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Necessary and sufficient conditions for macroscopic realism from quantum mechanics
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Macroscopic realism, the classical world view that macroscopic objects exist independently of and are not
influenced by measurements, is usually tested using Leggett-Garg inequalities. Recently, another necessary
condition called no-signaling in time (NSIT) has been proposed as a witness for nonclassical behavior. In this
paper, we show that a combination of NSIT conditions is not only necessary but also sufficient for a macrorealistic
description of a physical system. Any violation of macroscopic realism must therefore be witnessed by a suitable
NSIT condition. Subsequently, we derive an operational formulation for NSIT in terms of positive operator-valued
measures and the system Hamiltonian. We argue that this leads to a suitable definition of “classical” measurements
and Hamiltonians, and we apply our formalism to some generic coarse-grained quantum measurements.
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I. INTRODUCTION

Whether or not the laws of quantum mechanics are
universally valid and hold on the level of macroscopic objects
is still an open question in the physics community. Some
believe that the issue will be settled in favor of quantum theory
by the experimental demonstration of Schrödinger-cat-like
states [1]. Others hold that some physical mechanism, altering
the laws of quantum mechanics [2–4], guarantees a fully
classical world on the macroscopic level.

In 1985, Leggett and Garg [5] have put forward macro-
scopic realism, or macrorealism (MR), a world view encom-
passing all physical theories which enforce that macroscopic
properties of macroscopic objects exist independently of and
are not influenced by measurement. While setups such as
superconducting devices, heavy molecules, and quantum-
optical systems are promising candidates in the race towards an
experimental violation of macrorealism, nonclassical effects
have so far only been observed for microscopic objects
or microscopic properties of larger objects [6–19]. How-
ever, a genuine violation of macroscopic realism—with its
reference to macroscopically distinct states—requires using
solely measurements of macroscopically coarse-grained ob-
servables. Note that there are several approaches to quantifying
the “macroscopicity” of quantum states and measurements
[20–27]. It is also known that usually the restriction to such
coarse-grained (“classical”) measurements alone already leads
to the emergence of classicality [28], unless a certain type
of (“nonclassical”) Hamiltonian is governing the object’s
time evolution [29]. Recent investigations have confirmed
the intuition that these Hamiltonians are hard to engineer
and require a very high control precision in the experimental
setup [30–32].

A quantum violation of macrorealism is usually witnessed
by the violation of a Leggett-Garg inequality (LGI), which
is composed of temporal correlations between sequential
measurements of an object undergoing time evolution. Re-
cently, following earlier works [29,33–35], another necessary
condition for MR called no-signaling in time (NSIT) was

*lucas.clemente@mpq.mpg.de
†johannes.kofler@mpq.mpg.de

proposed [36]. It can be regarded as a statistical version of
the noninvasive measurability postulate.

In Sec. II, we start with the discussion of various instances
of NSIT and show that in the correct combination they form
a sufficient condition for a macrorealistic description (at a
given set of possible measurement times). We also demonstrate
that it is impossible to establish such a sufficient condition
for a macrorealistic description by combining LGIs involving
two-time measurements. Subsequently, in Sec. III, we derive
an operational condition for NSIT, based on (projective
and nonprojective) measurement operators and the system
Hamiltonian. In Sec. IV, we use these results to define the
classicality of measurements based on a reference set of a
priori classical operators and to characterize the classicality
of Hamiltonians. Finally, in Sec. V, we apply our formalism
to measurements of coherent states, quadratures, and Fock
states, and quantify their invasiveness as a function of their
coarse graining.

II. NONINVASIVE MEASUREMENTS

Let us start with the definition of macrorealism, consisting
of the following postulates [37]: “(1) Macrorealism per se.
A macroscopic object which has available to it two or more
macroscopically distinct states is at any given time in a definite
one of those states. (2) Non-invasive measurability. It is
possible in principle to determine which of these states the
system is in without any effect on the state itself or on the
subsequent system dynamics. (3) Induction. The properties
of ensembles are determined exclusively by initial conditions
(and in particular not by final conditions).”

In the following, we will first show that a strong reading
of noninvasive measurability implies macrorealism per se
(Sec. II A). Then we will present various necessary conditions
(Sec. II B) and a set of sufficient conditions (Sec. II C) for a
macrorealistic description.

A. Macrorealism per se following from strong
noninvasive measurability

In this subsection, we assume that the state space of a macro-
scopic object is split into macroscopically distinct nonover-
lapping states (macrostates). Consider a macro-observable
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Q(t) with a one-to-one mapping between its values and the
macrostates. Further consider measurements of the macro-
observable that enforce a definite postmeasurement macrostate
and report the corresponding value as the outcome.

Macrorealism per se (MRps) is fulfilled if Q(t) has a definite
value at all times t , prior to and independent of measurement:

∀t : ∃ definite Q(t). (1)

Probabilistic predictions for Q(t) are merely due to ignorance
of the observer. Even in cases where Q(t) evolves unpre-
dictably (e.g., in classical chaos) or even indeterministically,
it is still assumed to have a definite value at all times.

On top of MRps, the assumption of noninvasive measurabil-
ity (NIM) in principle allows a measurement at every instant
of time, revealing the macrostate without disturbance. NIM
guarantees that

∀t : Q(t) = QH (t), (2)

where H denotes the history of past noninvasive measurements
on the system: In order for measurements to be noninvasive,
the time evolution of Q must not depend on the history of
the experiment [38]. Note that all noninvasive measurements
are repeatable; i.e., when performing the same measurement
immediately again, the same outcome is obtained with proba-
bility 1.

In the literature, NIM is often treated as a necessary condi-
tion for macrorealism per se. It is argued that NIM is “so natural
a corollary of [MRps] that the latter is virtually meaningless
in its absence” [37]. As some others before [36,39,40], we do
not adhere to this position. A counterexample to the statement
MRps ⇒ NIM is given by the de Broglie-Bohm theory, where
measurements are invasive, as they affect the guiding field and
thus the subsequent (position) state, but MRps is fulfilled, as
the (position) state is well defined at all times. In fact, we
now argue that there exist two different ways of reading the
postulate of NIM in [37].

(1) Weak NIM. Given a macroscopic object is in a definite
one of its macrostates, it is possible to determine this state
without any effect on the state itself or on the subsequent
system dynamics.

(2) Strong NIM (sNIM). It is always possible to measure
the macrostate of an object without any effect on the state itself
or on the subsequent system dynamics.

Let us now argue that sNIM actually implies MRps.
Assuming sNIM, a hypothetical noninvasive measurement can
be performed at every instant of time, determining the value
of the macro-observable Q. Due to its noninvasive nature, Q

must have had a definite value already before the measurement.
This ensures that Q has a definite value at all times, giving rise
to a “trajectory” Q(t). Therefore,

sNIM ⇒ MRps. (3)

Another way of establishing this implication is the following:
Assume that MRps fails, i.e., the object is not in a definite
macrostate. A measurement leaves the object in a definite
macrostate, creating a definite state out of an indefinite one,
and therefore does not satisfy sNIM. We thus have ¬MRps ⇒
¬sNIM, which is equivalent to expression (3).

Note that expression (3) holds even if sNIM is made less
stringent, allowing measurements to change the subsequent
time evolution, while still determining the macrostate.

In this paper, we implicitly assume induction [the arrow
of time (AoT)] [37] and freedom of choice concerning the
initial states and measurement times (including whether a
measurement takes place at all). Then, sNIM alone is sufficient
for macrorealism, and by extension for testable conditions such
as the Leggett-Garg inequalities or no-signaling in time [36]:

sNIM ⇔ MRps ∧ NIM ⇔ MR ⇒ LGI, NSIT. (4)

Let us remark that NIM is in general not as strongly physi-
cally motivated as the assumption of locality in Bell’s theorem.
The so-called “clumsiness loophole” allows violations of NIM
to be attributed to imperfections of the measurement apparatus
instead of genuine quantum effects. This loophole can be
addressed using ideal negative measurements [5] or more
involved protocols [41].

B. Necessary conditions for macrorealism

The relationship between LGI and NSIT has previously
been discussed in the literature for a number of example
systems [29,36,40,42]. Here we consider the archetypal setup
depicted in Fig. 1: A system starting in the initial state ρ̂0

evolves under unitary Û01 from t0 to t1, and under unitary Û12

from t1 to t2. During the evolution, dichotomic measurements
may be performed at times ti for i ∈ {0,1,2}. Let us call the
outcomes of these measurements Qi ∈ {−1, + 1}, and define
the correlations Cij = 〈QiQj 〉. Then, the simplest LGI reads

LGI012 : C01 + C12 − C02 � 1. (5)

There exist many other Leggett-Garg inequalities involving
more than three possible measurement times or more than two
outcomes (for a recent review see [43]). Quantum mechanical
experiments are able to violate inequality (5) up to 1.5 for a
qubit and, as shown in [44], up to the algebraic maximum
3 for higher-dimensional systems still using dichotomic
measurements Qi = ±1.

On the other hand, NSIT(i)j is a statistical version of Eq. (2),
requiring that the outcome probabilities Pj (Qj ) of result Qj

t
t0 t1 t2

Û01 Û12ρ̂0

LGI012

NSIT(0)1

NSIT(1)2

NSIT(0)2

NSIT0(1)2

NSIT(0)12

NIC0(1)2

FIG. 1. Different necessary conditions for MR in a system with
possible measurements at three points in time. Black filled circles
denote measurements that always take place, and unfilled circles
denote measurements that may or may not be performed. A pair of
measurements is always performed for the LGI, shown with gray
filled circles.
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measured at time tj are the same, whether or not a measurement
was performed at some earlier time ti < tj :

NSIT(i)j : Pj (Qj ) = Pij (Qj ) ≡
∑
Q′

i

Pij (Q′
i ,Qj ). (6)

Note that the probability distributions on both sides of
the equation, Pi and Pij , correspond to different physical
experiments: While Pj is established by measuring only at
tj , Pij is obtained by measuring both at ti and tj . Unlike in the
LGI in inequality (5), one is not limited to only two outcomes.
If it is the later measurement at tj which may or may not
be performed, NSITi(j ) is an instance of the arrow of time
and is therefore fulfilled by both macrorealism and quantum
mechanics.

While NSIT(1)2 is a promising condition that is usually able
to detect violations of MR more reliably than LGI012 [36,42], it
fails for particular initial states, where the invasiveness is able
to “hide” in the statistics of the experiment (see the discussion
below). We can, however, make NSIT(1)2 robust against such
cases, by always performing a measurement at t0. We call the
resulting condition

NSIT0(1)2 : P02(Q0,Q2) = P012(Q0,Q2)

≡
∑
Q′

1

P012(Q0,Q
′
1,Q2). (7)

NSIT0(1)2 alone is not sufficient for LGI012. Hence, we also
introduce the condition

NSIT(0)12 : P12(Q1,Q2) = P012(Q1,Q2)

≡
∑
Q′

0

P012(Q′
0,Q1,Q2). (8)

As was recently shown in [40], a combination of NSIT(0)12,
NSIT0(1)2, and the arrow of time (AoT) is sufficient for LGI012:

NSIT0(1)2 ∧ NSIT(0)12 ∧ AoT ⇒ LGI012. (9)

The inverse is not true, and moreover the left-hand side is not
sufficient for macrorealism (see discussion below).

We further remark that one can also write a condition similar
to NSIT0(1)2 in a more intuitive form that we call noninvaded
correlations (NIC):

NIC0(1)2 : C02 = C02|1, (10)

where C02|1 denotes the correlation 〈Q0Q2〉 given that an
additional measurement was performed at t1. It is shown in
Appendix A that NIC0(1)2 follows from NSIT0(1)2.

Figure 1 presents a graphical summary of the conditions
that have been discussed in this section.

C. NSITs as sufficient conditions for macrorealism

In the following, we will show that the combination
of various NSIT conditions and the arrow of time (AoT)
guarantees the existence of a unique global probability distri-
bution P012(Q0,Q1,Q2), which is equivalent to macrorealism
evaluated at t0,t1,t2. Let us start by writing all single-
measurement probabilities in terms of P012. Once again, note
that joint probabilities P with different subscripts correspond
to different experimental setups [e.g., P2(Q2) is obtained

by measuring only at t2, while P12(Q1,Q2) is obtained by
measuring at times t1 and t2]:

P2(Q2) =
∑
Q′

1

P12(Q′
1,Q2) =

∑
Q′

0

∑
Q′

1

P012(Q′
0,Q

′
1,Q2), (11)

where we have used NSIT(1)2 for the first equality and
NSIT(0)12 for the second one. Furthermore,

P1(Q1) =
∑
Q′

2

P12(Q1,Q
′
2) =

∑
Q′

0

∑
Q′

2

P012(Q′
0,Q1,Q

′
2), (12)

where for the first equality we assumed AoT [i.e., Qi are
(statistically) independent of Qj for j > i], and NSIT(0)12 for
the second one. Moreover, we see that

P0(Q0) =
∑
Q′

1

∑
Q′

2

P012(Q0,Q
′
1,Q

′
2), (13)

where AoT was used twice. Next, the pairwise joint probability
functions can be constructed:

P01(Q0,Q1) =
∑
Q′

2

P012(Q0,Q1,Q
′
2) (14)

follows from AoT. Using NSIT0(1)2 one obtains

P02(Q0,Q2) =
∑
Q′

1

P012(Q0,Q
′
1,Q2). (15)

Finally, using NSIT(0)12, we obtain

P12(Q1,Q2) =
∑
Q′

0

P012(Q′
0,Q1,Q2). (16)

We have thus shown that there exists a combination of NSIT
conditions, whose fulfillment guarantees that all probability
distributions in any experiment can be written as the marginals
of a unique global probability distribution P012(Q0,Q1,Q2).
This is equivalent to the existence of a macrorealistic model for
measurements at times t0,t1,t2 (MR012). Note that while MR012

cannot prove the world view of MR in general, it implies that
no experimental procedure (with measurements at t0,t1,t2) can
detect a violation of MR. Let us now write a necessary and
sufficient condition for MR012:

NSIT(1)2 ∧ NSIT0(1)2 ∧ NSIT(0)12 ∧ AoT ⇔ MR012. (17)

This set of conditions is not unique: We can, e.g., substitute
NSIT(1)2 by NSIT(0)2, as can easily be seen from a graphical
representation of all conditions in Fig. 2. We remark that
even the combination of all two-time NSIT conditions,
NSIT(0)1 ∧ NSIT(1)2 ∧ NSIT(0)2, is sufficient neither for MR012

nor for LGI012. Note that LGIs only test for nonclassicalities
of the pairwise joint probability distributions. A smaller set
of conditions is therefore sufficient for fulfilling all LGIs
using two-time correlation functions or probabilities [such
as inequality (5) or the so-called Wigner LGIs [42]], see
expression (9).

To illustrate these conditions for a qubit, in Table I we
show the individual conditions evaluated for a Mach-Zehnder
setup (reflectivities R1,R2, phase plate ϕ in one arm) with
arbitrary initial state and time evolution. The three possible
measurements are which-path measurements before the first
beamsplitter (t0), between the two beamsplitters (t1), and after
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LGI012

P012 P01 P02 P12 P0 P1 P2

AoT AoT

AoT

AoT

NSIT0(1)2

NSIT(0)12

NSIT(1)2

NSIT(0)2

NSIT(0)1

FIG. 2. (Color online) Different combinations of NSIT and AoT
conditions are sufficient for guaranteeing that all probability dis-
tributions Pi,Pij are the marginals of a unique global probability
distribution P012. There are multiple ways of obtaining a sufficient set.
The black arrows correspond to one particular choice, and additional
conditions are printed for completeness as dotted arrows. Note that the
existence of a classical explanation for the pairwise joint probabilities
Pij is sufficient for fulfilling LGI012, but not for MR012.

the second beamsplitter (t2), respectively. We can easily find
cases where LGI012 is always fulfilled, but various NSIT
conditions still witness a violation of MR, e.g., for R1 =
R2 = 1/2,ϕ �= (n + 1/2)π . As discussed above, it is possible
for LGI012 to be violated with NSIT(1)2 fulfilled, e.g., for
R1 = 1/4,R2 = 3/4,q = 1/2,ϕ = π . For mixed initial states,
NSIT0(1)2 reduces to the condition ϕ = (n + 1/2)π with n ∈
N0 and is sufficient for MR012, as no interference is possible
in this case. For general superposition states, NSIT(0)12 can be
violated with NSIT0(1)2 fulfilled. Moreover, NSIT conditions
still allow detecting violations of MR if R1 = 0,1 or R2 = 0,1.

III. NSIT FOR QUANTUM MEASUREMENTS

In the following, we will look at NSIT(0)T in an archetypal
quantum experiment. A system has been prepared at t = 0 in
an initial state ρ̂0. Then, at t = 0, a positive operator-valued
measure (POVM) {Â†

aÂa}a with outcomes a is carried out.
After the measurement, the system evolves according to a

t = 0

Âa

t = T

B̂b

B̂b

PB̂(b)

PB̂|Â(b)

t

t

Ĥ

FIG. 3. A system evolves from t = 0 to T under Hamiltonian
Ĥ . In the first setup, measurements Â†

aÂa and B̂
†
bB̂b are performed

at t = 0 and T , respectively, and in the second setup only a final
measurement B̂

†
bB̂b is performed.

unitary Û = e−iĤ t . At time t = T a second, possibly different
POVM {B̂†

bB̂b}b with outcomes b is performed.
To determine the effect of the first measurement Â

†
aÂa

on the system’s state and its subsequent dynamics, we will
compare the results of the final measurement with a different
experiment, where no measurement was performed at t = 0
(or, equivalently, a measurement Âa = 1 was performed). The
two setups are shown in Fig. 3.

The probabilities for obtaining outcome b in the second and
first setup are called PB̂(b) and PB̂|Â(b). They can be calculated
as, respectively

PB̂(b) = tr(B̂bÛT ρ̂0Û
†
T B̂

†
b), (18)

PB̂|Â(b) =
∫

da tr(B̂bÛT Âaρ̂0Â
†
aÛ

†
T B̂

†
b), (19)

with the integral replaced by a sum if the number of outcomes
is countable. NSIT(0)T is fulfilled if the test measurement has
no detectable effect on the system, i.e., if PB̂ = PB̂|Â:

∀b : tr(B̂bÛT ρ̂0Û
†
T B̂

†
b) =

∫
da tr(B̂bÛT Âaρ̂0Â

†
aÛ

†
T B̂

†
b). (20)

Note that the equality sign in Eq. (20) will often be fulfilled
only approximately, even by noninvasive measurements. In
practice, one can choose from a variety of error measures
and corresponding reasonable error thresholds. However, to
simplify notation, we will continue to use the equality sign in
the following calculations.

TABLE I. Different necessary conditions for macrorealism evaluated for a Mach-Zehnder (qubit) experiment [45]. The reflectivity
of the first beamsplitter is R1 and of the second one is R2. In one path of the interferometer, a phase ϕ is added. Which-path

measurements may be performed before, between and after the beamsplitters. The initial states are ρ̂mix = (q 0

0 1 − q

)
and ρ̂sup = ( q c

c∗ 1 − q

)
.

The symbol � means that the condition holds for all values of the free parameters. For brevity, α ≡ √
R1R2(1 − R1)(1 − R2).

Equation [∗] reads (2i
√

3c + 6q − 3) cos ϕ − 2i
√

3 Re(c)(cos ϕ − 2i sin ϕ) = 0, and Eq. [∗∗] reads cos ϕ[(2q − 1)α + ic(1 −
2R1)

√−(R2 − 1)R2] + i
√−(R2 − 1)R2 Re(c)[(2R1 − 1) cos ϕ + i sin ϕ] = 0. See main text for discussion.

LGI012 NSIT(1)2 NSIT0(1)2 NSIT(0)12

ρ̂mix : R1 = R2 = 1
2 � q = 1

2 or ϕ = (n + 1
2 )π ϕ = (n + 1

2 )π �
R1 = 1

4 ,R2 = 3
4 1 + 3 cos ϕ � 0 q = 1

2 or ϕ = (n + 1
2 )π ϕ = (n + 1

2 )π �
R1,R2 R1 + α cos ϕ − R1R2 � 0 q = 1

2 or ϕ = (n + 1
2 )π or α = 0 ϕ = (n + 1

2 )π or α = 0 �
ρ̂sup : R1 = R2 = 1

2 � 2q cos ϕ = cos ϕ + 2 Re(c) sin ϕ ϕ = (n + 1
2 )π c ∈ R

R1 = 1
4 ,R2 = 3

4 1 + 3 cos ϕ � 0 [∗] ϕ = (n + 1
2 )π c ∈ R

R1,R2 R1 + α cos ϕ − R1R2 � 0 [∗∗] ϕ = (n + 1
2 )π or α = 0 c ∈ R or R1 = 0,1
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A. NSIT without time evolution

Let us start by considering the case T = 0 (NSIT(0)0); i.e.,
the final measurement is performed immediately after the test
measurement. In this setup, NSIT can be regarded as a case
of joint measurability, a condition previously discussed in the
context of compatibility of quantum measurements [46–53].
To rewrite Eq. (20) we use that

∫
da A

†
aÂa = 1. This yields

PB̂|Â(b) − PB̂(b) =
∫

da tr[(Â†
aB̂

†
bB̂bÂa − B̂

†
bÂ

†
aÂaB̂b)ρ̂0].

(21)

The trace in the above equation can be interpreted as the ex-
pectation value of the Hermitian operator

∫
da (Â†

aB̂
†
bB̂bÂa −

B̂
†
bÂ

†
aÂaB̂b). For NSIT(0)0 to be universally valid, we require

that it is zero for all initial states ρ̂0. Thus, the operator itself
has to be zero:

∀ρ̂0 : NSIT(0)0 ⇔ ∀b :
∫

da (Â†
aB̂

†
bB̂bÂa − B̂

†
bÂ

†
aÂaB̂b) = 0.

(22)

This equation can be further simplified to
∫

da Â
†
aB̂

†
bB̂bÂa =

B̂
†
bB̂b. Note that for Hermitian operators Âa = Â

†
a , B̂b = B̂

†
b

we can rewrite expression (22) using the commutator

∀ρ̂0 : NSIT(0)0 ⇔ ∀b :
∫

da [ÂaB̂b,B̂bÂa] = 0. (23)

Furthermore, we have as sufficient conditions the vanishing
commutators

∀a,b : [ÂaB̂b,B̂bÂa] = 0 ⇒ ∀ρ̂0 : NSIT(0)0, (24)

and, consequently,

∀a,b : [Âa,B̂b] = 0 ⇒ ∀ρ̂0 : NSIT(0)0. (25)

It is interesting to note that both of these commutator
conditions are, generally, only sufficient but not necessary for
NSIT(0)0. In fact, a formulation of NSIT(0)0 must inherently
have an asymmetry [52] between the test and final measure-
ments, but both expressions (24) and (25) are symmetric under
exchange of Â and B̂ [54].

We can, however, show that vanishing commutators in
expressions (24) and (25) are sufficient and necessary when
Âa,B̂b are von Neumann projective measurements (Â2

a =
Âa,B̂

2
b = B̂b). Let us start by rewriting the equality in

expression (22) using Âa = |a〉〈a| and B̂b = |b〉〈b|:∫
da |〈a|b〉|2|a〉〈a| = |b〉〈b|. (26)

Since |b〉〈b| is a projector, squaring the integral on the left-hand
side must leave it unchanged. Using the fact that in order to
sum up to identity the Âa must be orthogonal projectors, and
therefore 〈a|a′〉 = δ(a − a′), we obtain[∫

da |〈a|b〉|2|a〉〈a|
]2

=
∫

da |〈a|b〉|4|a〉〈a|. (27)

Comparing Eqs. (26) and (27), we see that |〈a|b〉|2 = |〈a|b〉|4
can only be fulfilled if it is nonzero for exactly one a. Thus, |b〉
is an eigenstate of Âa , and the commutator is [Âa,B̂b] = 0. We

have therefore demonstrated that for von Neumann measure-
ments (but not for general POVMs), vanishing commutators
in expressions (24) and (25) are both sufficient and necessary
for NSIT(0)0.

B. NSIT with time evolution

Let us now consider NSIT(0)T with unitary time evolution
Û = e−iĤ t . Analogous to the derivation of expression (22) and
defining B̃T

b ≡ Û
†
T B̂bÛT , we obtain

∀ρ̂0 : NSIT(0)T

⇔ ∀b :
∫

da
(
Â†

a

(
B̃T

b

)†
B̃T

b Âa − (
B̃T

b

)†
Â†

aÂaB̃
T
b

) = 0,

(28)

and, if Âa,B̂b are Hermitian operators,

∀ρ̂0 : NSIT(0)T ⇔ ∀b :
∫

da
[
ÂaB̃

T
b ,B̃T

b Âa

] = 0. (29)

Comparing expressions (22) and (28), we can apply the results
for NSIT(0)0 derived above, namely,

∀a,b :
[
ÂaB̃

T
b ,B̃T

b Âa

] = 0 ⇒ ∀ρ̂0 : NSIT(0)T , (30)

and

∀a,b :
[
Âa,B̃

T
b

] = 0 ⇒ ∀ρ̂0 : NSIT(0)T . (31)

Furthermore, one obtains

∀a,b : [Âa,B̂b] = [Âa,ÛT ] = 0 ⇒ ∀ρ̂0 : NSIT(0)T . (32)

If Âa,B̂b are von Neumann operators, we have (B̃T
b )2 =

Û
†
T B̂bÛT Û

†
T B̂bÛT = Û

†
T B̂bÛT = B̃T

b . Thus, the results from
Sec. III A apply here too: For projectors (but not for general
POVMs), vanishing commutators in expressions (30) and (31)
are sufficient and necessary for NSIT(0)T .

The above results show that a nonclassical “resource” is
required for an experimental violation of NSIT, namely, either
highly nonclassical states (equivalent to nonclassical measure-
ments used in their preparation) or nonclassical Hamiltonians
(usually requiring an extremely large experimental “control
precision” as discussed in [30–32]).

IV. CLASSICALITY

As we have indicated in the Introduction, the coarse
graining of “sharp” quantum measurement operators into
“fuzzy” classical measurements plays a crucial role in the
transition from quantum mechanics to classical physics [28].
However, not every coarse-grained operator can be called
classical. As an example, the parity operator (e.g., for large
spins or photonic states) only differentiates two macrostates,
but is in fact highly nonclassical. Generally speaking, a suitable
coarse graining should “lump” together neighboring eigenval-
ues, independent of a (quantum) experiment’s Hamiltonian.
However, Hilbert spaces in quantum mechanics possess no
inherent measure for the distance between orthogonal states.
Such a measure must thus arise solely out of interaction
Hamiltonians. Effectively, any definition of classicality must
therefore depend on Hamiltonians spontaneously realized by
nature, which define a natural order and closeness of states.
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In the following, this closeness is established with an a priori
choice of suitable reference operators. With this reference set,
we can write a definition for classical operators and classical
Hamiltonians.

(I) A measurement operator is called classical with respect
to a reference set iff it fulfills the equality in expression (22)
pairwise with every member of the set.

(II) A Hamiltonian is called classical with respect to a
reference set iff the equality in expression (28) is fulfilled for
each combination of measurement operators from the set.

A natural choice for the reference set are coarse-grained
versions of quantum operators in phase space. Phase space
inherently involves the necessary definition of closeness in a
suitable and intuitive way. Several exemplary candidates for
different experiments are discussed in the next section.

V. CLASSICALITY OF QUANTUM MEASUREMENTS

In the following, we will apply our results to a number
of physical systems. We will focus on the classicality of
operators—condition I from the previous section—and always
assume either an immediate test measurement or free time evo-
lution in between. To measure the overlap of the undisturbed
[Eq. (18)] and the disturbed [Eq. (19)] probability distributions,
we make use of the Bhattacharyya coefficient [55], as defined
by

V =
∫

db
√

PB̂(b)PB̂|Â(b) ∈ [0,1]. (33)

The extreme cases of V = 0 and 1 correspond to orthogonal
and identical probability distributions, respectively.

A. Quadrature measurements

Let us start with quadrature measurements on pure coher-
ent initial states ρ̂ = |γ 〉〈γ |. We investigate coarse-grained
measurements with unsharpness δ in the X quadrature and
unsharpness κ in the P quadrature, as described by the
(dimensionless) operators

X̂δ
x = 1

(δ2π )1/4
exp

(
− 1

2δ2
(x − X̂)2

)
, (34)

P̂ κ
p = 1

(κ2π )1/4
exp

(
− 1

2κ2
(p − P̂ )2

)
. (35)

Note that for B̂β = π−1|β〉〈β| we recover the well-
known Husimi Q distribution [56], since PB̂(β) =
π−2 tr(|β〉〈β|ρ̂0|β〉〈β|) = π−1 〈β|ρ̂0|β〉 = Q(β). As an ex-
ample, choosing Â = X̂δ and B̂β = π−1|β〉〈β|, the Husimi
distribution PB̂|Â is shown in Fig. 4 for several values of δ.

The behaviors for different combinations of Â,B̂ ∈
{X̂δ,P̂ κ} are printed in Table II, and detailed analytic values
for the overlaps are listed in Appendix B.

The importance of selecting a complete set of classical
reference operators becomes clear when looking at different
combinations of coarse-grained X̂δ,P̂ κ . In particular, even a
sharp X measurement is revealed by a second (coarse-grained)
X measurement only after time evolution. Therefore, P̂ κ has
to be a member of the reference set. On the other hand, a
sharp measurement in P can never be detected by another

δ2 = 0.0001
V ≈ 0.168

δ2 = 0.03
V ≈ 0.671

δ2 = 1
V ≈ 0.990

FIG. 4. (Color online) Husimi distribution in the complex plane
(mesh with interval 1), immediately after a quadrature measurement
with decreasing unsharpness δ. Sharp measurements (small δ)
completely destroy the initial state, while unsharp measurements
(large δ) keep it intact.

measurement in P under free time evolution Ĥ = P̂ 2/(2m).
Therefore, X̂δ needs to be a member of the set. For X̂δ and P̂ κ to
fulfill the consistency condition, we further require sufficiently
large δ � 1 and κ � 1, such that [X̂δ,P̂ κ ] ≈ 0.

Using the notation X̂CG (P̂CG) for a sufficiently coarse-
grained X (P ) measurement and X̂sh (P̂sh) for a sharp invasive
measurement, we can write some candidate reference sets.

(1) {X̂CG} and {X̂sh} do not constitute reference sets, since
they cannot detect the invasiveness of a X̂sh measurement.

(2) {X̂sh,P̂CG} is not a reference set, since the operators do
not fulfill expression (22).

(3) {X̂CG,P̂CG} is a possible reference set.
For further discussion about the joint measurability and

coexistence of coarse-grained phase-space operators we refer
the reader to Refs. [57–59].

B. Coherent-state measurements

As another example, let us now consider coarse-grained
operators in coherent-state space:

Âa = 1

π

∫
dα fa(α) |α〉〈α|, (36)

where fa(α) are some real and positive envelope functions
that define the coarse-grained regions. Again, we con-
sider coherent initial states ρ̂ = |γ 〉〈γ | and final measure-
ments B̂β = π−1|β〉〈β|. An analytical result can be obtained
for a measurement fa(α) = δ(a − α) for a ∈ C, yielding

TABLE II. Overlaps (33) between the invaded and the noninvaded
probability distributions with different combinations of coarse-
grained phase-space quadrature measurements. For final measure-
ments in the momentum quadrature, B̂ = P̂ κ , the overlap of the
system stays constant, since P̂ κ commutes with the free Hamiltonian.
For analytical values and detailed discussion see Appendix B.

Â = X̂δ Â = P̂ κ

V (0) = 1 V (0) < 1
B̂ = X̂δ

V (T → ∞) < 1 V (T → ∞) = 1

B̂ = P̂ κ V (t) = const < 1 V (t) = 1
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FIG. 5. (Color online) Overlap V vs coarse-graining ring width
d . For coherent initial states in the center of the second region
|γ = 3d/2〉 the overlap approaches unity as more of the state’s
probability distribution lies in the region. For initial states located
on a border |γ = d〉 the overlap approaches a value close to 0.997.
This is due to the artificial sharp boundary between the coarse-grained
regions.

Âα = π−1|α〉〈α|. We can now calculate the overlap for T = 0:

V = 1

π

∫
dβ

[
|〈β|γ 〉|2

∫
dα |〈β|α〉〈α|γ 〉|2

] 1
2

= 2
√

2

3
≈ 0.943. (37)

This overlap provides us with a lower bound, that applies
to all coarse-grained measurements based on coherent states.
As an example, numerically evaluated overlaps for a ringlike
coarse graining [fa(r) is nonzero for ad � r < (a + 1)d, with
a ∈ N0 and d the ring width] are plotted in Fig. 5.

A choice of reference set, alternative to the previously
discussed {X̂CG,P̂CG}, can be made using the coarse-grained

FIG. 6. (Color online) Overlap V [cf. Eq. (33)] vs initial state
|γ 〉 for coarse-grained Fock measurements with different border
functions g(m); from top: 100m2,10m2,2m2,m2,2m,m. Quadratic
border functions are coarse in the coherent-state space and therefore
not as invasive. Linear border functions lead to increasingly sharp
measurements. The oscillations are caused by the fact that the
presented type of coarse graining works better when the initial state
is located in the center of a bin. Dips in the overlap occur when the
initial state sits at the border between two bins.

coherent-state measurements from Eq. (36), i.e., {Âa} with
suitable envelope functions fa such that [Âa,Âa′ ] ≈ 0.

C. Fock state measurements

Instructive examples for observing the effect of coarse
graining are different combinations of Fock measurements on
coherent initial states. We look at coarse-grained von Neumann
measurement operators defined by different border functions
g(m):

Âm =
∑

k

{|k〉〈k| if g(m) � k < g(m + 1)
0 else . (38)

For g(m) = cm2 with c > 0, the region corresponding to each
operator is constant sized in the coherent-state space, since
the average photon number is n̄ = |α|2. For sufficiently large
c the measurement is therefore sufficiently coarse grained.
Measurements with constant-sized regions in Fock space,
g(m) = cm, correspond to increasingly sharp measurements
in coherent-state space. The resulting overlap for different
choices of g(m) can be calculated numerically and is discussed
in Fig. 6.

VI. CONCLUSION AND OUTLOOK

In contrast to a still widespread belief, we showed that the
assumption of macrorealism per se is implied by a strong
interpretation of noninvasive measurability. Moreover, no-
signaling in time (NSIT), i.e., noninvasiveness on the statistical
level, is in general a more reliable witness for the violation of
macrorealism than the well-known Leggett-Garg inequalities,
which are based on two-time correlation functions. In fact,
we demonstrated that the right combination of various NSIT
conditions serves not only as a necessary but also a sufficient
condition for a macrorealistic model for measurements at
the predefined time instants accessible in the experiment.
We then derived operational criteria for the measurement
operators and the system Hamiltonian, whose fulfillment
guarantees that no violation of macrorealism can in principle
be observed. We argued that these conditions can be used to
define the “classicality” of measurements and by extension
of the system’s time evolution. Finally, we showed that the
classicality of measurements is arbitrarily well fulfilled by
suitably coarse-grained versions of quantum measurements.

While our results suggest that an experimental demon-
stration of nonclassicalities requires either very precise mea-
surements or a complex time evolution, a general proof of
this tradeoff (in terms of experimental control parameters) is
still missing. Moreover, coarse graining, which leads to the
classicality of measurements, already requires the notion of
“closeness” or “neighborhood” of eigenvalues, and thereby
an understanding of classical phase space. This notion itself
stems from Hamiltonians that are spontaneously realized in
nature and govern our physical world. The present definition
of classicality mitigates this circularity with the choice of an
a priori set of classical measurements. However, it is an open
question whether the presupposition of classical phase space
can be avoided, or whether it is a fundamental requirement for
understanding the quantum-to-classical transition.
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APPENDIX A: PROOF THAT NSIT0(1)2 IS SUFFICIENT
FOR NIC0(1)2

Let us use the short notation Pi(±i) ≡ Pi(Qi = ±). Then,
the correlations in NIC0(1)2 can be written as

C02 = +P02(+0,+2) + P02(−0,−2)

−P02(+0,−2) − P02(−0,+2), (A1)

and, for the variant with a measurement at t1,

C02|1 = +P012(+0,+2) + P012(−0,−2)

−P012(+0,−2) − P012(−0,+2). (A2)

Using NSIT0(1)2, i.e., P02(Q0,Q2) = P012(Q0,Q2), we imme-
diately see that NSIT0(1)2 is sufficient for C02 = C02|1, and
therefore for NIC0(1)2.

APPENDIX B: OVERLAPS FOR QUADRATURE
MEASUREMENTS

In the following we will give analytical values for the
overlap for different combinations of coarse-grained X̂δ and
P̂ κ measures, as defined by Eqs. (34) and (35), acting on a par-

ticle with initial state 〈x|ψ〉 = π−1/4σ−1/2 exp[−x2/(2σ 2)].
In between the measurements we apply a unitary generated
by a free Hamiltonian ÛT = exp(−it p̂2/2m). There are four
combinations.

(1) Â = X̂δ,B̂ = X̂δ . Here the overlap starts at V (0) = 1,
but approaches the value

lim
t→∞ V (t) = 4δ2(δ2 + σ 2)

(2δ2 + σ 2)2
. (B1)

The effect of the measurement only becomes apparent with
time evolution.

(2) Â = P̂ κ ,B̂ = X̂δ . The overlap starts at

V (0) = 4κ2(δ2 + σ 2)[κ2(δ2 + σ 2) + 1]

[2κ2(δ2 + σ 2) + 1]2
(B2)

and approaches 1 for t → ∞. The momentum measurement
changes the spatial distribution once, but with wave-packet
expansion the impact becomes less apparent.

(3) Â = X̂δ,B̂ = P̂ κ . The overlap is constant in time at the
value

V = 4δ2(κ2σ 2 + 1)[δ2(κ2σ 2 + 1) + σ 2]

[2δ2(κ2σ 2 + 1) + σ 2]2
, (B3)

since [P̂ κ ,Ĥ ] = 0.
(4) Â = P̂ κ ,B̂ = P̂ κ . The overlap is constant at 1, and

a measurement in P̂ cannot be detected by a second P̂

measurement, as again [P̂ κ ,Ĥ ] = 0.
These examples reaffirm the importance of the selection of

multiple final measurements.
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[29] J. Kofler and Č. Brukner, Phys. Rev. Lett. 101, 090403 (2008).
[30] T. Wang, R. Ghobadi, S. Raeisi, and C. Simon, Phys. Rev. A 88,

062114 (2013).
[31] H. Jeong, Y. Lim, and M. S. Kim, Phys. Rev. Lett. 112, 010402

(2014).
[32] P. Sekatski, N. Gisin, and N. Sangouard, Phys. Rev. Lett. 113,

090403 (2014).
[33] R. K. Clifton, in Symposium on the Foundations of Modern

Physics 1990, edited by P. Lahti and P. Mittelstaedt (World
Scientific, Singapore, 1991).

[34] S. Foster and A. Elby, Found. Phys. 21, 773 (1991).
[35] F. Benatti, G. Ghirardi, and R. Grassi, Found. Phys. Lett. 7, 105

(1994).
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