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Generation of Bell, W , and Greenberger-Horne-Zeilinger states via exceptional points
in non-Hermitian quantum spin systems
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We study quantum phase transitions in non-Hermitian XY and transverse-field Ising spin chains, in which
the non-Hermiticity arises from the imaginary magnetic field. Analytical and numerical results show that at
exceptional points, coalescing eigenstates in these models are close to W, distant Bell, and GHZ states, which
can be steady states in the dynamical preparation scheme proposed by Lee et al. [T. E. Lee et al., Phys. Rev. Lett.
113, 250401 (2014)]. By selecting proper initial states, numerical simulations demonstrate the time evolution
process to the target states with high fidelity.
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I. INTRODUCTION

A quantum phase transition can occur in a finite non-
Hermitian system, associating parity-time (PT ) reversal or
other type of symmetry breaking. At the transition point,
referred to as the exceptional point (EP), a pair of eigenstates
coalesces into a single state. Many finite-size discrete systems
have been investigated, including tight-binding models, quan-
tum spin chains, and complex crystal.

These features are different from that of a quantum phase
transition in an infinite Hermitian system. Recently, critical
behavior of a non-Hermitian system has been employed to
generate entangled states in a dynamical process and the corre-
sponding experimental protocol has also been proposed [1,2].
According to the non-Hermitian quantum theory [3–10], a
pseudo-Hermitian system has real eigenvalues or conjugate-
pair complex eigenvalues. Considering the simplest case, there
is only a single pair of eigenstates breaking the symmetry of
the Hamiltonian, with conjugate complex eigenvalues. A seed
state is an initial state consisting of various eigenstates with
eigenvalues with zero, positive, and negative imaginary parts.
With time evolution, the amplitude of the state with a positive
imaginary part in its eigenvalues will increase exponentially
and suppress that of other components. The target is the
final steady state and is expected to have peculiar features
for quantum computation processing and other applications.
It is important to construct a simple Hamiltonian which is
suitable for experimental implementation: to prepare desirable
quantum states with high fidelity.

In quantum information science, it is a crucial problem
to develop techniques for generating entanglement among
stationary qubits, which plays a central role in applications
[11–13]. Bell states are specific maximally entangled quantum
states of two qubits. For a many-qubit system, there are two
typical multipartite entangled states, i.e., Greenberger-Horne-
Zeilinger (GHZ) and W states, which are usually referred to
as maximal entanglement. Multipartite entanglement has been
recognized as a powerful resource in quantum information
processing and communication. Numerous protocols for the
preparation of such states have been proposed [14–30].

In this paper, we consider whether it is possible to use
non-Hermitian systems to generate a W, distant Bell, and GHZ
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states via the dynamical process near EPs. We introduce a
non-Hermitian XY and transverse-field Ising spin chains to
demonstrate the schemes. Numerical simulations show that
the target states can be obtained with high fidelity by the time
evolutions of selecting proper initial states. The remainder of
this paper is organized as follows. In Sec. II, we present a
non-Hermitian XY spin model and solutions. Sections III, IV,
and V are devoted to the schemes of preparing W, Bell, and
GHZ states, respectively. Finally, we present a summary and
discussion in Sec. VI.

II. XY SPIN CHAIN

We consider a non-Hermitian XY spin model,

Hchain = 1

2

N−1∑
l=1

(
σx

l σ x
l+1 + σ

y

l σ
y

l+1

) + H.c.

+(V + iγ )σ z
1 + (V − iγ )σ z

N, (1)

on an N -site chain, where σα
l (α = x,y,z) is a Pauli matrix. In

the case of γ = 0, it is reduced to a Hermitian model with P
symmetry. Here the parity operator P is given by Pσα

l P−1 =
σα

l̄
with l̄ = (N + 1 − l). In the case of nonzero γ , the P

symmetry is broken, but PT is still symmetric, where T is a
time-reversal operator T iT −1 = −i.

We note that

[Jz,Hchain] = 0, (2)

where Jα = ∑N
l=1 σα

l is a total spin operator. This means that
Hchain can be diagonalized in each invariant subspace. In this
paper, we are only concerned with the issue in the subspace
with Jz = N − 1 and N = even. In this invariant subspace,
the wave function has the form

|φ〉 =
N∑

l=1

flσ
+
l |⇓〉, (3)

where |⇓〉 is a saturated ferromagnetic state, |⇓〉 = ∏N
l=1 |↓〉.

Then we get an equivalent Hamiltonian,

Heq =
N−1∑
l=1

|l〉〈l + 1| + H.c.

+ (V + iγ )|1〉〈1| + (V − iγ )|N〉〈N |, (4)
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where the position state at the lth site is |l〉 ≡ σ+
l |⇓〉. The

eigenproblem of the equivalent Hamiltonian is given in the
Appendix. In the following, we will discuss the schemes for
the preparation of W and Bell states based on the Hamiltonian
Heq.

III. W STATE

In the situation V = 0, the Hamiltonian Heq is reduced to

HW =
N−1∑
l=1

|l〉〈l + 1| + H.c. + iγ |1〉〈1| − iγ |N〉〈N |. (5)

The exact solution in the Appendix suggests that we consider
the state

|W 〉 = 1√
N

N∑
l=1

(−i)lσ+
l |⇓〉 = 1√

N

N∑
l=1

(−i)l|l〉, (6)

which represents a single-magnon spin wave with wave
vector π/2. It is a W state under a local transformation,
(−i)lσ+

l → σ+
l , which does not reduce its properties in

quantum information processing. A straightforward derivation
shows that the state |W 〉 is an eigenstate of the Hamiltonian
HW at γ = γc = 1, i.e.,

HW (γc)|W 〉 = 0|W 〉. (7)

Then, we will show that |W 〉 is a special eigenstate of HW (γc).
For the corresponding conjugate Hamiltonian H

†
W (γc), we have

H
†
W (γc)|W〉 = 0|W〉, (8)

where

|W〉 = 1√
N

N∑
l=1

ilσ+
l |⇓〉. (9)

It is easy to find that

〈W|W 〉 = 0, (10)

which indicates that HW has an EP at γc and the W state is the
coalescent state at the transition point. In the Appendix, this
result is confirmed by an exact Bethe ansatz analysis.

We investigate the scheme of selecting the |W 〉 state
by a dynamic process. From the Appendix or the previous
work [31], we find that the complex conjugate pair of energies
is ±i2J sinh κ for small κ , where real number κ obeys the
equation

γ 2 sinh[(N − 1)κ] = sinh[(N + 1)κ]. (11)

We note that the value of γ determines the gap between the
complex conjugate pair of energies, or the converging time.
The initial state is taken as |ψ(0)〉 = |1〉; the evolved state
|ψ(t)〉 is expected to close the target state for a sufficiently
long time. We employ the fidelity

f (t) = |〈W |ψ̃(t)〉|, (12)

to characterize the efficiency of the scheme. Here, |ψ̃(t)〉 is
the Dirac normalized state of |ψ(t)〉 to reduce the increasing
norm of |ψ(t)〉. We would like to point out that the Dirac
inner product is employed to measure the distance between
two states, which is independent of the biorthonormal inner

product for the corresponding non-Hermitian Hamiltonian. In
this work, we are interested in the entangling power of the
preparing state and we believe that a higher fidelity indicates
the same degree of entanglements for two states. In general,
the temporal evolution of the state |ψ(t)〉 governed by a
non-Hermitian Hamiltonian H , like the conventional quantum
mechanics with a Hermitian Hamiltonian, is still determined
by the Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉, (13)

which has the solution

|ψ(t)〉 = e−iH t |ψ(0)〉 =
∑

n

e−iεntgn|φn〉, (14)

where

H |φn〉 = εn|φn〉, (15)

and

|ψ(0)〉 =
∑

n

gn|φn〉, (16)

except at the exceptional point. In principle, the extension of
vector |ψ(0)〉 is a pure mathematical problem, regardless of
the physical meaning of the Hamiltonian H . Nevertheless,
the biorthonormal complete set with respect to the operator
H provides an efficient way to obtain the coefficient gn. In
the limit case of γ → 1, we will have f (t) → 1 as t → ∞.
For finite γ , the time evolution of the state is computed by
numerical diagonalization in the broken symmetric region. In
order to quantitatively evaluate the fidelity and demonstrate
the proposed scheme, we simulate the dynamic processes of
the W-state preparation. To illustrate the process, we plot the
fidelities as functions of time for systems with N = 6 and 8 in
Fig. 1. It shows that the fidelities converge to a steady value
exponentially fast. Smaller γ (approaches to 1) can enhance the
fidelity, while the converging time becomes longer. Moreover,
we find that the converging times for two cases are not so
sensitive to the size N , which is quite different from that in
the following two schemes for preparing distant Bell and GHZ
states. This is because of the fact that the phase boundary is
always at γ = 1 for any even N . Then such a scheme is more
efficient for a W-state production.

IV. BELL STATE

In the situation |V | > 2, the exact solution in the Appendix
shows that two bound states are formed, in which the
probability mainly distributes around two ending sites. The
phase diagram has been obtained as Eq. (A16) in the Appendix,
which is the base of the scheme for preparing a Bell state.
According to the Bethe ansatz result, there is a conjugate
complex pair of energy levels in the broken PT symmetric
region. The magnitude of the imaginary part of the eigenenergy
|Imε| is also an indicator of the phase boundary and determines
the converging speed of the scheme. For illustrating this point,
we plot |Imε| as a function of V and γ for the systems with
N = 6, 8, and 10 in Fig. 2. The corresponding exact boundary
from Eq. (A16) is plotted as well. We find that they are in
accord with each other and the boundary appears as a linear
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FIG. 1. (Color online) Plots of the fidelity f (t) for preparing the W state, as a function of time for the systems with (a) N = 6 and (b) 8.
The times are dimensionless and in units of 1. We see that the fidelities converge to constants in an exponential manner and the converging
fidelities become higher as γ closes to 1, while the converging times get longer. The obtained results are not sensitive to the size N , which is
quite different from the situations for the productions of Bell and GHZ states.

line with N -dependent slope in the logarithmic scales. We will
see that the profile of the phase diagram directly determines
the efficiency of the scheme in the following investigation.

In order to understand a clear physical picture of the
exact solution, we use the perturbation method to simplify
the Hamiltonian Heq in the large-V limit. Although the
perturbation theory for a non-Hermitian Hamiltonian has
not been well established, the following result will show
that the corresponding approximation is technically sound
by the comparison with the exact solution. We rewrite the
Hamiltonian Heq in the form

Heq = H0 + H ′, (17)

H0 =
N−2∑
l=2

|l〉〈l + 1| + H.c.

+ (V + iγ )|1〉〈1| + (V − iγ )|N〉〈N |, (18)

H ′ = |1〉〈2| + |N − 1〉〈N | + H.c., (19)

where the eigenstates of H0 can be easily obtained as

{|1〉, |N〉, ∑N−1
j=2

√
2

N−1 sin[ (n−1)jπ

N−1 ]|N〉; n ∈ [2,N − 1]} with

corresponding energy {V + iγ , V − iγ , 2 cos[ (n−1)π
N−1 ]; n ∈

[2,N − 1]}. This set of eigenstates has a special feature: it can
construct a complete set under the Dirac inner product, where
even H0 is a non-Hermitian Hamiltonian. Then the effective
Hamiltonian for two bound states can be obtained as

Heff = λeff|1〉〈N | + H.c. + (V + Veff + iγ )|1〉〈1|
+ (V + Veff − iγ )|N〉〈N |. (20)

In the case of |V | � 1, the model above is a simple two-site
model and easily solvable. Here the effective potential is

Veff = 2

N − 1

N−1∑
n=2

sin2 φn

V − 2 cos φn

≈ 1

V
, (21)
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FIG. 2. (Color online) Phase diagram of non-Hermitian Hamiltonian in Eq. (4). The color contour map represents the magnitude of the
imaginary part of conjugate-pair energy levels for N = 6, 8, and 10, obtained by exact diagonalization. The white area indicates the region
where the spectrum is entirely real. The dotted line is the plot of the function in Eq. (A16), indicating the exact phase boundary. We see
that all three boundaries are in line shape with different slopes in the logarithmic scales. This property can be explained by the perturbation
approximation.
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and the effective coupling is

λeff = 2

N − 1

N−1∑
n=2

sin φn sin[(N − 2)φn]

V − 2 cos φn

≈ �

V 2
, (22)

where parameters �, φn, and θ are N -dependent functions,

� = cos[(N − 4)π/2] sin[(N − 4)(N − 2)θ ]

(N − 1) sin[(N − 4)θ ]

− (−1)N/2 sin[(N − 2)Nθ ]

(N − 1) sin(Nθ )
, (23)

φn = 2(n − 1)θ, (24)

θ = π

2(n − 1)
. (25)

The eigenstates of Heff are(
iγ ±

√
λ2

eff − γ 2
)|1〉 + λeff|N〉, (26)

with eigenvalues ±
√

λ2
eff − γ 2 + V + Veff. At the EP, λ2

eff =
γ 2

c , the coalescent state is

iγc|1〉 + λeff|N〉, (27)

with energy

εc = V + Veff ≈ V + 1

V
, (28)

which is in agreement with the approximate expression (A19)
in the Appendix. Then the boundary has the form

ln |γ | + 2 ln |V | = ln |�|, (29)

in the logarithmic scales, indicating a linear phase boundary
with a fixed slope. This is qualitatively in agreement with the

numerical results in Fig. 2 obtained by the exact solution,
where the slopes of the boundary are N dependent.

Based on the phase boundary, one can prepare the target
state in the vicinity of the EPs via the dynamic process. The
target state is a Bell state, expressed as

|Bell〉 = 1√
2

(|1〉 − i|N〉). (30)

The initial state is taken as |ψ(0)〉 = |1〉, and the evolved state
|ψ(t)〉 is expected to close the target state for a sufficiently
long time. We employ the fidelity

f (t) = |〈Bell|ψ̃(t)〉|, (31)

to characterize the efficiency of the scheme. Here, |ψ̃(t)〉 is
the Dirac normalized state of |ψ(t)〉 to reduce the increasing
norm of |ψ(t)〉. The time evolution of the state is computed by
numerical diagonalization. For given N and V , we numerically
search an optimal γ to obtain higher fidelity in the broken
symmetric region. In order to quantitatively evaluate the
fidelity and demonstrate the proposed scheme, we simulate
the dynamic processes of the quantum state preparation. To
illustrate the process, we plot the fidelities as functions of time
for systems with N = 6 and 8 in Fig. 3. It shows that the
fidelities converge to a steady value exponentially fast. Larger
|V | corresponds to smaller optimal γ , leading to higher fidelity,
but longer converging time. We also find that the converging
times for two cases are sensitive to the size N . These are
in accordance with the phase diagrams in Fig. 2: the linear
boundary indicates that larger ln |V | matches smaller ln γ and
a slight change of slopes between ln|V | and lnγ results in a
drastic change of the converging times.

V. GHZ STATE

The above conclusion provides a way to prepare a super-
position of two distant position states. Such a scheme can be

0 2.5 5 7.5 10
0

0.25

0.5

0.75

1

103t

f
(t

)

(a)

N=6

γ=0.0025, V =-4
γ=0.00075, V =-5

0 2.5 5 7.5 10
0

0.25

0.5

0.75

1

104t

f
(t

)

(b)

N=8

γ=0.00023, V =-4
γ=0.0000615, V =-5

FIG. 3. (Color online) Plots of the fidelity f (t) for preparing the Bell state, as a function of time for the systems with (a) N = 6 and
(b) 8. The times are dimensionless and in units of 103 and 104, respectively. We see that the converging fidelities approach 1, getting higher
with increasing V and longer time. The time scale of (b) is over ten times longer than that of (a), which indicates the difficulty of preparing a
long-distance Bell state.
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FIG. 4. (Color online) Phase diagram of non-Hermitian Hamiltonian in Eq. (33). The color contour map represents the magnitude of the
imaginary part of the conjugate-pair energy levels for N = 6 and 8, obtained by exact diagonalization. The white area indicates the region
where the spectrum is entirely real. We see that two boundaries have similar shapes but with a shift.

extended to prepare the GHZ state, which has the form

|GHZ〉 = |⇓〉 +
N∏

l=1

σ+
l |⇓〉. (32)

States |⇓〉 and
∏N

l=1 σ+
l |⇓〉 can be regarded as two end position

states, which are connected by N -step operations of operator∑N
l=1 σx

l . This opens a probability to select the GHZ state as
a steady state near the EP. We consider a simple and practical
model, which is a non-Hermitian Ising model, described by
the Hamiltonian

HGHZ = −J

N∑
l=1

σ z
l σ z

l+1 + iγ

N∑
l=1

σ z
l + �

N∑
l=1

σx
l . (33)

It is a standard transverse-field Ising model at γ = 0, which
can be exactly solved and has been extensively studied in a

variety of areas. Recently, theoretical studies of several types
of quantum Ising models were extended to the non-Hermitian
regime and some peculiar properties were observed [32–38].
In the case of J = 0, this model is reduced to noninteracting
spin-1/2 particles with complex magnetic field, which has
a full real spectrum when �2 � γ 2 [39]. We assume that the
phase transition can occur in the case of nonzero γ and J . Since
this model is not solvable, we perform numerical simulation
by exact diagonalization.

Similarly to the last section, we still employ the magnitude
of the imaginary part of the eigenenergy |Imε| as an indicator
to characterize the phase boundary. Taking J = 1, we plot
|Imε| as a function of V and γ for the systems with N = 6 and
8 in Fig. 4. We find that the phase boundaries of the two cases
have a similar profile but with a shift. This will be reflected in
the speed of the fidelity convergence.

0 2.5 5 7.5 10
0.65

0.75

0.85

0.95

1

103t

f
(t

)

(a)

N=6

γ=7.285×10−5, Δ=0.35
γ=5.955×10−4, Δ=0.5

0 2.5 5 7.5 10
0.6

0.7

0.8

0.9

1

104t

f
(t

)

(b)

N=8

γ=5.678×10−6, Δ=0.35
γ=9.435×10−5, Δ=0.5

FIG. 5. (Color online) Plots of the fidelity f (t) for preparing a GHZ state, as a function of time for the systems with (a) N = 6 and
(b) 8. The times are dimensionless and in units of 103 and 104, respectively. We see that the converging fidelities approach 1, getting higher
with decreasing � and longer time. The time scale of (b) is over ten times longer than that of (a), which indicates the difficulty of preparing a
long-distance GHZ state.
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For a GHZ-state preparation, the initial state is taken as
|ψ(0)〉 = |1〉, and the evolved state |ψ(t)〉 is expected to close
the target state for a sufficiently long time. We employ the
fidelity

f (t) = |〈GHZ|ψ̃(t)〉|, (34)

to characterize the efficiency of the scheme. Here, |ψ̃(t)〉 is
the Dirac normalized state of |ψ(t)〉 to reduce the increasing
norm of |ψ(t)〉. The time evolution of the state is computed by
numerical diagonalization. For given N and V , we numerically
search an optimal γ to obtain higher fidelity in the broken
symmetric region. In order to quantitatively evaluate the
fidelity and demonstrate the proposed scheme, we simulate
the dynamic processes of the quantum state preparation. To
illustrate the process, we plot the fidelities as functions of
time for systems with N = 6 and 8 in Fig. 5. The obtained
results are similar to the case of Bell-state production at
last.

VI. SUMMARY

In summary, we presented schemes to generate W, distant
Bell, and GHZ states by exploiting the quantum phase
transitions in non-Hermitian XY and transverse-field Ising
spin chains. The phase diagrams for two such models are
obtained analytically and numerically, which is crucial for
the practical realization of the scheme. Numerical simulations
of the dynamics process for state preparation show that the
evolved states move close to target states in an exponential
manner over time. Comparing the dynamical preparation of
the quantum state via Hermitian system, where the acquired
state only emerges within a short-time window, this scheme
can provide the steady final state. A shortcoming of the scheme
is that the production period for Bell and GHZ states increases
rapidly as cluster size grows. However, this scheme is more
efficient for a W-state production.
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APPENDIX: EXACT SOLUTION OF THE Heq

In this appendix, we present the exact results for the
solutions of the following model:

Heq =
N−1∑
l=1

|l〉〈l + 1| + H.c.

+ (V + iγ )|1〉〈1| + (V − iγ )|N〉〈N |, (A1)

and the EPs in the cases of V = 0 and |V | > 2.

1. V = 0 case

The Bethe ansatz wave function is in the form

|k〉 =
N∑

j=1

(Ake
ikj + Bke

−ikj )|j 〉, (A2)

where k is a real number, indicating a scattering state. The
Schrodinger equation H |k〉 = εk|k〉 can be written as

M

[
Ak

Bk

]
= 0, (A3)

where the matrix

M =
[

υ+eik + eik2 υ+e−ik + e−ik2

υ−eikN + eik(n−1) υ−e−ikN + e−ik(n−1)

]
,

υ± = ±iγ − εk, (A4)

and the real spectrum

εk = 2 cos k. (A5)

The existence of a solution requires

det |M| = 0, (A6)

which leads to the equation

F (k) = sin[k(N + 1)] + γ 2 sin[k(n − 1)] = 0. (A7)

The EP kc can be determined by equation

F (kc) = ∂

∂k
F (kc) = 0. (A8)

We obtain kc = π/2 at γ = 1 (see Ref. [31]).

2. |V | > 2 case

In this situation, we are interested in bound states. The
corresponding Bethe ansatz wave function is in the form

|κ〉 =
N∑

j=1

(ακe
κj + βκe

−κj )|j 〉, (A9)

where κ is a real number. By a similar procedure, we reach the
equation

�(κc) = ∂

∂κ
�(κc) = 0, (A10)

which determines the location of EPs at energy

εκc
= 2 cosh κc, (A11)

where function

�(κ) = sinh[(N + 1)κ] − 2V sinh(Nκ)

+ (V 2 + γ 2) sinh[(n − 1)κ]. (A12)

From Eq. (A10), we have

[Nη+ + η−] cosh κc − 2NV

(Nη− + η+) sinh κc

= η− sinh κc

η+ cosh κc − 2V
= − tanh(Nκc), (A13)

where

η± = 1 ± V 2 ± γ 2. (A14)

The bound-state EPs require

|εκc
| > 2|V |. (A15)
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Such solutions exist when parameters V and γ satisfy

(c +
√

c2 − 1)2N = η+c − 2V − η−
√

c2 − 1

η+c − 2V + η−
√

c2 − 1
, (A16)

which indicates the exact phase boundary and is plotted in
Fig. 2 for the cases of N = 6 and 8. Here, real number c is

c = cosh κ

= F

⎡⎣1 +
√

1 − 4N (η+ − 1)
(
Nη2− + η+η− + 4NV 2

)
V 2(2Nη+ + η−)2

⎤⎦ ,

(A17)

F = V (2Nη+ + η−)

4N (η+ − 1)
. (A18)

In the case of |V | � 1, we have

c ≈ V

2
+ 1

2V
, (A19)

which gives the approximate energy expression εκ =
2 cosh κ ≈ V + 1

V
.
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