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Sub-Poissonian phonon lasing in three-mode optomechanics
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We propose to use the resonant enhancement of the parametric instability in an optomechanical system of
two optical modes coupled to a mechanical oscillator to prepare mechanical limit cycles with sub-Poissonian
phonon statistics. Strong single-photon coupling is not required. The requirements regarding sideband resolution,
circulating cavity power, and environmental temperature are in reach with state of the art parameters of
optomechanical crystals. Phonon antibunching can be verfied in a Hanburry Brown–Twiss measurement on
the output field of the optomechanical cavity.
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I. INTRODUCTION

Optomechanical experiments, where optical resonators
are coupled to mechanical oscillators [1,2], are achieving
increasingly good control of macroscopic objects on the
quantum level: Milestones such as cooling the motion of
these oscillators to their quantum ground state [3,4], coherent
transfer of quantum states between light and mechanics [5,6],
observation of radiation pressure shot noise on the oscillator
[7,8], as well as entanglement between the light field and
the mechanical oscillator [9] have been achieved in recent
years. The phonon analog of a laser, which is realized using
the optical cavity as the gain medium to excite coherent
oscillations of the mechanical oscillator has been demonstrated
in [10–18], and its phonon statistics has been mapped out via a
Hanburry Brown–Twiss measurement on the sideband photons
emitted from the optomechanical cavity [18].

Theoretical work suggests that it is possible to prepare
a state with quantum signatures in the phonon statistics
such as phonon antibunching and even negative Wigner
density [19–24]. However, the requirements to see phonon
antibunching scale unfavorably with the system parameters, so
that sub-Poissonian phonon statistics has eluded experimental
observation. In this Rapid Communication we propose to make
use of the enhanced optomechanical nonlinearity [25–27] of a
setup with two optical modes to overcome this difficulty and
prepare phonon laser states featuring antibunching in steady
state with state of the art optomechanical crystals.

The enhanced nonlinearity has been discussed in the context
of detectors for phonons or photons [26], quantum memory
[28], and to improve [27] the parameters of mechanically
induced photon antibunching [29,30]. In the context of the
phonon laser transition the enhanced optomechanical instabil-
ity with two optical modes has been anticipated as a possible
complication for gravitational wave detectors [31], and has
been studied experimentally [11–15,32] and theoretically
[33–38] in the classical regime. Here we show for that one
can detect quantum signatures in the phonon lasing of such a
three-mode system. In particular, antibunched statistics of
the phonon number (n̂ = c†c), as commonly characterized
by a Fano factor F = 〈�n̂2〉/〈n̂〉 < 1, and a second order
coherence function g(2)(t) at time t = 0,

g(2)(0) = 〈c†c†cc〉/〈n̂〉2 = 1 + (F − 1)/〈n̂〉 < 1, (1)

can be prepared in steady state. With more demanding system
requirements, even a negative mechanical Wigner density can
be achieved.

II. SYSTEM DESCRIPTION

We study the optomechanical setup depicted in Fig. 1.
Two optical modes a and b couple to a mechanical mode
c via the three-mode interaction Hamiltonian V = g0(ab† +
a†b)(c + c†),where g0 is the single-photon optomechanical
coupling strength and a,b,c are the lowering operators of the
different modes. Such an interaction has been implemented in
Refs. [11–15,32]. The optical mode b is resonantly driven with
a laser of power P , which we parametrize with E = √

κP/�ωb

(κ is the cavity linewidth, and ωb the resonance frequency of
mode b). The other optical mode a is detuned with respect to
cavity mode b and the driving laser by �, and the mechanical
frequency is ωm, so that the Hamiltonian in a rotating frame for
both cavities with frequency ωb is H = H0 + V + iE(b† − b)
with H0 = ωmc†c − �a†a.

Depending on the sign of the laser detuning, the laser either
cools the mechanical mode (� < 0), or gives rise to self-
induced mechanical oscillations (� > 0). In the latter regime
the intrinsic nonlinearity of the three-mode optomechanical
interaction V stabilizes the mechanical oscillation at a finite
amplitude [32]. We choose a detuning � = ωm between the
two cavities which corresponds to a resonant excitation of

FIG. 1. (Color online) Left: Two optical modes a and b are
coupled to a mechanical mode c. The b mode is resonantly driven by
a laser of strength E and frequency ωL = ωb. The a mode is detuned
from b by � = ωm, the mechanical resonance frequency, as depicted
in the plot on the right. The nonlinear interaction of the three modes
a, b, and c gives rise to optomechanical limit cycles with strongly
sub-Poissonian phonon number statistics. A third optical mode d

can be used to reduce the effective temperature of the mechanical
oscillator’s bath and to read out the phonon statistics in a Hanburry
Brown–Twiss measurement.
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NIELS LÖRCH AND KLEMENS HAMMERER PHYSICAL REVIEW A 91, 061803(R) (2015)

optomechanical limit cycles. In an interaction picture with
respect to H0 the Hamiltonian is

HI = iE(b† − b) + g0(ab†c + a†bc†). (2)

We neglected here fast oscillating terms e2iωmtg0ab†c† + H.c.,
assuming a cavity decay rate of κ � ωm for both cavities
(the corrections are of order κ2/ω2

m, i.e., negligible for typical
optomechanical crystals). In the framework of Langevin
equations the system dynamics is then described by

ȧ = −ig0bc† − κ

2
a + √

κain,

(3)
ḃ = −ig0ac − κ

2
b + E + √

κbin,

ċ = −ig0a
†b − γ

2
c + √

γ cin, (4)

where 〈ain(t)a†
in(t ′)〉 = 〈bin(t)b†in(t ′)〉 = δ(t − t ′) and

〈cin(t)c†in(t ′)〉 = (1 + n̄)δ(t − t ′) are the two-time correlation
functions of the Langevin noise forces. We assumed energy
decay of the mechanical oscillator at rate γ , due to coupling
to a thermal thermal bath with mean occupation n̄ [39].

III. CALCULATION OF CLASSICAL AMPLITUDES

We express each operator as a sum of a classical (C
number) component and an operator describing fluctuations
around it, such that a = α + δa, b = β + δb, and c = ζ + δc.
Inserting this into the Langevin equations, and considering
the C-number components only, gives rise to a coupled set of
nonlinear equations for the classical cavity amplitudes α and
β, and the (complex) mechanical amplitude ζ . In particular,
one finds α̇ = −ig0βζ ∗ − κ

2 α and β̇ = −ig0αζ − κ
2 β + E.

We assume that the optical amplitudes adiabatically follow
the motion of the mechanical oscillator which is equivalent to
the conditions (n̄ + 1)γ,g0|α|,g0|β| � κ . Solving α̇ = β̇ = 0
results in the adiabatic solution for the optical amplitudes

β(ζ,ζ ∗) = Eκ

2hζ

,

(5)

α(ζ,ζ ∗) = −i
Eg0ζ

∗

hζ

,

where hζ = g2
0 |ζ |2 + 1

4κ2. Inserting these optical amplitudes
in the equation of motion for the classical mechanical
amplitude results in ζ̇ = − 1

2 (γ + γopt)ζ , where the optically
mediated (anti)damping is

γopt(ζ ) = −g2
0E

2κ

h2
ζ

(6)

[cf. Fig. 2(a)]. γopt is negative for all mechanical amplitudes
and its absolute value decreases with increasing amplitude
ζ according to the Lorentzian given by h2

ζ , approaching 0 for
ζ � κ/g0. In agreement with [32] we define the dimensionless

parameter R = |γopt(0)|
γ

= 16g2
0E2

κ3γ
, which corresponds to the

gain of mechanical amplification at zero mechanical ampli-
tude. ForR < 1 the total mechanical damping γ + γopt(0) > 0
is positive for all amplitudes, implying ζ = 0 in steady state.
Above threshold, R > 1, the steady state (ζ̇ = 0) is achieved

(b)

(a)

X

Y

(c)

FIG. 2. (Color online) (a) Optically mediated (anti)damping
γopt(ζ ) (bold line) as a function of mechanical amplitude ζ according
to Eq. (6). The steady state ζ0 is reached when γopt(ζ0) = −γ

(dashed line). (b) Intracavity photon number |α|2 in mode a (blue
dashed line), |β|2 in mode b (red dash-dotted line), and total photon
number ncav = |α|2 + |β|2 (black solid line) is plotted as a function of
mechanical amplitude ζ according to Eq. (5). The optically induced
diffusion Dopt = g2

0
κ

2 (|α|2 + |β|2)/hζ of the mechanical oscillator
scales exactly like the red dash-dotted line with a scale as given on the
right y axis. (c) Schematic phase space trajectory of the mechanical
oscillator approaching the limit cycle attractor with amplitude ζ0. In
the corotating frame of the oscillator the X quadrature relates to its
amplitude and the Y quadrature to its phase.

for a mechanical amplitude ζ0 such that γopt(ζ0) = −γ [cf.
Fig. 2(a)]. The solution of this nonlinear equation is

|ζ0|2 =
(

κ

2g0

)2

(
√
R − 1). (7)

The solution is unique (up to the oscillator’s phase, where
we choose ζ0 = |ζ0|, without loss of generality) and fully
determined by the gain parameter R and the single-photon
strong-coupling parameter 2g0/κ . It is instructive to contrast
this result with the equivalent one for a conventional two-
mode (one mechanical and one optical mode) optomechanical
system where the mean phonon number of self-induced
limit cycles scales as the inverse of the much smaller ratio
(g0/ωm)2 instead. In view of Eq. (1) it is clear that a small
oscillation amplitude is advantageous in order to observe
strong antibunching and that the three-mode setup improves
the signal approximately by a factor of 4(ωm/κ)2. This can
be two orders of magnitude for typical system parameters of
optomechanical crystals, e.g., 4(ωm/κ)2 = 217 with κ/2π =
500 MHz and ωm/2π = 3.68 GHz from [4].

IV. CALCULATION OF QUANTUM AMPLITUDE NOISE

The fluctuations δa, δb, and δc with respect to these
classical amplitudes fulfill the linearized Langevin equations

δȧ =
(
−κ

2
δa − ig0ζ0δb

)
− ig0β0δc

† + √
κain, (8)

δḃ =
(
−κ

2
δb − ig0ζ0δa

)
− ig0α0δc + √

κbin, (9)

δċ = −γ

2
δc − ig0(α∗

0δb + β0δa
†) + √

γ cin, (10)
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where we consistently dropped all terms of quadratic order in
the fluctuations. This approximation is only valid for large
enough amplitudes. We also introduce here the shorthand
notation (α0,β0) = (α(ζ0),β(ζ0)) for the cavity amplitudes in
the developed mechanical limit cycle. The quantum fluctu-
ations of the cavity modes can now be treated in analogy
to the classical amplitudes simply by setting δȧ = δḃ = 0
and solving the resulting algebraic equation. Inserting the
solutions for δa and δb back into Eq. (10) gives the dynamics
for the mechanical mode δc. For the canonical mechanical
quadratures X = (δc + δc†)/

√
2 and Y = (δc − δc†)/

√
2i [cf.

Fig. 2(c)], we get effective Langevin equations

Ẋ = − 1
2�X +

√
DXN, Ẏ =

√
DYN, (11)

with damping �, diffusion D, and noise forces fulfill-
ing 〈XN (t),XN (t ′)〉 = δ(t − t ′) and 〈YN (t),YN (t ′)〉 = δ(t −
t ′). Both � = γ + �opt(ζ ) and D = γ ( 1

2 + n̄) + Dopt(ζ ) have
an intrinsic mechanical constant contribution and an optically
mediated nonlinear (ζ -dependent) contribution. We find that
Dopt(ζ ) = g2

0
κ
2 (|α|2 + |β|2)/hζ at the point of the limit cycle is

exactly as large as the vacuum contribution of the mechanical
bath, i.e., Dopt(ζ0) = γ

2 , but �opt(ζ0) = γ (3 − 4/
√
R) can

grow up to three times the mechanical damping for large R.
In total the damping and diffusion depicted in Figs. 2(a) and
2(b) are at the limit cycle

�(ζ0) = 4γ (1 − 1/
√
R), D(ζ0) = γ (n̄ + 1). (12)

As schematically depicted in Fig. 2(c), in our convention the
Y quadrature relates to the phase of the mechanical oscillator,
which is subjected to undamped diffusion [cf. Eq. (11)].
The X quadrature relates to the mechanical amplitude, our
focus of interest in this Rapid Communication. In particular,
for the phonon occupation number n̂ = c†c one finds 〈n̂〉 =
ζ 2 + O(ζ 0) and 〈n̂2〉 = ζ 4 + 2ζ 2〈X2〉 + O(ζ 0), such that the
Fano factor is F 	 2〈X2〉. Equation (11) gives 〈X2〉 = D/�

in steady state, i.e., the amplitude variance is determined by
the compromise of diffusion and effective damping, yielding
for the Fano factor

F = 1

2

1 + n̄

1 − 1/
√
R

. (13)

This is in excellent agreement with numerical results shown
in Fig. 4(a) that were obtained by Monte Carlo simulation
(see Appendix) of a master equation equivalent to the exact,
nonlinear equations of motion in Eqs. (3) and (4).

From Eq. (13) we see that for R � 1 the Fano factor
approaches (1 + n̄)/2. Therefore, we arrive at the condition
n̄ < 1 necessary in order to observe sub-Poissonian phonon
statistics. For a cryogenically cooled mechanical oscillator
n̄ = 1/(e�ωm/kBT − 1) < 1 can in principle be achieved for a
sufficiently high resonance frequency and at low temperature
T (see [40,41]). However, in the present case it is possible to
take advantage of laser cooling of the mechanical oscillator
[42,43] in order to observe sub-Poissonian statistics.

V. ADDITIONAL LASER COOLING

Consider a setup where the mechanical oscillator is coupled
to a third optical cavity of linewidth κd which is driven below
resonance such as to induce an additional damping γL of

the oscillator. Eliminating this cooling cavity gives rise to a
“dressed” mechanical oscillator whose equation of motion is
still given by (4) with an effective mechanical damping and
occupation number

γ = γ0 + γL, n̄ = γ0n̄0 + γLn̄L

γ0 + γL

. (14)

Here γ0 is the linewidth and n̄0 the occupation number of
the bare mechanical resonance (without laser cooling), and
n̄L = (κd/4ωm)2 is the quantum limit of optomechanical laser
cooling [42,43].

In order to have F < 1 we assume laser cooling to an
effective phonon occupation n̄ < 1. This comes at the cost of
a decreased gain parameter R = 16g2

0E
2/κ3(γ0 + γL), which

can be compensated for by a somewhat more intense driving
field. It is rather remarkable that laser cooling can help to
observe a quantum feature such as sub-Poissonian phonon
statistics: While laser cooling can provide a small effective
occupation number n̄ � n̄0 it does so by increasing the
effective mechanical linewidth γ � γ0 by the same factor.
As a result, the decoherence rate relevant for quantum effects,
γ0n̄0 = γ n̄, stays constant, such that laser cooling in most
cases does not help in order to achieve quantum effects with
mechanical oscillators.

VI. EXPERIMENTAL FEASIBILITY

The requirements on the system parameters to have
g(2)(0) < 1 (and therefore F < 1) is found by inserting the
mean amplitude (7) and the Fano factor (13) in the definition

(b)(a)

(c)

FIG. 3. (Color online) (a) Fano factor as a function of effective
mechanical bath occupation number n̄ and total number of photons
in the cavity nph[κγ /4g2

0] = √
R according to Eq. (13). (b) Plot

of [g(2)(0) − 1][(g0/κ)2] as a function of the same parameters in
units of the squared single-photon strong-coupling parameter (g0/κ)2

according to Eqs. (15) and (16). The condition for both sub-Poissonian
statistics (F < 1) and antibunching [g(2)(0) < 1] is visualized by the
red contour line n̄ = 1 − 2/

√
R in both plots. (c) Plot of g

(2)
opt(0) for

optimal choice ofR as a function of g0/κ and n̄ according to Eq. (17).
All units in this figure are dimensionless.
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(1) of g(2)(0),

g(2)(0) − 1 = 4
(g0

κ

)2 F − 1√
R − 1

. (15)

For the discussion of experimental feasibility it is more
instructive to express the gain parameter R in terms of
the steady state total number of photons in the cavity
nph = |α0|2 + |β0|2 = κγ

4g2
0

√
R, where we used Eqs. (7) and

(5). The circulating number of photons is important as it
determines the heating of the mechanical structure, which was
the limiting decoherence mechanism in recent experiments
with optomechanical crystals [4]. In Figs. 3(a) and 3(b) we
show the Fano factor F and g(2)(0) − 1 (in units of g2

0/κ
2)

as a function of the number of photons in the cavity nph and
the effective mechanical bath occupation number n̄. In view
of the dependence of the Fano factor and the second order
coherence function on R [cf. Eqs. (13) and (15), respectively],
it is clear that there is an optimal number of circulating
photons minimizing g(2)(0) for given n̄ and single-photon
strong-coupling parameter g0/κ . The minimum is reached at

nph
[
κγ /4g2

0

] = (3 + n̄)/(1 − n̄) (16)

and is given by

g
(2)
opt(0) = 1 − 1

2

(g0

κ

)2 (1 − n̄)2

(1 + n̄)
, (17)

which is illustrated in Fig. 3(c). Thus, a large single-photon
coupling helps, but is not strictly required, to create a
robust signal to verify antibunching. We conclude that a
sub-Poissonian phonon laser state can be prepared and verified
outside the single-photon strong-coupling regime and for small
but finite effective [cf. Eq. (14)] bath occupation n̄ by detecting
photon antibunching in the reflected light. We emphasize that
phonon antibunching can be observed already in a regime of
few circulating photons nph � 1.

VII. READOUT OF PHONON STATISTICS

The readout of the—possibly antibunched—phonon statis-
tics can be implemented in analogy to [18] using the cooling
laser mode d. In the sideband resolved (κd � ωm) and linear
(gdζ � ωm) regime the dynamics of laser cooling can be
understood as a continuous coherent state swap interaction
cd† + c†d [5,6]. The phonon statistics of d can then be
measured by counting the photons in the output of the cooling
cavity d at the sideband frequency +ωm [18]. Hence with this
readout scheme phonon antibunching is detected via photon
antibunching.

Note that detection losses of an experiment do not alter
the measured second order coherence function, as both its
numerator 〈c†c†cc〉 and denominator 〈n̂〉2 scale with the
detection efficiency squared. Additional noise counts however,
mostly caused by dark counts from the detector and carrier
photons leaking through the frequency filter, will bring g(2)(0)
closer to one. In [18] the noise equivalent-phonon number
nNEP, defined as the ratio of noise counts and sideband counts
per phonon, was limited by nNEP = 0.89. Using an additional
filter to decrease the carrier bleed through, the authors even
expect to improve this value by a few orders of magnitude.

We conclude that a phonon statistics readout that does not
significantly alter g(2)(0) is feasible.

VIII. EXPERIMENTAL CASE STUDY

Currently the highest reported value for the coupling in
optomechanical crystals is g0/2π = 1.1 MHz [44]. The lowest
cavity decay rate in a photonic crystal is, to our knowledge,
κ = 20 MHz [45]. While the best ratio achieved in a single
device is g0/κ = 0.007 [4], combining the best values in one
device would already reach g0/κ ≈ 0.055. The lowest reported
effective bath occupation reached with optomechanical cool-
ing is n̄ = 0.85 [4]; using a dilution refrigerator mechanical
oscillators have even been cooled down below n̄ < 0.07.
Assuming a slightly more optimistic g0/κ = 0.1, an effective
environmental temperature of 200 mK, and a mechanical
frequency of 5 GHz the deviation of g

(2)
opt(0) from 1 according

to Eq. (17) will be 2.5 per mille. Further improvements on
g0 and κ are expected using new designs and fabrication
methods, so that reaching a signal of g

(2)
opt(0) − 1 on the order

of a few percent is a realistic prospect for the near future (cf.
Fig. 3).

IX. OUTLOOK: TOWARDS THE SINGLE-PHOTON
STRONG-COUPLING REGIME

Our linearized model is strictly valid only for g0/κ � 1.
We can, however, expect qualitative agreement to some extent
even for larger g0/κ . The deviations of F from Eq. (13) in this
regime are plotted in Fig. 4(a). Strongly sub-Poissonian states
with small limit cycle amplitude 〈n̂〉 feature a negative Wigner
function [23]. As discussed above 〈n̂〉 ∼ (κ/g0)2. It is therefore
reasonable to expect negative mechanical Wigner density with
g0/κ approaching the single-photon strong-coupling regime.
As depicted in Fig. 4(b) we confirm this numerically. All
numerical calculations were done with QUTIP [46,47] (see
Appendix).

(b)(a)

FIG. 4. (Color online) (a) Comparison of analytical results (black
solid line) from Eq. (13) to numerical results for Fano factor F

with increasing g0/κ = 0.25,0.5,1 (square, diamond, circle). The
parameter g0E/κ2 = 0.04 is fixed to stay well inside the regime
of validity of the adiabatic elimination. In this plot n̄ = 0 but
for finite temperature the agreement of numerics with Eq. (13)
is equally good. (b) Negativity (quotient of smallest and largest
value) of the mechanical oscillator’s Wigner function in steady state
calculated with QuTiP’s steady state solver. The bath occupation
is n̄ = 0.25,0.5,1,2 for the increasing curves. The driving field
E = 0.07κ is constant in both plots, to stay well in the regime of
nph � 1 for numerical simplicity. Each point in (b) is optimized over
R by varying γ . All units in this figure are dimensionless.
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X. CONCLUSION

Using an optomechanical setup with two optical modes
brings experimental demonstration of both sub-Poissonian
phonon statistics and optomechanically induced phonon and
photon antibunching in reach of today’s technology. For
parameters approaching the single-photon strong-coupling
regime the limit cycle states can even feature a negative
mechanical Wigner function.
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APPENDIX A: CHARACTERIZATION
OF PHONON STATISTICS

The phonon statistics is commonly characterized by the
Fano factor

F = 〈�n̂2〉/〈n̂〉, (A1)

and the second order coherence function g(2)(t) at time t = 0,

g(2)(0) = 〈c†c†cc〉/〈n̂〉2 = 1 + (F − 1)/〈n̂〉, (A2)

which gives information on the temporal correlations of
the phonons (g(2)(0) > 1 and g(2)(0) < 1 corresponding to
bunching and antibunching, respectively [48]). The Fano
factor F can be inferred from g(2)(0) through (1), and F

smaller (greater) than 1 also indicates sub- (super-) Poissonian
statistics. In [18] g(2)(0) ≈ 1 was achieved, verifying the
coherent nature of the mechanical oscillations in their setup.
For comparison, the Poissonian statistics of a (classical)
coherent state imply F = 1 and g(2)(0) = 1, while a thermal
state would have g(2)(0) = 2.

APPENDIX B: NUMERICAL ANALYSIS

Numerically we calculated the steady state of the system
using QUTIP [46,47], the Quantum Toolbox in Python. For
Fig. 4(b), where the mechanical amplitudes are small due
to the large g0/κ , the Hilbert space has moderate size and
we used a direct steady state solver for density matrices. For
Fig. 4(a) the Hilbert space is (in general) too large for this and
we had to use Monte Carlo trajectories [49–51] for the wave
function and average over many runs to obtain a density matrix.
Each trajectory |ψj (t)〉 had a coherent state with random,
independent and identically distributed Gaussian amplitudes,
ξj ∼ N (ζ,1) around the analytical steady state amplitude ζ0

[fulfilling |ζ0|2 = ( κ
2g0

)2(
√
R − 1); cf. the main text] as the

initial state for the oscillator. Coherent states with amplitudes
given by the best analytical result, β0 = Eκ

2hζ0
, α0 = −i

Eg0ζ
∗
0

hζ0
,

were chosen as the initial state for the optical modes. The
system was then evolved according to the master equation

ρ̇ = −i[H,ρ] + Lρ (B1)
with the Hamiltonian

HI = iE(b† − b) + g0(ab†c + a†bc†) (B2)

and the Lindblad operator L = La + Lb + Lm, where

Laρ = κaρa† − κ

2
a†aρ − κ

2
ρa†a, (B3)

Lbρ = κbρb† − κ

2
b†bρ − κ

2
ρb†b, (B4)

Lm = γ cρc† − γ

2
c†cρ − γ

2
ρc†c. (B5)

The calculation for each trajectory was done in a displaced
frame around the (analytically expected) mean amplitude of
the mechanical oscillator and cavity modes, in order to reduce
the required numerical Hilbert space dimension. Finally we
averaged after an evolution time τ over all trajectories to obtain
a density matrix σ = ∑

j |ψj (τ )〉〈ψj (τ )|. With this density
matrix we calculated the mean values 〈n̂〉σ and 〈n̂2〉σ , which
in turn give the Fano factor F and the second order coherence
function g(2)(0) according to Eqs. (A1) and (A2). The evolution
time was chosen as τ = 5/γ so that both mean values 〈n̂〉σ
and 〈n̂2〉σ had already relaxed to steady state while the phase
has still not diffused away too far from ζ0. In this time frame
a small Hilbert space around the mean mechanical amplitude
was sufficient for the simulation.
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