an arbitrary four-
vector a, we define at = a® — (a - n)/2 = (@° + a - n)/2. For
particular frequencies of emitted photons (wg y with integer
N), that satisfy the condition

7O = —7 N Neepk®, (37)

we observe the coherent enhancement of the Compton ampli-
tude. This, in turn, leads to the quadratic, Nre , enhancement
of the respective probability distribution. In contrast to the
classical Thomson process, these frequencies are not exactly
equally spaced in the allowed frequency region, 0 < wg <
wey- When wg approaches the cutoff value wqy [Eq. (2)],
i.e., when the quantum recoil of the scattered electron cannot
be neglected, the spectrum of wg y becomes increasingly
denser. This means that one can generate the Compton-based
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FIG. 2. (Color online) The same as in Fig. 1 but only for the
Compton photon polarized in the scattering plane. We show the
spectra for Ny, = 1 (black envelope), Ny, = 2 (dashed red [gray]
line), and Ny, = 4 (solid blue [gray] line). The vertical lines mark
the integer values of NN/, for which we observe the approximate
positions of peaks for Ny, > 1.

frequency combs with equidistant peak frequencies only
within limited frequency intervals.
The Compton global phase equals
® Q dyn

co(wk, Ai,Af) = 75t D¢ , (WK, AisAp), (38)
where <I> 1s the so-called dynamic phase [23]. For arbitrary
laser pulses and polarizations of emitted photons, the dynamic
phase can only be calculated numerically. It happens that,
for pulses considered in this paper, the dynamic phase is
independent of wg. This means that, for frequencies wg, v
satisfying the condition (37), the global phase is equal to

De o (WK N hisht) = TN N + O (0K v 2ishp),  (39)

and, hence, it takes on the same values modulo 7r. The selection
of these particular phases for the peak frequencies leads not
only to the enhancement of the frequency spectrum but also to
the synthesis of ultrashort pulses of radiation generated during
the Compton scattering [30].

As an illustration, we consider the same laser pulse as
in Fig. 1 but repeated N, times. In Fig. 2, we show the
Compton spectra for Nyp = 1, 2, and 4, when divided by

rep The results are presented as the functions of Nys.N. The
clearly visible peaks occur for N, > 1. Their positions are
almost independent of Ny, and they correspond to the integer
values of Ny /N. Note that w = wr /Ny is the fundamental
frequency of the individual laser pulse from the train. Such
a pulse can be approximately interpreted as a coherent
superposition of at most N, photon states of frequencies K w,
K =1,...,Nys (of course, photons with other frequencies
are also present, but with smaller amplitudes). Therefore,
in the course of the Compton scattering, the electron can
absorb these photons with the total energy Nw and emit a
single photon of frequency wg, y. However, due to the time-
frequency uncertainty relation and an incoherent interference
of probability amplitudes, the spectrum is smeared out such
that it is not possible to clearly prescribe peaks to integer orders
N. This is clearly seen in Figs. 1 and 2. The situation changes
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if we consider the sequence of at least two such pulses. Now,
due to the constructive interference, the processes with integer
Nose NV are coherently enhanced. As a result, we observe in the
spectrum the clearly resolved peaks already for Ny, = 2.

The coherent enhancement of the Compton frequency
spectra does not take place for a single pulse with the time-
varying envelope. It appears, however, that important features
of a single pulse can be precisely determined from positions
of the main diffraction peaks in the Compton spectrum, when
generated by a train of such pulses.

IV. GENERALIZED KLEIN-NISHINA FORMULA

As we have demonstrated above, the application of the
pulse train with two subpulses already allows us to increase
the resolution of the frequency spectrum of Compton radiation
such that one can unambiguously prescribe an integer number
to the individual peak. We have shown this for a long pulse
(Nose = 30), for which (f) is negligibly small, so that the
original Klein-Nishina formula may be applied. For shorter
pulses, (f) starts to be significantly different than zero and
the generalization of the Klein-Nishina formula, that accounts
for this fact, is necessary. We apply the diffraction formula
and determine the Compton photon frequency by solving the
system of Egs. (29) and (37). After some algebra, we arrive
at the following GKN formula valid for a pulse train of an
arbitrary polarization:

GKN (N /Nosc)oL
w(K’N ‘= Pik vn-ng+gipi1+8 pis + (N/Nosd)or, (40)
pi-n (pi-n)? Ocut

Here, g; and g, are defined in Eq. (20),

v = Sumeel ((£2) +(£2)), (41)
and (for j = 1,2)

pi,j = (pi-n)ng -€;) — (pi - €;)(n - ng). (42)

As for the original Klein-Nishina formula, the quantum
signature is hidden in the definition of w.y [Eq. (2)]. The
frequencies determined by Eq. (40) mark the positions of
main peaks in the Compton spectrum. Similarly, one can find
frequencies of the secondary peaks (if Nyp > 2) and zeros
(if Nrep > 1) in the angular-resolved frequency distributions.
It is worth noting that now the polarization-dependent terms
appear not in the unphysical dressing of the electron initial and
final momenta but in the definition of the directly measurable
quantity; in other words, they affect the peak frequencies of
the Compton spectrum. Similarly to the original Klein-Nishina
formula we define the quantity

NGKN =

Nosc@g Wcut <Pi ‘nK
OL(@ct — WK) \ pi-n
vn -ng + g1 pi1 + gZPi,2>
(pi - n)? ’

(43)
which acquires integer values for peak frequencies wfIfVN) For
(fj) =0 and Ny, = 1, this formula reduces to the 'original
one, given by Eq. (35).

The derivation of the formula (36) shows that, in order
to observe a coherent enhancement of the Compton spectra,
the modulations of the driving pulse cannot be arbitrary [23].
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x 10

frequency spectrum (rel. units)

oL .

40 45 50 55 60 65
N

FIG. 3. (Color online) The same as in Fig. 1 but for the rectan-
gular pulse with Ny = 1 and N, = 10. The laser field intensity
is characterized by the parameter u = 3. The Compton photon is
emitted in the direction specified by 0 = 0.999x and ¢x = 7. The
energy spectrum is presented as the function of A/ [Eq. (35)].

Both the integral of the electric field over the time duration of
a single modulation and the vector potential in the beginning
and at the end of it have to vanish. In other words, we have
to deal with a train of pulses. This precludes the application
of the diffraction formula not only to single pulses with
envelopes varying in time, but also to the rectangular pulses
of an arbitrary polarization. The exception is the linearly
polarized rectangular pulse, but even in this case one has to
redefine the vector potential such that (f) # 0. This means
that, irrespective of the duration of such a rectangular pulse, the
original Klein-Nishina formula (4) is not applicable, unless the
particular geometry is selected such that p; ; = 0 for g; # 0.
For instance, in the electron reference frame this happens if
ng -€; =0,as p; - ¢; = 0. This corresponds to the case when
the Compton photon is ejected perpendicular to the laser field
polarization vector.

In Figs. 3 and 4, we consider a generic case when p; ; # 0
for the linearly polarized laser field. In these figures we
compare the same spectrum of emitted radiation, but we
present it as the function of either A" or Nggn. We see that

x105

N W R~ OO

—_
T

frequency spectrum (rel. units)

o

SuBuEsl

16 18 20 22 24
N GKN

—
N

FIG. 4. (Color online) The same as in Fig. 3, but the spectrum is
plotted as a function of Nk~ [Eq. (43)].
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the main peaks of this spectrum correspond exactly to the
integer values of Ngkn. We also observe a dramatic difference
in numerical values for N and Ngkn. For instance, the first
peak corresponds to N = 39 or Ngkn = 14. If the original
Klein-Nishina formula had been used for interpreting this peak
one would ascribe it to the process with absorption of 39 laser
photons (not accounting for the fact that the majority of the
peaks could not be interpreted this way, since they do not match
the integer values of A). In contrast, for the GKN formula, all
the main peaks can be interpreted as the result of absorption
of an integer number of laser photons. Note that the positions
of these peaks are the same with the increasing Ny, whereas
their widths become increasingly narrower.

The positions of the interference peaks, as represented in
Fig. 4, allow to determine parameters of the driving laser field.
In order to demonstrate this, we define the quantities

n=vn-ng+gipi1+ &Ppi2 (44)

N, osc WK Weut

Alox) ZwL(wcut — wg)(pi - n)*’

(45)

NoscWg Wy pi - Nk

wL(@ew — WK) pi-h

B(wg) = (46)
These quantities depend on the initial electron energy and the
geometry of the scattering process. Except for n, they also
depend on the frequency of emitted photons. The latter means
that, for a given frequency distribution, n remains constant.
Moreover, only 1 depends on the laser pulse parameters such
as u((f2) + (f#)) and w(f;) for both linear polarizations
(note that only these parameters are necessary for the deter-
mination of the electron effective mass or the ponderomotive
four-momentum, as discussed in Sec. II). Using the above
definitions, Eq. (43) can be rewritten as

A(wg)n = Nokn — B(wk). (47)

This equation determines 1 provided that we can unambigu-

ously prescribe an integer number to an arbitrarily chosen

peak frequency. Let us choose two consecutive peaks from the
. (GKN) (GKN) .

spectrum, i.e., wy n -~ and wg y/;. By solving the system of

two equations, each having the form (47) for the given peak

frequency, we obtain that
(GKN) (GKN)
_ 1— B(a)K,N+1) + B(wK,N )

)7 =
Al i) — AlKN)

(48)

This quantity should be independent of N. For instance,
the frequencies of the first two peaks in Fig. 4, which have

been estimated from the graph, are w(,glff) ~ 29.817mec? and
o s A 31.878mec?. They result in 7~ —5.3497(mcc)?,
which is very close to the exact value 7 —5.3496(m.c)>.
Note that the result for 1 is the same for an arbitrary pair of
such peak intensities. This means that in order to determine
three independent parameters v, g;, and g, which appear in
the definition of n [Eq. (44)], we should repeat this procedure
for different geometries. For the linearly polarized laser field
considered in this paper, we can determine 1 exactly in the
same way for different angles of emission. For instance, by
choosing g = 0.99997 with all other parameters unchanged,

x
=~
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we obtain 7 & 11.615(m.c)?. These two values for 7 lead to the
results very close to the exact values ( flz) =1.5and (f1) = 1.

V. FEW-CYCLE LASER PULSES

A closer look at Fig. 2 shows that, for Ny, > 1, some peaks
in the spectrum do not scale as N2 . This concerns peaks
located close to the frequencies for which the distribution for
the single pulse vanishes. As one can see, after dividing these
distributions by erep, the spectrum for Ny, = 1 represents
the envelope for the main diffraction peaks (i.e., observed
for Nyp > 1). This means that the spectra are tangent to
each other for frequencies close to the main peaks. If the
Compton spectrum for a single pulse shows rapid modulations
and the diffraction peak is located at the edge of a particular
modulation, then the peak frequency does not correspond to
the one for which the spectra are tangent. In these cases, it
may happen that the application of a pulse train does not
enhance, but rather suppresses, the generated radiation. This
is the reason why in Fig. 4 some of the diffraction peaks are
hardly visible. To avoid the suppression of emitted radiation,
it is advisable to use such laser pulses, or such scattering
kinematics, so that the spectrum originating from a single pulse
exhibits a broad structure, the so-called supercontinuum. Note
that the formation of supercontinua was discussed recently

o]
o
o

A

o

o
s

4001 1
3001 1
200} 1
100 1

o

frequency spectrum (rel. units)

20 40 60 80
WK/ Mec?

600
500 ]
400 ]
300 ]
200 ]

100 1

frequency spectrum (rel. units)

10 20 30 40
NGKN

FIG. 5. (Color online) The same as in Fig. 1, but for Ny = 1 and
only for the Compton photon polarized in the scattering plane. The
curves in each panel represent two cases: Ny, = 1 (smooth envelope)
and Ny, =2 (densely distributed peaks). In the upper panel the
energy spectra are presented as functions of the Compton photon
frequency wg, whereas in the lower frame they are presented as
functions of Ngkn. The vertical lines in the lower panel mark the
integer values of Ngkn, that exactly coincide with the positions of
peaks. The distance between the peaks is roughly 1.79m.c?.
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FIG. 6. (Color online) The same as in Fig. 5, but for Ny = 3.
Since the peaks are denser, in the lower panel only part of the spectrum
is presented. The peaks are separated by roughly 0.33m.c?.

in the context of Thomson and Compton scattering, and the
synthesis of zepto- and yoctosecond pulses of radiation [30].
It appears that the best choice for their generation is to use
few-cycle laser pulses. We illustrate this below for Ny = 1
and 3.

In Fig. 5, we present the Compton spectrum induced by
a single-cycle pulse. The spectrum consists of the broad
supercontinuum which extends from nearly 10m.c’> up to
80m.c2. If we repeat this pulse, Ny, =2, we observe the
formation of the diffraction peaks for integer values of Ngkn
(lower panel), which proves the validity of the GKN formula.
For larger values of N, the positions of the main peaks stay
the same but their widths become more narrow. The energy
separation between the adjacent peaks is nearly the same
(~1.79m.c?). Note that the pulse train under consideration
is the superposition of two plane waves of frequencies o, and
2. Also, the peak intensity of the laser field is not very
large, as it does not exceed 10" W/cm?. This suggests that
our theoretical predictions could be verified experimentally,
for instance, at the ELI facility [31].

For pulses with more oscillations, the situation is similar.
In Fig. 6, we show this for Ny = 3. The only difference is
that now the distribution of the diffraction peaks is denser,
with the energy separation of roughly 0.33m.c?. As above, the
main peaks (for Ny, = 2 there are only the main diffraction
peaks and the weaker secondary ones show up for Ny, > 2,

PHYSICAL REVIEW A 91, 062106 (2015)

as presented in Fig. 2) correspond to the clearly prescribed
integer values of Ngkn. This, again, proves the validity of the
GKN formula derived in this paper.

It follows from Eq. (43) that, knowing the geometry of the
Compton scattering and the electron initial energy, measuring
frequencies of only two consecutive peaks in the spectrum
(for Nrep > 1) for two geometries leads to the determination
of the two important parameters of linearly polarized pulses
which comprise the train: w?(f?) and w(f) [by applying
the procedure similar to that presented in Sec. IV]. If the
form of the envelope is known, such measurements allow
us to determine the peak intensity of incident pulses, which
is characterized by the parameter . Another possibility is
to map the positions of the Compton peaks to the carrier
envelope phase, assuming that the envelope type and the peak
intensity are known. Similar measurements for three different
geometries can extract the values of w?((f2) + (f7)) and
u{f;) (j = 1,2) for elliptically polarized driving pulses and,
hence, also their polarization properties.

VI. CONCLUSIONS

We have demonstrated that, by using a train consisting
of a finite number of identical pulses, one can generate
the Compton radiation with well-resolved peaks. In other
words, we propose the mechanism to reduce the spectral
broadening of the emitted radiation which typically occurs
if a few-cycle pulse interacts with the electron (see, for
instance, Refs. [15,16,18-21]). This is a complementary
proposal to the one presented in Ref. [32-34], where a single
but chirped initial pulse was used in order to compensate for
the spectral broadening. Based on this result, we have derived
the generalized Klein-Nishina formula.

The GKN formula (43) predicts the positions of well-
resolved peaks in the Compton spectrum, when driven by
a finite train of pulses. We argue that, by analyzing the
positions of the peaks in the frequency domain of Compton
photons, it is possible to determine laser pulse parameters,
w2 f12) + f22>) and p( f;) for both linear polarizations. This
means that the proposed method can be applied, for instance,
to determine polarization properties of such pulses and either
their peak intensity or their carrier-envelope phase. Note that
a similar analysis can be carried out for other fundamental
processes of strong-field quantum electrodynamics, like the
laser-induced Breit-Wheeler and Bethe-Heitler pair creation.
These possibilities are under investigation now.
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