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Kapitza-Dirac scattering of electrons from a bichromatic standing laser wave
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Coherent scattering of an electron beam by the Kapitza-Dirac effect from a standing laser wave which comprises
two frequency components is studied. To this end, the Schrödinger equation is solved numerically with a suitable
ponderomotive potential. Besides, an analytical solution for electron diffraction in the asymptotic domain of large
field amplitudes is obtained and a mathematical model in reduced dimensionality for the scattering amplitude in
the Bragg regime is presented. We demonstrate distinct interference signatures and relative phase effects when
the standing wave contains a fundamental frequency and its second harmonic. The influence of the relative field
intensities on the Rabi oscillation dynamics is also discussed.
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I. INTRODUCTION

The quantum mechanical diffraction of an electron beam
on the periodic potential generated by a standing light wave
is referred to as Kapitza-Dirac effect [1,2]. The process
relies on the quantum wave nature of the electron and
represents a counterpart of classical diffraction of light on
a grating, with the roles of light and matter interchanged. In its
original version [1] the Kapitza-Dirac effect can be understood
as a combined absorption and emission process involving
two photons: The incident electron absorbs one photon of
momentum �k from one of the laser beams which forms the
standing wave, and emits another photon of momentum −�k
into the counterpropagating laser beam (stimulated Compton
scattering). The momentum transfer from the standing wave
to the electron thus amounts to 2�k.

A clear experimental verification of the Kapitza-Dirac
effect as originally proposed has been accomplished only
recently. Utilizing modern state-of-the-art equipment and a
laser intensity of the order of ∼1011 W/cm2, the expected
electron diffraction pattern was recorded [3]. Another success-
ful experiment observed electron (rainbow) scattering after
atomic ionization in a standing laser wave of higher intensity
∼1014 W/cm2 [4]. Also beams of atoms can be subject to
Kapitza-Dirac scattering [5], which was observed both in the
so-called Bragg [6] and diffraction [7] regimes.

The recent observation of Kapitza-Dirac scattering of
electrons has led to a newly revived interest from the theoretical
side. While seminal work on the Kapitza-Dirac effect and its
multiphoton generalization to intense laser fields has already
been performed in the 1960s [8], various additional aspects
have been studied during the past decade. The influence
of the electronic wave-packet size was examined [9], a
generalization to two electrons was proposed [10], and spin
effects were investigated [11–13]. Also relativistic treatments
of the Kapitza-Dirac effect have been presented based on
the Dirac equation [12] and the Klein-Gordon equation [14],
respectively.

Interesting features of electron-laser interactions can
emerge in two-color light fields containing two different
frequency components [15]. In particular, when the frequency
ratio is a commensurate number, characteristic quantum
interference and relative phase effects may arise. Two-color
effects have been studied for a variety of processes such as

laser-assisted electron scattering in atomic potentials [16],
photoionization [17], and high-harmonic generation [18] from
atoms in strong laser fields, molecular dissociation and
chemical reactions [19], Thomson scattering [20], and even
electron-positron pair production [21]. Due to the competition
of various quantum pathways, these two-color effects offer
possibilities to implement coherent control schemes.

Regarding the Kapitza-Dirac effect in bichromatic fields,
two different kinds of studies can be found in the literature.
On the one hand, it was shown that electrons can scatter
diffractively from two counterpropagating laser beams even
if the latter have nonidentical frequencies [22]. Although
no standing wave is formed in this case, the electrons may
still experience a periodic effective potential in their rest
frame from which they are scattered coherently. This field
configuration has also been examined with respect to electron
spin dynamics [23] and as an interferometric electron beam
splitter [24]. A bichromatic standing wave, on the other hand,
can be formed by using two pairs of counterpropagating
laser waves which possess different frequencies, ω1 and
ω2. Kapitza-Dirac scattering of three-level atoms from this
periodic field structure has been investigated [25], which
offers interesting properties for atomic optics in general [26].
To the best of our knowledge, Kapitza-Dirac diffraction of
electrons from a bichromatic standing light wave has not been
considered before.

In this paper we study Kapitza-Dirac scattering of an
electron beam from a bichromatic standing light wave with
a commensurate frequency ratio. After establishing a com-
mon theoretical framework based on the time-dependent
Schrödinger equation in Sec. II, we focus on two distinct
parameter regimes. On the one hand, we investigate in Sec. III
the influence of the bichromaticity of the standing light wave
on the electron dynamics in the diffraction regime, where the
field amplitude is high. Here we present an analytical two-
color generalization to the well-known Bessel-like solution
for monochromatic waves, which is valid for asymptotically
large field amplitudes. On the other hand, in Sec. IV we
study Kapitza-Dirac scattering in the Bragg regime where the
field amplitudes are perturbatively low and Rabi oscillations
between the relevant electron states occur. A closed-form
expression for the Rabi frequency is derived within an
approximate analytical model in reduced dimensionality. In
both parameter regimes, we compare the analytical approaches
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with numerical computations and demonstrate characteristic
quantum interference and relative phase effects. We finish with
a conclusion in Sec. V.

II. THEORETICAL FRAMEWORK

The nonrelativistic domain of electron-light scattering is
described by the time-dependent Schrödinger equation

i�
∂

∂t
ψ = 1

2m

(
�

i
∇ + e

c
A
)2

ψ, (1)

where � is the reduced Planck constant, m is the electron mass,
−e is its charge, c is the speed of light, and ψ is the electron
wave function. Besides,

A = f (t)A0

[
αε1 cos(ckt) cos(kz)

+
√

1 − α2

2
ε2 cos(2ckt + η) cos

(
2kz + δ

2

)]
(2)

models the vector potential of a bichromatic standing light
wave, which contains a fundamental frequency ω1 = kc and
its second harmonic ω2 = 2kc, with an envelope function f (t),
an amplitude factor A0, and two polarization vectors ε1 and
ε2. The corresponding field amplitudes of the two frequency
modes are controlled by the mixing parameter α in such a way

that the overall peak laser intensity I = ck2A2
0

16π
is independent

of α. The relative phases between the two modes in space and
time are described by δ and η, respectively. A frequency ratio
of ω2/ω1 = 2 has been chosen because the most pronounced
quantum interference effects are to be expected for this case.

From investigation of the Kapitza-Dirac effect in
monochromatic waves it is known that, instead of the vector
potential A, an effective scalar potential may be used to
describe the electron-light interaction. It is obtained by taking
a time average over the rapid oscillations of the electron along
the polarization direction of the field [2]. This way, one arrives
at the so-called ponderomotive potential V (z) = e2

2mc2 〈A2〉t .
In the bichromatic setting, the Schrödinger equation (1) in
ponderomotive potential approximation becomes [27]

i�
∂

∂t
ψ =− �

2

2m
∇2ψ + f (t)2 V0

2

[
α2 cos(2kz)

+ 1 − α2

4
cos(4kz + δ)

]
ψ, (3)

where the amplitude of the ponderomotive potential is V0 =
e2A2

0
4mc2 . We note that the relative orientation of the polarization
vectors of the two standing waves is immaterial, since the
mixed product term vanishes in the averaging process. The
same happens to the temporal relative phase η.

Having only z dependence in the potential, the latter
equation becomes effectively one-dimensional in space. It can,
thus, be solved by an ansatz in the form of an expansion into
plane waves

ψ(z,t) =
∑

n

i−ncn

(
V0t

2�

)
e

i
�

(2n�k+pz)z, (4)

with time-dependent expansion coefficients cn. The sum is
discrete because, due to the periodicity of the potential, only
the given discrete subset of momentum eigenstates interact.
By plugging Eq. (4) into Eq. (3) and using the scaled time
variable τ := V0t/(2�), we obtain

dcn(τ )

dτ
= (pz + 2n�k)2

imV0
cn(τ )

+ f (t)2 α2

2
[cn−1(τ ) − cn+1(τ )]

+ f (t)2 (1 − α2)

8
[ieiδcn−2(τ ) + ie−iδcn+2(τ )]. (5)

This coupled system of ordinary differential equations governs
the full dynamics of the time-dependent coefficients cn which
represent the occupation amplitudes of the respective plane-
wave electron states.

One distinguishes two different interaction regimes, de-
pending on the relative magnitude of the ponderomotive po-
tential as compared with the kinetic energy term in Eq. (5): One
refers to the diffraction regime when the former is substantially
larger than the latter but refers to the Bragg regime when
the kinetic energy term is dominant. Kapitza-Dirac scattering
exhibits qualitative differences in these regimes. They are
examined in the subsequent sections. The initial condition will
always be chosen as cn(0) = δn,0 which describes an incident
electron with given longitudinal momentum pz.

III. DIFFRACTION REGIME

From the Kapitza-Dirac effect in monochromatic waves
it is known that the Schrödinger equation in ponderomotive
potential approximation can be solved analytically in the
asymptotic high-intensity case

�
2k2 � mf (t)2V0, (6)

where the kinetic energy term may be neglected. The scattering
amplitudes cn are then essentially given by ordinary Bessel
functions Jn (see Sec. II B in Ref. [2]). In the same asymptotic
limit, also the Schrödinger equation (5) for Kapitza-Dirac
scattering from a bichromatic wave can be solved analytically.
We obtain the solution in the following way: First let us assume
f ≡ 1 and introduce the differential operator

D := ∂

∂τ
−α2

2
(ζ − ζ−1)− (1 − α2)

8
(ieiδζ 2 + ie−iδζ−2), (7)

the number operator

N := ζ
∂

∂ζ
, (8)

the order parameter ε := 4�
2k2

mV0
, and the relative momentum

offset p := pz

�k
. With this notation, Eq. (5) can be rewritten as

a differential equation for the generating function

C(τ,ζ ) :=
∞∑

n=−∞
cn(τ )ζ n (9)

of the coefficients cn as

DC(τ,ζ ) = −iε

(
p

2
+ N

)2

C(τ,ζ ). (10)
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The boundary condition reads C(0,ζ ) = 1, which corresponds
to cn(0) = δn,0. We note that the generating function formally
represents a Laurent series. In the limit ε → 0, Eq. (10) is
solved exactly by

C0(τ,ζ ) = exp

[
α2τ

2
(ζ − ζ−1)

]

× exp

[
i(1 − α2)τ

8
(eiδζ 2 + e−iδζ−2)

]

= J (α2τ,ζ )J

(
1 − α2

4
τ,ieiδζ 2

)
, (11)

where

J (ρ,ζ ) =
∞∑

n=−∞
Jn(ρ)ζ n = exp

[
ρ

2
(ζ − ζ−1)

]
(12)

is the generating function of ordinary Bessel functions of the
first kind. The solution in Eq. (11) serves as a Green’s function
for D and simultaneously can be recognized as the generating
function of the generalized Bessel functions J̃n [28]. By virtue
of Eq. (9), we can extract the unperturbed coefficients from
Eq. (11) as

c0
n(τ ) = J̃n

(
α2τ,

1 − α2

4
τ,δ

)

=
∞∑


=−∞
Jn−2
(α2τ )i
ei
δJ


(
1 − α2

4
τ

)
. (13)

One can see that this approximate solution depends on V0 and
t only through their product. This scaling law implies that
Eq. (13) can be recast to cover the more general case of a
switching function f different from unity by replacing the
action parameter τ with

τ̃ = V0

2�

∫ t

0
f (t ′)2 dt ′. (14)

It is assumed here that the part of the integral which does
not satisfy the condition (6) is negligible. This assumption
corresponds to fast switching of the electron-light interaction.

From the asymptotic solution (11) we can already derive an
interesting property of Kapitza-Dirac diffraction in the bichro-
matic case. Since the two field frequencies are commensurate
(ω2 = 2ω1), quantum mechanical interferences may arise. It
is indistinguishable whether, for example, two photons of low
frequency or one photon of high frequency have been absorbed
since their (total) energy and momentum are identical. This
feature is illustrated in Fig. 1 where the Kapitza-Dirac
scattering pattern is shown for each monochromatic wave
alone [Figs. 1(a) and 1(b)] and for the combined, bichromatic
wave [Fig. 1(c)]. It can be clearly seen that the bichromatic case
is not obtained as a simple summation of the monochromatic
cases, demonstrating the presence of quantum interference. In
particular, while the monochromatic patterns are symmetric
with respect to the transformation n → −n, the bichromatic
pattern shows a characteristic asymmetry which depends on
the relative phase between the frequency modes.

The basic reason for this feature is that the standing wave
itself can be asymmetric when it contains two frequency
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FIG. 1. Longitudinal momentum distributions of electrons after
Kapitza-Dirac diffraction from (a) a monochromatic standing wave
with V1 = 3.6 × 10−2 eV and k1 = 2 eV/�c, (b) a monochromatic
standing wave with V2 = 2.7 × 10−2 eV and k2 = 4 eV/�c, and (c) a
bichromatic standing wave with V1 = 3.6 × 10−2 eV, k1 = 2 eV/�c,
V2 = 2.7 × 10−2 eV, k2 = 4 eV/�c, and δ = π

2 . The interaction time
is t = 1.1 × 10−12 s.

components (see Fig. 2). Therefore, it may be more likely
that the incident electron beam is scattered to the right than to
the left (or vice versa). Only for δ = 0 or π , both the standing
wave and the scattering pattern turn out to be symmetric again,
as one may have expected.

The question arises of how good an approximation Eq. (11)
is, or, in other words, how long the interaction time may last at
most until the kinetic energy term causes significant deviations
of the exact (numerical) solution from the approximation (11).
To answer this question, we consider finite values of the small
parameter ε = 4�

2k2

mV0
and calculate corrections to Eq. (11) by

using time-dependent perturbation theory. With the expansion
ansatz

C(τ,ζ ) = C0(τ,ζ ) + εC1(τ,ζ ) + ε2C2(τ,ζ ) + · · · (15)

Eq. (10) decomposes into a Dyson series. To the first order in
ε, we obtain

C1(τ,ζ ) = −i

∫ τ

0
dσC0(τ − σ,ζ )

(
p

2
+ N

)2

C0(σ,ζ )

= −i

(
τ

4
p2 + τ

2
pN + τ

3
N 2 + τ 2

6
[N ,[N ,D]]

)

×C0(τ,ζ ), (16)
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FIG. 2. Ponderomotive potential V of a bichromatic standing
laser wave for the field parameters of Fig. 1(c).
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where [,] indicates a commutator. This means

cn(τ ) =
(

1 − iε
τ

4
p2 − iε

τ

2
np − iε

τ

3
n2

)
c0
n(τ )

− iε
α2τ 2

12

[
c0
n−1(τ ) − c0

n+1(τ )
]

+ ε
(1 − α2)τ 2

12

[
eiδc0

n−2(τ ) + e−iδc0
n+2(τ )

] + o(ε).

(17)

With the Taylor expansions

c0
0(τ ) = 1 −

[
α2 + (1 − α2)2

16

](
τ

2

)2

+ o(τ 2),

c0
±1(τ ) = ±α2 τ

2
∓ ie±iδ α2(1 − α2)

4

(
τ

2

)2

+ o(τ 2), (18)

c0
±2(τ ) = ie±iδ 1 − α2

4

τ

2
+ 1

2

(
τ

2

)2

+ o(τ 2),

we find that∣∣c0(τ )
∣∣2∣∣c0

0(τ )
∣∣2 = 1 + ετ 4 1

4
α4 1 − α2

4
cos δ + o(ετ 4). (19)

Figure 3 shows the squared modulus of the initial mo-
mentum mode as a function of the interaction time. The
predictions from Eq. (11), the first-order corrected Eq. (16),
and an exact numerical computation are compared. We can
see that the first-order approximation follows the numerical
solution quite nicely and for a longer time than the asymptotic
approximation by Bessel functions. This is to be expected from
Eq. (19) for the specific choice of parameters α2 = 0.5 and
δ = 0. The order parameter, in this example, is ε = 4.4 × 10−4

and the time t = 10−12 s corresponds to τ ≈ 55. Thus, the
analytical expressions provide good approximations for even
much longer interaction times than one might have expected
from Eq. (19).

0
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0 0.5 1 1.5

|c 0
|2

t[10−12 s]

0.02

0.09

10. 18 .3

FIG. 3. Time evolution of the forward scattering probability
|c0|2 evaluated by the asymptotic formula (11) (dashed line), the
first-order corrected Eq. (16) (dotted line), and the exact numerical
solution of Eq. (3) (solid line). The bichromatic laser intensity is
I = 1012 W/cm2, its fundamental wave number k = 2 eV/�, and it is
mixed with the second harmonic by the parameters α2 = 0.5, δ = 0.
The inset shows a magnification of the marked area.

IV. BRAGG REGIME

In this section we consider Kapitza-Dirac scattering in the
case of a smooth, slowly varying switching function f (t) and
rather small ponderomotive potential V0. Here the adiabatic
theorem [29,30] suggests that the incident electron can only
be scattered into a final state with the same kinetic energy.
Due to the fact that only those electrons with specific angles
of incidence satisfying a Bragg condition can undergo the
transition into the mirrored momentum state, this parameter
range is called the Bragg regime.

Since the transition from one momentum state to its
mirrored state is working either ways, Rabi-like oscillations
between both states may occur. This kind of Rabi oscillations
is well understood in the Bragg regime of the classical
single-color Kapitza-Dirac effect (called “Pendellösung” in
Ref. [2]). The two states of equal energy are resonantly coupled
by the interaction with the standing light wave, causing the
electron population probability to oscillate forth and back
between them. Our goal is to shed some light on the influence
exerted by the presence of the second laser mode on the Rabi
oscillation dynamics. As before, the frequency of the second
mode is assumed to be twice as large as the frequency of
the fundamental mode. We note that in this setup, a Bragg
condition can be satisfied by certain incident angles for both
laser modes simultaneously. The first such case is described
by an incident longitudinal momentum pz = −2�k where the
initial state and its associated mirrored state are given by c0

and c2 [see Eq. (4)], which are considered in the following.
In Fig. 4 we show the scattering probability (left) and the

Rabi-like dynamics of Kapitza-Dirac scattering for various
field configurations. The upper two panels [Figs. 4(a) and
4(b)] refer to monochromatic standing waves, with photon

0

1

0

1

0

1

0

1

(a) first

(b) second

(c) both δ = 0

1 3 5 7 9 11

T [10−10s]

(d) both δ = π

FIG. 4. Scattering probabilities |c2( V0T

2�
)|2 after T = 581 ps effec-

tive interaction time (left) and Rabi oscillation dynamics (right) for
Kapitza-Dirac scattering from (a) a monochromatic standing wave
with k1 = 4 eV/�c and I1 = 5.0 × 109 W/cm2, (b) a monochromatic
standing wave with k2 = 8 eV/�c and I2 = 6.0 × 109 W/cm2, and
(c) [(d)] a bichromatic standing wave with the combined parameters
and δ = 0 [δ = π ]. The mixing parameter in the bichromatic case
amounts to α2 = 0.45, and the ponderomotive potentials amount
to V1 = 9.0 × 10−5 eV and V2 = 2.8 × 10−5 eV. The electron is
always incident with a longitudinal momentum of −8 eV/c, and its
transverse momentum can be chosen arbitrarily. Every plotted data
point corresponds to a full interaction with switching on and off of
10−10 s duration each.
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energies of �ω1 = 4 eV and �ω2 = 8 eV, respectively. Their
ponderomotive amplitudes are tuned to give the same Rabi
frequency by adjusting the field intensities appropriately. The
lower two panels [Figs. 4(c) and 4(d)] show the results for
bichromatic fields, which are formed by superimposing the
two monochromatic standing waves with a relative phase
shift of zero and π , respectively. The envelope function is
chosen such that f (t)2 is flat top of magnitude unity with
sin2 edges of duration 100 ps each. The effective interaction
time T is defined as the temporal integral of f (t)2. As the
scattering probabilities into the state c2 after T = 581 ps show,
the influence of two-color quantum interferences is substantial.
Depending on the chosen relative phase, they can be construc-
tive (δ = 0) or destructive (δ = π ). The temporal evolution
of the scattering probabilities shows besides that the Rabi
frequency strongly depends on the relative phase as well. For
a vanishing relative phase, the Rabi frequency is about twice
as large as in the monochromatic cases, whereas for δ = π , it
is heavily suppressed by an order of magnitude. Note that the
effective time in the graphs starts at 100 ps which corresponds
to one full switching cycle and vanishing plateau time.

To further investigate this dependence Fig. 5 shows the
Rabi frequency � in a bichromatic standing wave of fixed
intensity, as a function of the mixing parameter α2 for relative
phases of δ = 0 and π , respectively. According to Eq. (3), a
mixing parameter of α2 = 1 corresponds to a monochromatic
standing wave with the fundamental frequency ω1, whereas
α2 = 0 corresponds to a monochromatic wave with the second
harmonic frequency ω2. In these limiting cases, the relative
phase becomes immaterial so that the solid and dashed lines
coincide here. However, when both frequency modes are
present (i.e., for 0 < α2 < 1), the impact of the relative phase
is pronounced. For δ = 0, the Rabi frequency depends on
the color mixing only moderately: Starting from α2 = 0, it
smoothly passes through a shallow minimum and afterwards
raises to reach somewhat higher values. We point out that the
Rabi frequency for α2 = 1 is larger than for α2 = 0 because the
laser waves have a fixed combined intensity along the curve [cf.
Figs. 4(a) and 4(b) where I2 > I1 instead]. Contrary to that, for
δ = π , the Rabi frequency shows a strong dependence on the

0
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6

8

00 . 15

Ω
10

1
0
H

z

α2

FIG. 5. Rabi frequency � of the bichromatic Kapitza-Dirac
scattering process in the Bragg regime, as a function of the mixing
parameter α2. The wave numbers are k1 = 4 eV/�c, k2 = 8 eV/�c,
and the combined intensity I = 1.1 × 1010 W/cm2. The relative
phase is δ = 0 for the solid line and δ = π for the dashed line. The
dash-dotted and dotted lines result from the approximate analytical
formula (25), with the same parameters.
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6

8

00 . 15

Ω
10

1
0
H

z

δ/π

FIG. 6. Rabi frequency � of the bichromatic Kapitza-Dirac
scattering process in the Bragg regime, as a function of the relative
phase δ. The wave numbers and combined intensity are as in Fig. 5.
The mixing parameter is α2 = 0.4 for the solid line and α2 = 0.8
for the dashed line. The dash-dotted and dotted lines result from the
approximate analytical formula (25), with the same parameters.

mixing parameter: For bichromatic fields with roughly equal
intensity shares between both modes, it drops down heavily
and approaches zero for α2 ≈ 0.4.

Similarly, Fig. 6 illustrates the dependence of the Rabi
frequency on the relative phase δ for two values of the mixing
parameter. For α2 = 0.4, the Rabi frequency is very sensitive
to the value of δ and decreases by an order of magnitude when
δ varies from 0 to π . Instead, for α2 = 0.8, when the admixture
of the second color is only small, the Rabi frequency varies
only slightly with the relative phase. It is interesting to note
that a similar behavior of the Rabi frequency like in Figs. 5 and
6 can also be seen for other commensurate frequency ratios,
as we have checked by corresponding calculations.

The dependencies of the Rabi frequency on the various
parameters of a bichromatic standing light wave can roughly be
understood within a model of greatly reduced dimensionality.
Let us consider only the three electron momentum modes with
n ∈ {0,1,2} and combine them into a tuple u := (c0,−ic1,

−c2) ∈ C3 for pz = −2�k and f (t)2 ≡ 1. Then, Eq. (5) can
be rewritten as

i
V0

2

du

dτ
= Mu, (20)

where we have introduced the Hermitian matrix

M =
⎛
⎝ A B D

B 0 B

D∗ B A

⎞
⎠ (21)

with entries A = 2�
2k2

m
, B = V0

α2

4 , and D = V0
1−α2

16 e−iδ . The
characteristic polyomial of M reads

χ (λ) = λ3 − 2Aλ2 + (A2 − 2B2 − |D|2)λ + 2B2(A − �D).

(22)

The roots of this cubic polynomial, which are the eigenenergies
of the system in Eq. (20), are given by

λj = 2
3A +

√
4
9A2 + 8

3B2 + 4
3 |D|2

× cos
{

1
3 arccos

[(− 1
27A3 − 1

3AB2 + 1
3A|D|2 + B2�D

)
×(

1
9A2 + 2

3B2 + 1
3 |D|2)− 3

2
] + 2

3jπ
}

(23)
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FIG. 7. Roots λj of the polynomial (22) as given in Eq. (23), as
a function of the ponderomotive potential V0. The wave numbers are
k1 = 4 eV/�c and k2 = 8 eV/�c, the mixing parameter α2 = 1

2 , and
the relative phase δ = π

2 . The solid, dashed, and dotted lines refer to
j = −1, j = 0, and j = 1, respectively.

for j ∈ {−1,0,1}. Taking the limit B,D → 0, which models
smoothly switching off the interaction, the two eigenvalues for
j = −1 and j = 0 tend to A.

This is also illustrated in Fig. 7. The corresponding
eigenvectors, in that limit, are v−1 = (1,0,eiδ) and v0 =
(1,0, − eiδ), which span a twofold degenerated subspace. Our
initial condition corresponds to the tuple

u = (1,0,0) = 1
2 (v0 + v−1), (24)

which can be expressed as a linear combination of v−1 and
v0. The Rabi frequency therefore arises as a beat frequency
between the associated eigenfrequencies and is given by

� = 1

�
(λ0 − λ−1)

= 1

�

√
16�4k4

9m2
+ 1

6
V 2

0 α4 + 1

192
V 2
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×
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(
� − 2π

3

)]
, (25)

with

� = 1

3
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384m
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256[
4�4k4

9m2 + 1
24V 2
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768V 2
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}
.

(26)

After smoothly switching off the interaction, the quantum
electron state returns to the aforementioned two-dimensional

subspace and is consecutively measured in the momentum
base cn. It follows that only the energy conserving momentum
states c0 and c2, that span the same subspace, interact with
each other.

The shape of the graphs in Figs. 5 and 6 are qualitatively
well described by Eq. (25), including the case of nearly
vanishing interaction. The remaining quantitative differences
are due to the fact that the model restricts the interaction to
only one intermediate state, whereas the original Eq. (5) allows
for contributions of all possible paths through the accessible
momentum states.

We emphasize that the Rabi frequency in Eq. (25) vanishes
exactly if δ = π and the mixing parameter fulfills the condition

α2 =
4
√

1 + 32 �2k2

mV0
+ 16 �4k4

m2V 2
0

− 16 �
2k2

mV0
− 1

15
. (27)

The interaction can therefore be fully suppressed by destructive
interference in the analytical model. While the results of our
numerical simulations induce small modifications to Eq. (27),
they are, within the numerical accuracy, consistent with this
general conclusion.

V. CONCLUSION

Kapitza-Dirac scattering of electrons from a bichromatic
standing wave was considered. Focusing on a commensurate
frequency ratio of two, we demonstrated distinct quantum
interference and relative phase effects in the scattered electron
momentum distribution.

In the diffraction regime, an analytical formula for the
scattering amplitudes in terms of generalized Bessel functions
was derived for asymptotically large ponderomotive potentials.
The range of applicability of this formula was quantified by
comparisons with a first-order corrected expression and fully
numerical results. Quantum interferences may lead here to a
characteristic asymmetry of the diffraction pattern.

In the Bragg regime of two-color Kapitza-Dirac scattering,
we obtained an analytical formula for the Rabi frequency
which determines the population dynamics between the rel-
evant electron states. The formula shows very good agreement
with our numerical calculations covering the momentum space
in full dimensionality. We have demonstrated that, by a suitable
choice of intensity ratio and relative phase in the bichromatic
wave, the Rabi frequency can be substantially enhanced or
strongly (even totally) suppressed.
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