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Coupled oscillator systems having partial PT symmetry
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This paper examines chains of N coupled harmonic oscillators. In isolation, the j th oscillator (1 � j � N )
has the natural frequency ωj and is described by the Hamiltonian 1

2 p2
j + 1

2 ω2
j x

2
j . The oscillators are coupled

adjacently with coupling constants that are purely imaginary; the coupling of the j th oscillator to the (j + 1)th
oscillator has the bilinear form iγ xjxj+1 (γ real). The complex Hamiltonians for these systems exhibit partial
PT symmetry; that is, they are invariant under i → −i (time reversal), xj → −xj (j odd), and xj → xj (j even).
[They are also invariant under i → −i, xj → xj (j odd), and xj → −xj (j even).] For all N the quantum energy
levels of these systems are calculated exactly and it is shown that the ground-state energy is real. When ωj = 1
for all j , the full spectrum consists of a real energy spectrum embedded in a complex one; the eigenfunctions
corresponding to real energy levels exhibit partial PT symmetry. However, if the ωj are allowed to vary away
from unity, one can induce a phase transition at which all energies become real. For the special case N = 2,
when the spectrum is real, the associated classical system has localized, almost-periodic orbits in phase space and
the classical particle is confined in the complex-coordinate plane. However, when the spectrum of the quantum
system is partially real, the corresponding classical system displays only open trajectories for which the classical
particle spirals off to infinity. Similar behavior is observed when N > 2.
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I. INTRODUCTION

There are many experimental and theoretical studies ofPT -
symmetric coupled-oscillator Hamiltonians [1–6]. In most
cases the starting point is either a coupled set ofPT -symmetric
equations of motion, or a PT -symmetric Hamiltonian that
governs such a system. It has been established that such
PT -symmetric systems exhibit a rich phase structure with
phase boundaries depending on the number of oscillators, how
they are coupled, and the values of the coupling parameters
[5].

In a recent paper on radiative coupling and weak lasing of
exciton-polariton condensates, Aleiner et al. [7] considered a
Hamiltonian function that governs condensation centers that
are bilinearly coupled by a term of the form igzz∗, where each
center is described by the complex coordinate z and g is a
coupling strength. They investigated the classical dynamics of
the system. While there is no obvious underlying symmetry,
the authors found closed paths in their spin trajectories. This
intriguing result motivates the current study of an unusual
type of oscillator system, namely, a chain of N harmonic
oscillators with pure imaginary coupling. The Hamiltonian
for the j th oscillator (1 � j � N ) has the form 1

2p2
j + 1

2ω2
j x

2
j ,

where the natural frequency ωj is real and positive. The j th
oscillator is coupled to the (j + 1)th oscillator by an imaginary
coupling constant iγ , where γ is real and independent of j . The
coupling term is bilinear; that is, it has the form iγ xjxj+1. The
Hamiltonian that governs this system of N adjacently coupled
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oscillators has the form

HN = 1

2

N∑
j=1

(
p2

j + ω2
j x

2
j

) + iγ

N−1∑
j=1

xjxj+1 (N � 2). (1)

This complex Hamiltonian is not PT symmetric because
i changes sign under time reversal T and it is assumed that
every coordinate xj changes sign under parity P . However,
HN is partially PT symmetric; that is, it remains invariant
if we change the sign of i and simultaneously reverse the
sign of only the odd-numbered or only the even-numbered
coordinates. To illustrate, we define Pj as the operator that
reverses the sign of xj but does not affect any other coordinate.
Then, H2 is partially PT symmetric with respect to P1T
and also with respect to P2T . Similarly, H3 is partially PT
symmetric with respect to P1P3T and also with respect to
P2T . Note that reversing the signs of an even number of
coordinates is achievable by a rotation but reversing the signs
of an odd number of coordinates is not achievable by a rotation.
For example, for N = 2, x1 → −x1, x2 → −x2 is merely a
rotation by an angle of π in the x1,x2 plane, but x1 → −x1,
x2 → x2 cannot be achieved by a rotation. For N = 3, P1P3

is a rotation but P2 and also P1P2P3 are not.
Systems having partial PT symmetry have remarkable

properties. In Sec. II we set ωj = 1 for all j and show that
for small N and for all values of the coupling parameter
γ the ground-state energy of the quantum system is real
and positive. Then, in Sec. III we present the exact solution
for the complete quantum spectrum for all N . We find that
the ground-state energy is always real, but that the full
spectrum is partly real and partly complex. For each energy,
we calculate the corresponding eigenfunction and demonstrate
that simultaneous eigenfunctions of the Hamiltonian and the
partial PT operator have real energies, while those that are not
partially PT symmetric are associated with complex energies.
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Thus, partial PT symmetry is associated with a partially
real energy spectrum. In Sec. IV we relax the constraint that
ωj = 1. We show that for N = 2 it is possible to choose the
natural oscillator frequencies to make the energy spectrum
completely real. Thus, there is a phase transition from a
partially real to a completely real spectrum. This result is
shown to hold in a modified form for N = 3 and N = 4.
Next, in Sec. V, we investigate the classical solutions for
the N = 2 and N = 3 systems and find no remnant of the
partially PT -symmetric phase; that is, all classical orbits are
open unless the quantum spectrum is entirely real, in which
case the orbits are all closed and periodic. Brief concluding
remarks are given in Sec. VI.

II. GROUND-STATE ENERGIES OF N COUPLED
OSCILLATORS WITH ω j = 1

In this section we show that the ground-state energy of
a quantum system of N coupled oscillators with natural
frequency ωj = 1 is real and positive.

A. Two coupled oscillators

Let us consider the quantum-mechanical Hamiltonian
of two coupled oscillators [8,9] H2 = 1

2p2 + 1
2q2 + 1

2x2 +
1
2y2 + iγ xy, where x and y are the coordinates, p and q

are the conjugate momenta, γ is a coupling strength, and
ω1 = ω2 = 1. This Hamiltonian is partially PT symmetric
because it is invariant under the transformations PxT or PyT ,
where Px : (x,y) → (−x,y), Py : (x,y) → (x,−y), and T :
i → −i. The Schrödinger equation associated with H2 is(− 1

2∂2
x − 1

2∂2
y + 1

2x2 + 1
2y2 + iγ xy

)
ψ(x,y) = Eψ(x,y).

(2)

The ground-state eigenfunction has the (non-nodal) Gaussian
form

ψ0(x,y) = exp
(− 1

2ax2 − 1
2ay2 + bxy

)
, (3)

where a and b are constants. Note that ψ0(x,y) is PT
symmetric in either x or y. Inserting (3) into (2) and matching
powers of x and y gives the three equations E0 = a, a2 + b2 =
1, and 2ab = −iγ .

The physically acceptable solution to these equations
requires that b be imaginary, b = −i

γ

2a
, and that E0 = a be

the real and positive solution to a4 − a2 − γ 2/4 = 0,

E0 = a = (
1
2 + 1

2

√
1 + γ 2

)1/2
. (4)

Note that because b is imaginary and a is real and positive,
ψ0(x,y) vanishes as x2 + y2 → ∞.

B. Three coupled oscillators

For three oscillators the Hamiltonian H3 in (1) with ωj = 1
has the form

H3 = 1
2p2 + 1

2q2 + 1
2 r2 + 1

2x2 + 1
2y2 + 1

2z2 + iγ (xy + yz).

(5)

Again, H3 is partially PT symmetric; it is invariant under
PyT (and also PxPzT ). The lowest-energy eigenstate has

the form ψ0(x,y,z) = exp[− 1
2a(x2 + z2) − 1

2by2 + c(xy +
yz) + dxz], where a, b, c, and d are constants. Solving
the Schrödinger equation H3ψ0(x,y,z) = Eψ0(x,y,z) and
comparing powers in x, y, and z gives the five equations
E0 = a + 1

2b, 1 = a2 + d2 + c2, 1 = 2c2 + b2, iγ = c(d −
a − b), and 2ad = c2. We solve these equations and verify
that the eigenfunction is normalizable [ψ0(x,y,z) vanishes as
x2 + y2 + z2 → ∞] and that, even though H3 is complex, the
ground-state energy is real and positive,

E0 = 1
2 + 1

2

(
2 + 2

√
1 + 2γ 2

)1/2
. (6)

The ground-state eigenfunction ψ0(x,y,z) has partial PT
symmetry. Also, in the limit γ → 0 the oscillators decouple
and we recover the expected result that E0 = 3/2.

C. Four coupled oscillators

For four coupled oscillators the coordinates are x,y,z,w,
the canonical momenta are p,q,r,s, the Hamiltonian H4 with
ωj = 1 is partially PT symmetric in the variables x,z or y,w,
and reads

H4 = 1
2 (p2 + q2 + r2 + s2) + 1

2 (x2 + y2 + z2 + w2)

+ iγ (xy + yz + zw). (7)

We solve the Schrödinger equation H4ψ0 = Eψ0 with the
ansatz for a partially PT -symmetric ground-state wave func-
tion of Gaussian form

ψ0(x,y,z,w) = exp

[
−a

2
x2 − b

2
y2 − b

2
z2 − a

2
w2

+ c(xy + zw) + d(xz + yw) + exw + fyz

]
,

(8)

where a,b,c,d,e,f are six arbitrary constants. This leads to the
conditions E0 = a + b, f 2 + d2 + c2 + b2 = 1, e2 + d2 +
c2 + a2 = 1, iγ = 2cd − 2bf , cf + ce = bd + ad, iγ =
df + de − cb − ca, and ae = cd. Clearly, the complexity of
the coupled nonlinear system of equations increases rapidly as
the number of coupled oscillators increases.

For the case of N coupled oscillators with ωj = 1, we show
in Sec. III that the ground-state energy E0 is

E0 = 1

2

N∑
j=1

√
1 + 2iγ cos [jπ/(N + 1)]. (9)

By setting N = 2 or N = 3, we readily recover (4) and (6).
For N = 4, (9) yields the value

E0 =
[

1
2 + 1

2

√
1 + γ 2(3 +

√
5)/2

]1/2

+
[

1
2 + 1

2

√
1 + γ 2(3 −

√
5)/2

]1/2

. (10)

Closer inspection of (9) reveals that the ground-state energy
of such coupled oscillators is always real. Indeed, (9) can be
rewritten as

E0 = 1

2

N∑
j=1

(
1

2
+ 1

2

√
1 + 4γ 2 cos2 [jπ/(N + 1)]

)1/2

.

(11)
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FIG. 1. (Color online) Real parts (left) and imaginary parts (right) of the first 11 energy levels of H2 (N = 2, γ = 1).

III. EXACT EIGENFUNCTIONS AND SPECTRA OF N
COUPLED OSCILLATORS

A. Two coupled oscillators

Let us return to the two-coupled-oscillator system governed
by the Hamiltonian H2 with ωj = 1. The transformation
x1 = (x + y)/

√
2, x2 = (x − y)/

√
2 decouples the oscillators,

leading to the Hamiltonian H = 1
2p2

1 + 1
2 (1 + iγ )x2

1 + 1
2p2

2 +
1
2 (1 − iγ )x2

2 , which has complex-conjugate frequencies ν2
1 =

1 + iγ and ν2
2 = 1 − iγ . Apart from a normalization constant,

the eigenfunctions are

�n1,n2 (x1,x2) = Hn1 (
√

ν1x1)Hn2 (
√

ν2x2)e−ν1x
2
1 /2e−ν2x

2
2 /2

(12)
with corresponding energy eigenvalues En1,n2 = ν1(n1 + 1

2 ) +
ν2(n2 + 1

2 ). (Here, Hn are Hermite polynomials [10].) In terms
of the coupling parameter γ the frequencies are

ν1 = ν∗
2 = (

1
2 + 1

2

√
1 + γ 2

)1/2 + i
(− 1

2 + 1
2

√
1 + γ 2

)1/2
,

whose real parts are positive. The general result for the energy
spectrum is

En1,n2 = (
1
2 + 1

2

√
1 + γ 2

)1/2
(n1 + n2 + 1)

+ i
(− 1

2 + 1
2

√
1 + γ 2

)1/2
(n1 − n2).

Note that the spectrum is real if n1 = n2. If n1 = n2 = 0, we
recover the ground-state energy in (4). In addition, we obtain
the corresponding eigenfunction from (12),

�0,0(x,y) = exp
[− 1

2

(
1
2 + 1

2

√
1 + γ 2

)1/2
(x2 + y2)

− i
( − 1

2 + 1
2

√
1 + γ 2

)1/2
xy

]
,

which verifies the ansatz (3) and explicitly demonstrates that
an eigenfunction having the partial PT symmetry of the
Hamiltonian is associated with a real eigenvalue. Note also
that the real spectrum is part of a larger spectrum containing
complex-conjugate pairs. This can be illustrated by the choice
n1 = 1 and n2 = 0 or n1 = 0 and n2 = 1:

E1,0 = (
2 + 2

√
1 + γ 2

)1/2 + i
(− 1

2 + 1
2

√
1 + γ 2

)1/2

and �1,0(x,y) = √
2(1 + iγ )1/4(x + y)�0,0, which is neither

PxT nor PyT symmetric. In addition, E0,1 = E∗
1,0 and

�0,1(x,y) = �1,0(x,y)∗. The real parts of the energies are
(n1 + n2 + 1)-fold degenerate, as shown in Fig. 1.

The nature of the eigenfunctions associated with the first
few energy levels is depicted in Fig. 2. The ground-state (n1 =
n2 = 0) and the third-excited-state (n1 = n2 = 1) eigenfunc-
tions are partially PT symmetric, as can be seen in the
left-hand upper and lower diagrams, while the eigenfunctions
corresponding to the first and third (complex) eigenvalues
(n1 = 0, n2 = 1 and n1 = 0, n2 = 2), which are not partially
PT symmetric, are shown on the right-hand diagrams.

B. Three coupled oscillators

To find the exact solution to the Schrödinger equation for
H3 in (5) with ωj = 1 we make the transformation x1 = (x −
z)/

√
2, x2 = y/

√
2 + (x + z)/2, x3 = −y/

√
2 + (x + z)/2,

which decouples the oscillators, giving H = 1
2p2

1 + 1
2ν2

1x2
1 +

1
2p2

2 + 1
2ν2

2x2
2 + 1

2p2
3 + 1

2ν2
3x2

3 with ν2
1 = 1, ν2

2 = 1 + iγ
√

2,
and ν2

3 = 1 − iγ
√

2. Thus, the unnormalized eigenfunctions
are

�(x1,x2,x3) = Hn1 (x1)Hn2 (
√

ν2x2)Hn3 (
√

ν3x3)

× exp
[−(

x2
1 + ν2x

2
2 + ν3x

2
3

)/
2
]

and the energies are E = n1 + 1
2 + ν2(n2 + 1

2 ) + ν3(n3 + 1
2 ),

where

ν2,3 = (
1
2 + 1

2

√
1 + 2γ 2

)1/2 ± i
(− 1

2 + 1
2

√
1 + 2γ 2

)1/2
.

Thus, the energy spectrum can be expressed as

E = n1 + 1
2 +

√
1
2 + 1

2

√
1 + 2γ 2 +

√
1
2 + 1

2

√
1 + 2γ 2

× (n2 + n3) + i

√
− 1

2 + 1
2

√
1 + 2γ 2 (n2 − n3) .

Evidently, if the second and third oscillators are in the same
state (n2 = n3), the energy is real and the corresponding
eigenfunctions are partially PT symmetric. In particular, the
ground-state energy (6) is recovered and the ground-state
eigenfunction is

�0,0,0(x,y,z) = exp[−(1 + a)(x2 + z2)/4 − ay2/2

− (a − 1)xz/2 − ib(xy + yz)/
√

2],

where a = Re ν2, b = Im ν2. The first ten energies of H3 for
γ = 1 are shown in Fig. 3.
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FIG. 2. (Color online) Absolute value of the eigenfunction for the ground state (upper left), n1 = n2 = 1 (lower left), n1 = 0, n2 = 1 (upper
right), and n1 = 0, n2 = 2 (lower right) for γ = 1.

C. Four coupled oscillators

For the Hamiltonian (7), which governs four linearly
coupled oscillators, the transformation

x1,2 = 1

2
√

5

[√
5 −

√
5 (x ± w) ±

√
5 +

√
5 (y ± z)

]
,

x3,4 = 1

2
√

5

[√
5 +

√
5 (x ∓ w) ±

√
5 −

√
5 (y ∓ z)

]

exactly decouples the oscillators. The new Hamiltonian takes
the form

H = 1
2p2

1 + 1
2ν2

1x
2
1 + 1

2p2
2 + 1

2ν2
2x2

2 + 1
2p2

3

+ 1
2ν2

3x2
3 + 1

2p2
4 + 1

2ν2
4x

2
4 ,

where ν2
1 = ν2∗

2 = 1 + 1
2 iγ (1 + √

5) and ν2
3 = ν2∗

4 =
1 + 1

2 iγ (−1 + √
5) are complex frequencies. Let Re ν1 =

Re ν2 = A, Re ν3 = Re ν4 = C, Im ν1 = −Im ν2 = B,
Im ν3 = −Im ν4 = D, where

(A,B) =
√

± 1
2 + 1

2

√
1 + 1

2γ 2(3 +
√

5),

(C,D) =
√

± 1
2 + 1

2

√
1 + 1

2γ 2(3 −
√

5).

In terms of these variables and the quantum numbers n1, n2,
n3, n4, the total energy is

En1,n2,n3,n4 = A(n1 + n2 + 1) + C(n3 + n4 + 1)

+ iB(n1 − n2) + iD(n3 − n4).

FIG. 3. (Color online) Real parts (left) and imaginary parts (right) of the first ten energies for H3 (γ = 1, N = 3).
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Thus, if n1 = n2 and n3 = n4, the energy is real. When the
energy is real, the corresponding eigenfunction is alwaysPxzT

or PywT symmetric. For example, the ground-state energy is
E0,0,0,0 = A + C and the corresponding eigenfunction is

�0,0,0,0 = exp

[
−1

4

(
A + C + C − A√

5

)
(x2 + w2) − 1

4

(
A + C + A − C√

5

)
(y2 + z2) − 1√

5
(A − C)(xz + yw)

− i

2

(
B − B√

5
− D − D√

5

)
xw − i

2

(
B + B√

5
− D + D√

5

)
yz − i√

5
(B + D)(xy + wz)

]
. (13)

This eigenfunction displays the symmetries assumed in the
ansatz (8).

As another illustration, we consider the case in which the
first two oscillators are in the first excited state, and the other
two are in the ground state (n1 = n2 = 1, n3 = n4 = 0). The
energy is E1,1,0,0 = 3A + C and the eigenfunction is

�1,1,0,0 = 1
5

√
A2 + B2

[
(5 −

√
5)(x2 − ω2)

− (5 +
√

5)(y2 − z2) + 4
√

5xz − 4
√

5yw
]
�0,0,0,0.

Once again, the energy is real and the eigenfunction isPxzT or
PywT symmetric. A complex energy E1,0,0,0 = 2A + C + iB

arises for the choice n1 = 1, n2 = n3 = n4 = 0.

D. Five coupled oscillators

The Hamiltonian for five coupled oscillators is

H5 = 1
2 (p2 + q2 + r2 + s2 + t2)

+ 1
2 (x2 + y2 + z2 + w2 + u2)

+ iγ (xy + yz + zw + wu).

Rather than decoupling the oscillators we treat this case by
constructing the secular equation

det(Mjk − ν2δjk) = 0, (14)

where Mjk is the tridiagonal matrix defined as

Mjk ≡ ∂2U

∂qj∂qk

∣∣∣∣
0

=

⎛
⎜⎜⎜⎝

1 iγ 0 0 0
iγ 1 iγ 0 0
0 iγ 1 iγ 0
0 0 iγ 1 iγ

0 0 0 iγ 1

⎞
⎟⎟⎟⎠ , (15)

U is the potential, and qj and qk are coordinates.
The solution to the secular equation (14) gives complex-

conjugate pairs of frequencies and one real frequency:
ν2

1,2 = 1 ± iγ
√

3, ν2
3,4 = 1 ± iγ , ν5 = 1. Thus, the decoupled

Hamiltonian is

H = 1
2p2

1 + 1
2ν2

1x2
1 + 1

2p2
2 + 1

2ν2
2x2

2 + 1
2p2

3 + 1
2ν2

3x
2
3 + 1

2p2
4

+ 1
2ν2

4x
2
4 + 1

2p2
5 + 1

2x2
5

and the energy of the system reads

E = ν1
(
n1 + 1

2

) + ν2
(
n2 + 1

2

) + ν3
(
n3 + 1

2

)
+ ν4

(
n4 + 1

2

) + n5 + 1
2 ,

where n1, n2, n3, n4, n5 are non-negative integers.

E. General case: N coupled oscillators with ω j = 1

In this section we consider the Hamiltonian (1) for
N linearly coupled oscillators with ωj = 1. To obtain the
frequencies of the decoupled oscillators we use (14) to
construct the N × N tridiagonal matrix secular equation,
det(M − ν2I) = 0, which has the form

DN =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 − ν2 iγ

iγ 1 − ν2 iγ

iγ 1 − ν2 iγ

. . .
. . .

. . .
iγ 1 − ν2 iγ

iγ 1 − ν2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

Because this matrix equation is tridiagonal, DN satisfies the
three-term recurrence relation

Dk + (ν2 − 1)Dk−1 − γ 2Dk−2 = 0 (k = 1,2, . . . ,N),

where D0 = 1 and D−1 = 0. We solve this difference equation
to obtain the frequencies

ν2 = 1 + 2iγ cos[jπ/(N + 1)] (j = 1,2, . . . ,N ).

Thus, the exact expression for the total energy of the system
of N oscillators is given by

E =
N∑

j=1

√
1 + 2iγ cos[jπ/(N + 1)]

(
nj + 1

2

)
,

where nj � 0 (j = 1, . . . ,N). Choosing nj = 0 for all j , we
find the exact ground-state energy in (11), which has been
shown to be real.

IV. COUPLED OSCILLATORS WITH ARBITRARY
FREQUENCIES

In Secs. II and III the oscillator frequencies multiplying
x2

j were set to unity. Our conclusion in the foregoing analysis
was that a real spectrum is embedded in a complex spectrum
containing complex-conjugate pairs of energies. We now relax
this constraint on the natural frequencies. For the two-, three-,
and four-coupled-oscillator systems, we demonstrate that for
an appropriate choice of ωj the spectrum can be entirely real.

A. Two coupled oscillators with general natural frequencies
ωx and ω y

The Hamiltonian H2 in (1) reads H2 = 1
2p2 + 1

2q2 +
1
2ω2

xx
2 + 1

2ω2
yy

2 + iγ xy. The frequencies of the decoupled
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FIG. 4. (Color online) First ten energies of H2 for
the parameter choice ω2

x = 3, ω2
y = 1, and γ = 1/2.

These states have the quantum numbers (n1,n2) =
(0,0),(0,1),(1,0),(0,2),(1,1),(0,3),(2,0),(1,2),(0,4),(2,1).

oscillators in this case are

ν2
1,2 = 1

2

(
ω2

x + ω2
y ±

√(
ω2

x − ω2
y

)2 − 4γ 2

)
(16)

and the energies of the system are En1,n2 = ν1(n1 + 1
2 ) +

ν2(n2 + 1
2 ), where n1,n2 � 0.

In contrast to the results found in Sec. III, the entire energy
spectrum can be real for specific values of ωx , ωy , and γ . For
this to be so, the parameters must satisfy the condition∣∣ω2

x − ω2
y

∣∣ � 2|γ |. (17)

The case considered in Sec. III had ωx = ωy = 1 and γ = 1,
which does not satisfy this condition and, as we saw, the energy
spectrum was only partially real.

To have real eigenvalues the associated eigenfunctions must
all be partially PT symmetric. This can be seen explicitly by
decoupling the oscillators with the transformation

x1 = √
A + B(Dx + Ex + iCy)/(2CE),

x2 = √
A − B(−Dx + Ex − iCy)/(2CE),

where A = 8γ 2 − 2(w2
x − w2

y)2, B = 2(w2
x − w2

y)[(w2
x −

w2
y)2 − 4γ 2]1/2, C = 2γ , D = w2

x − w2
y , E = [(w2

x − w2
y)2 −

4γ 2]1/2, leading to the Hamiltonian H = 1
2p2

1 + 1
2ν2

1x
2
1 +

1
2p2

2 + 1
2ν2

2x2
2 , where ν1 and ν2 are given in (16). Up to a

normalization constant, the eigenfunctions are

�n1,n2 (x1,x2) = Hn1 (
√

ν1x1)Hn2 (
√

ν2x2)

× exp
(− 1

2ν1x
2
1 − 1

2ν2x
2
2

)
.

Note that A + B and A − B have opposite signs in the PT -
symmetric phase and that A − B < 0. Rewriting �n1,n2 (x1,x2)
in terms of the original variables x and y, one can show that the
eigenfunction �n1,n2 (x,y) has partial PT symmetry because

(PxT )�n1,n2 (x,y) = (−1)n1�n1,n2 (x,y),

(PyT )�n1,n2 (x,y) = (−1)n2�n1,n2 (x,y).

To illustrate, we consider the case ω2
x = 3, ω2

y = 1, and
γ = 1/2. The relation (17) is satisfied and we find the purely
real nondegenerate spectrum shown in Fig. 4. When |ω2

x −
ω2

y | < 2|γ |, the energy spectrum is only partially real. Thus,
there is a phase transition from the unbroken partially PT -
symmetric phase to the broken one. For example, keeping
ωy = 1 and γ = 1/2, but adjusting ω2

x so that it passes 2, the
first-excited-state energy becomes complex.

B. Three coupled oscillators with general natural frequencies
ωx , ω y, and ωz

For the three-oscillator Hamiltonian H3 = 1
2p2 +

1
2q2 + 1

2 r2 + 1
2ω2

xx
2 + 1

2ω2
yy

2 + 1
2ω2

zz
2 + iγ (xy + yz) the

FIG. 5. (Color online) Unbroken partial PT -symmetric phases of H3 depicted as shaded areas for the parameters γ = 1/12 and ω2
y = 2/3

(left) and γ = 1/3 and ω2
y = 1 (right).
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FIG. 6. (Color online) Unbroken partial PT -symmetric phases
of H3 for γ = 1/12 depicted as colored volumes.

frequencies ν2 = λ of the decoupled oscillators satisfy the
cubic equation f (λ) = 0, where

f (λ) = λ3 − (
ω2

x + ω2
y + ω2

z

)
λ2 + (

ω2
xω

2
y + ω2

xω
2
z

+ω2
yω

2
z + 2γ 2

)
λ − ω2

xω
2
yω

2
z − (

ω2
x + ω2

z

)
γ 2.

If the discriminant associated with this equation is positive,
three real distinct roots can emerge, giving a real spectrum. To
guarantee that the roots are positive, it is necessary that

f (0) < 0, λmax > 0, λmin > 0,

f (λmax) > 0, f (λmin) < 0

are all fulfilled, with λmin and λmax being the extrema of
the polynomial. Figure 5 displays the regions in which the
frequencies of the decoupled oscillators are all real (blue
shaded areas) in the parametric space of ωx and ωz for fixed
values of γ and ω2

y . This figure shows that several regions of
unbroken symmetry exist. This is in contrast to the case of the
two coupled oscillators.

For example, Fig. 5 shows that ω2
x = 1/3, ω2

y = 2/3,
ω2

z = 1, and γ = 1/12 gives an unbroken symmetry phase.
We obtain three different real positive (decoupled) frequencies

ν1 =
√

2/3, ν2 =
√

(8 +
√

14)/12, ν3 =
√

(8 −
√

14)/12.

Thus, the spectrum is entirely real with energies given by
En1,n2,n3 = ν1(n1 + 1

2 ) + ν2(n2 + 1
2 ) + ν3(n3 + 1

2 ). By fixing
only γ we can find regions in the three-dimensional parameter
space of ωx , ωy , and ωz for which unbroken symmetry (and
therefore a real spectrum) exists. This is shown in the colored
volumes depicted in Fig. 6 for the specific choice γ = 1/12.

C. Four coupled oscillators with general natural frequencies
ωx , ω y, ωz , and ωw

The previous analysis can be applied to the four-coupled-
oscillator Hamiltonian

H4 = 1
2p2 + 1

2q2 + 1
2 r2 + 1

2 s2 + 1
2ω2

xx
2 + 1

2ω2
yy

2

+ 1
2ω2

zz
2 + 1

2ω2
ww2 + iγ (xy + yz + zw),

where ωx , ωy , ωz, and ωw are real frequencies and γ is a real
coupling parameter.

The eigenvalues of the matrix

M =

⎛
⎜⎜⎝

ω2
x iγ 0 0

iγ ω2
y iγ 0

0 iγ ω2
z iγ

0 0 iγ ω2
w

⎞
⎟⎟⎠

FIG. 7. (Color online) Unbroken partial PT -symmetric phases of H4 depicted as shaded area. Left: γ = 1/5, ω2
x = 1, and ω2

z = 1. Right:
γ = 3/10, ω2

z = 1, and ω2
w = 4.
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FIG. 8. (Color online) Unbroken partial PT -symmetric phases of H4 in the (ωx,ωy) plane depicted as shaded areas for the parameter
choices ω2

z = 1 and ω2
w = 4 for nine values of γ .

are the squares of the corresponding decoupled-oscillator
frequencies. The eigenvalues ν2 = λ satisfy the fourth-order
equation f (λ) = λ4 − aλ3 + bλ2 − cλ + d = 0, where

a = ω2
x + ω2

y + ω2
z + ω2

w,

b = ω2
xω

2
y + ω2

xω
2
z + ω2

xω
2
w + ω2

yω
2
z + ω2

yω
2
w + ω2

zω
2
w + 3γ 2,

c = ω2
xω

2
yω

2
z + ω2

xω
2
yω

2
w + ω2

xω
2
zω

2
w + ω2

yω
2
zω

2
w + 2γ 2ω2

x

+ 2γ 2ω2
w + γ 2ω2

y + γ 2ω2
z ,

d = ω2
xω

2
yω

2
zω

2
w + γ 2ω2

xω
2
y + γ 2ω2

xω
2
w + γ 2ω2

zω
2
w + γ 4.

Regions in which all decoupled oscillator frequencies are
real give a completely real energy spectrum, which means
that partial PT symmetry is unbroken. This requires that
f (λ) have four positive roots, which is the case if f (0) > 0.
In addition, if f ′(λ) has three positive roots, the extrema of
f (λ) lie on the positive abscissa. To have four real roots the
minimum value of f (λ) must be negative, and the maximum
value must be positive. Figure 7 shows the regions in which
these conditions are fulfilled (that is, the regions in which
the partial PT symmetry is unbroken) for specific choices
of the parameters. Fixing the values of ω2

z = 1 and ω2
w = 4

as in the right-hand panel of Fig. 7, we can investigate the
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FIG. 9. (Color online) Left: Classical trajectory in the complex-x plane for H2 with ω2
x = ω2

y = 1 with the initial conditions x(0) = y(0) =
−1 − i and ẋ(0) = ẏ(0) = 1 + i/2, and γ = 1. Right: Classical trajectory in the complex-x plane for H2 with ω2

x = 2, ω2
y = 1, and γ = 1/2

for the initial conditions x(0) = y(0) = −1 + i and ẋ(0) = ẏ(0) = 2 − i/4.

development of the phase boundaries as a function of the
coupling strength γ . This is shown in Fig. 8.

V. CORRESPONDING CLASSICAL THEORY

In this section we investigate the features of par-
tially PT -symmetric classical theories. We begin with
the two-coupled-oscillator Hamiltonian H2 with frequen-
cies ωx = ωy = 1. Hamilton’s classical equations of motion
lead to

x ′′(t) + x(t) + iγy(t) = 0, y ′′(t) + y(t) + iγ x(t) = 0

and combining these equations gives the fourth-order differ-
ential equation

x ′′′′(t) + 2x ′′(t) + (1 + γ 2)x(t) = 0.

We seek solutions x(t) = eiνt and find that λ = ν2 satisfies the
quadratic equation λ2 − 2λ + 1 + γ 2 = 0, so ν = ±√

1 ± iγ .
Thus, the characteristic frequencies are always complex. By
decomposing

√
1 + iγ = a + ib into its real and imaginary

parts we can write the general solution as

x(t) = [(A + D)e−bt + (B + C)ebt ] cos(at)

+ i[(A − D)e−bt + (B − C)ebt ] sin(at),

where A, B, C, and D are arbitrary constants. Therefore, for
any initial conditions, the real and imaginary parts of x(t) are
oscillatory and growing (or decreasing). As a consequence, the
trajectories in the complex-x plane spiral outward (or inward).
Hence, the classical paths are open (see Fig. 9, left-hand
panel). Thus, although the quantum spectrum is partially
real, this partial reality does not give rise to closed classical
trajectories.

More generally, if the coupled oscillators described by
H2 have natural frequencies ωx and ωy , we obtain the
equation

x ′′′′(t) + (
w2

x + w2
y

)
x ′′(t) + (

w2
xw

2
y + γ 2

)
x(t) = 0.

Again seeking solutions x(t) = eiνt , we find that ν2 = 1
2w2

x +
1
2w2

y ± 1
2 [(ω2

x − ω2
y)2 − 4γ 2]1/2. We deduce that four real

values of ν exist when |ω2
x − ω2

y | � 2|γ |, which is precisely the
condition that guarantees a fully real spectrum in the quantum
system [see (17)]. Thus, the transition from the broken
partial-PT -symmetric phase to the unbroken phase occurs
at the same point as for the quantum case. For the parameter
choice ω2

x = 2, ω2
y = 1, and γ = 1/2 the classical trajectory

depicted in Fig. 9 (right-hand panel) spirals outward, which
indicates that PT symmetry is broken even though the system
is partially PT symmetric. The behavior of the trajectories in
the unbroken phase is illustrated in Fig. 10. Here, one sees that
while the classical trajectory is not closed it is confined to a
compact region in the complex-x plane. We thus observe the
phase transition at the classical level; that is, we observe the
transition from spirals (broken phase) to localized trajectories
in the complex-x plane (unbroken phase), which happens at
|ω2

x − ω2
y | = 2|γ |.

In addition to studying the trajectory in the complex-x
plane, one can study the trajectories in phase space by plotting

FIG. 10. (Color online) Classical trajectory in the complex-x
plane for H2 with the parameter choice ω2

x = 3, ω2
y = 1, γ = 1/2,

with the initial conditions x(0) = −1 + i, y(0) = 2 − 2i, ẋ(0) =
1 + i/2, ẏ(0) = 3/2 + i (left) and x(0) = 1 + 2i, y(0) = 2 + i/4,
ẋ(0) = −3 + i, ẏ(0) = 1/2 + 5i (right).
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FIG. 11. (Color online) Poincaré section of the classical trajec-
tory in phase space for H2 with the parameter choice ω2

x = 3, ω2
y = 1,

γ = 1/2 and initial conditions x(0) = 1 + i/2, y(0) = −2 + 2i,
ẋ(0) = 1 + i/2, ẏ(0) = −3/2 − 3i/2 (left) and x(0) = 2 + 5i/2,
y(0) = 2 − 3i, ẋ(0) = 1 − i/2, ẏ(0) = 2 − 2i (right). The structure
of this plot indicates that the orbits are almost periodic.

a Poincaré section. From the structure of the Poincaré plot
we conclude that the confined trajectories are almost periodic
[11]. This is illustrated in Fig. 11. The appearance of open
almost-periodic trajectories occurs because the number of
degrees of freedom exceeds one; if N = 1, the classical
orbits associated with real quantum energies are closed
[12].

A similar analysis can be done for the three-coupled-
oscillator Hamiltonian H3 with general natural frequencies.
The classical equations of motion are

x ′′(t) + ω2
xx(t) + iγy(t) = 0,

y ′′(t) + ω2
yy(t) + iγ (x(t) + z(t)) = 0,

z′′(t) + ω2
zz(t) + iγy(t) = 0.

Seeking solutions of the form x(t) = Aeiνt , y(t) = Beiνt , and
z(t) = Ceiνt , we obtain a cubic equation for λ = ν2:

λ3 − (
ω2

x + ω2
y + ω2

z

)
λ2 + (

ω2
xω

2
y + ω2

xω
2
z + ω2

yω
2
z + 2γ 2

)
λ

−ω2
xω

2
yω

2
z − (

ω2
x + ω2

z

)
γ 2 = 0.

The characteristic frequencies are real if and only if the cor-
responding quantum system is in an unbroken PT -symmetric
phase (all eigenvalues are real); the criteria for real eigenvalues
are given in Sec. IV. To illustrate, recall that in Sec. IV the
parameter choice ω2

x = 1/3, ω2
y = 2/3, ω2

z = 1, γ = 1/12 lies

FIG. 12. (Color online) Classical trajectory in the complex-x
plane for H3 with the parameter choice ω2

x = 1/3, ω2
y = 2/3,γ =

1/12, ω2
z = 1 (left) and ω2

z = 13/20 (right) with the initial condi-
tions x(0) = −2 + i, y(0) = 3 − 3i, z(0) = 3 + 2i, ẋ(0) = −1 + 3i,
ẏ(0) = 3 + 2i, ż(0) = −2 + i.

FIG. 13. (Color online) Poincaré section of the classical trajec-
tory for H3 with the parameter choice ω2

x = 1/3, ω2
y = 2/3, ω2

z = 1,
γ = 1/12 and the initial conditions x(0) = −2 + i, y(0) = 3 − 3i,
z(0) = 3 + 2i, ẋ(0) = −1 + 3i, ẏ(0) = 3 + 2i, ż(0) = −2 + i. This
figure indicates that the orbit is almost periodic.

in the unbroken phase and gives a real energy spectrum.
Figure 12 shows that for this parameter choice the classical
trajectory is confined to a compact region in the complex-x
plane, whereas for the choice ω2

x = 1/3, ω2
y = 2/3, ω2

z =
13/20, and γ = 1/12, for which the quantum symmetry is
broken, the classical trajectory spirals outward to infinity. A
Poincaré section is given in Fig. 13 for the parameter choice
of Fig. 12 (left-hand panel).

VI. BRIEF CONCLUDING REMARKS

In this paper we have examined systems of N linearly
coupled oscillators that are partially PT symmetric. In the
quantum-mechanical analysis we have found that the ground
state of each of these systems is always real. We have
shown that the entire spectrum may in fact be completely
real depending on the values of the natural frequencies ωx ,
ωy , ωz, . . . and their relation to the coupling strength γ .
This happens even though the system is only partially PT
symmetric. We have studied this in detail for systems of
two and three coupled oscillators. A phase transition point
exists beyond which the energy spectrum is only partially
real.

For the two and three classical oscillator systems, we
find a phase transition at exactly the same point as the
quantum-mechanical oscillator systems. When the eigenvalues
of the quantum system are all real, the classical trajectories are
confined and almost periodic, but when the quantum eigen-
values are partly real and partly complex, the corresponding
classical system always has open trajectories that spiral out to
infinity.

Finally, we comment that while it is not obvious what kinds
of experiments can be performed to verify the results obtained
in this paper, it is very likely that in the area of experimental
optics it will be possible to mimic partially PT -symmetric
Hamiltonians, to study their behavior directly, and to access
their physical properties (see, for example, Ref. [9]).
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