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Anderson localization of matter waves in quantum-chaos theory
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We study the Anderson localization of atomic gases exposed to three-dimensional optical speckles by analyzing
the statistics of the energy-level spacings. This method allows us to consider realistic models of the speckle
patterns, taking into account the strongly anisotropic correlations which are realized in concrete experimental
configurations. We first compute the mobility edge Ec of a speckle pattern created using a single laser beam. We
find that Ec drifts when we vary the anisotropy of the speckle grains, going from higher values when the speckles
are squeezed along the beam propagation axis to lower values when they are elongated. We also consider the
case where two speckle patterns are superimposed, forming interference fringes, and we find that Ec is increased
compared to the case of idealized isotropic disorder. We discuss the important implications of our findings for
cold-atom experiments.
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Anderson localization is the complete suppression of
wave diffusion due to destructive interferences induced by
sufficiently strong disorder [1]. It was first discussed by
Anderson in 1958 [2] and has been observed (only much
later) in various physical systems, including light waves [3–6],
sound waves [7], and microwaves [8] and also in experiments
performed with ultracold gases, first implementing an effective
Anderson model [9] and then observing the localization of
matter waves in one dimension [10,11] and in three dimensions
[12,13]. Recently, transverse Anderson localization has been
realized in randomized optical fibers [14], paving the way to
potential applications in biological and medical imaging [15].

The key quantity which characterizes Anderson localization
in three-dimensional quantum systems is the mobility edge
Ec, which is the energy threshold that separates the localized
states (with energy E < Ec) from the delocalized ones (with
energy E > Ec) [16]. Many accurate theoretical predictions
for the value of Ec exist, but most of them regard simplified
toy models defined on a discrete lattice [17,18]. These lattice
models do not describe the spatial correlations, and their
possible anisotropy, of the disorder present in the physical
systems where Anderson localization has been observed. In
fact, these features are expected to have a profound impact on
the Anderson transition. For example, it is known that due to
finite spatial correlations an effective mobility edge exists also
in low-dimensional systems [19–23], while for uncorrelated
disorder all states would be localized [16]. According to recent
results [24], in continuous-space systems localization does
not occur if the disorder correlation length vanishes, even for
strong disorder. It is also known that the structure of the spatial
correlations changes drastically the localization length and the
transport properties [25,26].

The experiments performed with ultracold atoms are
emerging as the ideal experimental setup to study Anderson
localization [27–29]. Different from other condensed-matter
systems, atomic gases are not affected by absorption effects
and permit us to suppress the interactions. Furthermore, by
shining coherent light through diffusive surfaces, experimen-
talists are able to create three-dimensional disordered profiles
(typically referred to as optical speckle patterns) with tunable
intensity and to manipulate the structure of their spatial
correlations.

In this Rapid Communication, we investigate the Anderson
localization of noninteracting atomic gases moving in three-
dimensional optical speckles. We determine the single-particle
energy spectrum using large-scale diagonalization algorithms.
Then, by performing a statistical analysis of the spacings
between consecutive energy levels, we locate the mobility
edge. The study of the level-spacing statistics lies at the
heart of random-matrix and quantum-chaos theories. It has
permitted us to interpret the complex spectra of large nuclei,
atoms, and molecular systems [30,31]. More recently, it has
been employed in the analysis of the Google Matrix [32,33].
Quantum-chaos theory provides a universal basis-independent
criterion for the localization transition. One has to identify
two kinds of level-spacing distributions, namely, the Wigner-
Dyson distribution characteristic of ergodic chaotic systems,
and the Poisson distribution characteristic of localized quan-
tum systems. This method has allowed researchers to locate
the localization transition in noninteracting three-dimensional
lattice models (both isotropic and anisotropic) [34–37] and,
more recently, also in interacting one-dimensional spin sys-
tems [38–41]. In the present study this criterion is used to
investigate the Anderson localization of matter waves, setting
the basis for future investigations of many-body localization
in interacting three-dimensional Fermi gases.

First, we consider the experimental configuration with a
single speckle pattern created by shining a laser through a
diffusive plate. In this case the spatial correlations of the
disorder are intrinsically strongly anisotropic, with cylindrical
symmetry around the beam propagation axis. We find that,
when the speckles are elongated along the axis, which
is the typical experimental situation, the mobility edge is
only moderately reduced compared to the idealized models
of disorder with spherically symmetric correlations. This
unexpected result indicates that the experimental setup with a
single speckle pattern is quite suitable to investigate Anderson
localization, despite the strong disorder anisotropy. We also
consider the case where two orthogonal speckle patterns are
coherently superimposed. This setup, which was originally
implemented to avoid the large axial correlation length of the
single-pattern configuration, generates an intricate correlation
structure, with rapid oscillations of the external field due
to interference fringes (see Fig. 1) [42]. In this case we
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FIG. 1. (Color online) (a) Intensity profile of a speckle pattern
measured on a plane orthogonal to the beam propagation axis z. (b)
Elongated speckle pattern with anisotropy σz/σ = 6, measured along
a plane containing the beam axis z. (c) Profile resulting from two
orthogonally crossed speckle patterns (see text) measured on a plane
containing the second principal axis. (d) Representation of the two
speckle-pattern configuration, indicating the propagation directions
of the first beam (z) and the second beam (y). The red arrows indicate
the first principal axis (z′) and the second principal axis (y ′). The x

axis enters the sheet plane.

find that the mobility edge is higher than that for isotropic
disorder and is similar to the case of a single speckle pattern
with axially squeezed speckle grains. This means that the
two-pattern configuration provides experimentalists a handle
to shift upwards the position of the mobility edge.

The first step in the determination of Ec is to compute the
spectrum of the single-particle Hamiltonian Ĥ = − �

2

2m
� +

V (r), where � is the reduced Planck’s constant, m is the atom’s
mass, and V (r) is the disordered potential experienced by the
atoms exposed to optical speckle patterns. We consider a large
box with periodic boundary conditions, which has a cubic
shape (of size L) and parallelepiped shape for isotropic and
anisotropic speckles, respectively. We tackle this challenging
computational task by representing Ĥ in momentum space,
truncating the Fourier expansion at a large wave vector,
and carefully analyzing that the basis-truncation error is
smaller than the final statistical uncertainty. To compute the
eigenvalues we employ advanced numerical libraries for high-
performance computers with shared-memory architectures
[43]. For more details on the Hamiltonian representation
and on the numerical diagonalization procedure, see the
Supplemental Material [44].

If the speckle field is blue detuned with respect to the
atomic transitions, it generates a repulsive potential with
an exponential probability distribution of the local intensity,
which reads Pbd(V ) = exp(−V/V0)/V0 if the intensity is
V > 0 and P (V ) = 0 otherwise. Thus, the potential has the
lower bound V (r) = 0, while it is unbounded from above. The
disorder strength is determined by the energy scale V0, which
is equal to the spatial average of the potential, V0 = 〈V (r)〉 and

also to its standard deviation, so that V 2
0 = 〈V (r)2〉 − 〈V (r)〉2.

For sufficiently large systems the disorder is self-averaging,
and the spatial average coincides with the average over disorder
realizations. Another fundamental property which character-
izes the speckle pattern is the two-point spatial correlation
function �(r) = 〈V (r′ + r)V (r′)〉/V 2

0 . After averaging over
the position of the first point r′, it depends on only the relative
(vector) distance r.

In order to make a direct comparison with a previous
theoretical study based on transfer-matrix theory [46], we
first consider an idealized isotropic model of the speckle
pattern with a spherically symmetric correlation function that
reads �iso(r) = [sin(r/σ )/(r/σ )]2 (see inset in Fig. 2). The
parameter σ fixes the length scale of the spatial correlations
and therefore the typical grain size [44]. An efficient numerical
algorithm to generate isotropic speckle patterns is described in
detail in Refs. [47,48]. We determine the energy spectrum of a
large number of realizations of the speckle pattern [44]. In the
high-energy regime, the energy levels En (listed in ascending
order) fluctuate, avoiding each other and signaling the level
repulsion typical of delocalized chaotic systems. The distribu-
tion of the level spacings δn = En+1 − En should correspond
to the statistics of random-matrix theory (in particular, to the
Gaussian orthogonal ensemble), namely, the Wigner-Dyson
distribution. Instead, in the low-energy regime the energy
levels easily approach each other like independent random
variables. This is a consequence of the localized character
of the corresponding wave functions. In this regime the level
spacings follow a Poisson distribution. In order to identify the
two statistical distributions and determine the energy threshold
Ec which separates them, we compute the ratio of consecutive
level spacings: r = min{δn,δn−1}/ max{δn,δn−1}. The average
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FIG. 2. (Color online) Two-point spatial correlation functions of
the disorder. The solid curves represent the analytical formulas [45],
and the symbols represent the correlation measured on the speckle
patterns generated numerically. The inset shows the correlation
function of a single speckle pattern along the beam axis z for elongated
speckle grains (σz/σ = 3) and squeezed speckle grains (σz/σ = 1/3),
radial correlation, and isotropic correlation of idealized spherically
symmetric speckle patterns. The main panel shows the correlation of
crossed speckle patterns along the first (z′) and second (y ′) principal
axes and along the orthogonal axis x.
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FIG. 3. (Color online) The main panel shows the ensemble-
averaged adjacent-gap ratio 〈r〉 as a function of the energy E/Eσ

for an isotropic speckle pattern of intensity V0 = Eσ , where Eσ is
the correlation energy. The horizontal green line is the result for the
Wigner-Dyson distribution 〈r〉WD, and the dashed black line is the
one for the Poisson distribution 〈r〉P. The inset gives a comparison
between different system sizes. The vertical orange line indicates the
position of the mobility edge Ec (the hatched rectangle represents
the error bar). The gray bar represents the value of Ec predicted in
Ref. [46] using transfer-matrix theory.

over disorder realizations is known to be 〈r〉WD � 0.5307 for
the Wigner-Dyson distribution and 〈r〉P � 0.38629 for the
Poisson distribution [49]. This statistical parameter was first
introduced in Ref. [38] in the context of many-body localiza-
tion. In Fig. 3 we show the data corresponding to the disorder
strength V0 = Eσ , where Eσ = �

2/mσ 2 is the correlation
energy. We find that the ensemble average 〈r〉 changes rapidly
from 〈r〉P to 〈r〉WD as the energy increases. While in an infinite
system one would have a sudden transition between the two
statistics (with a third distribution exactly at Ec [50]), in a finite
system we have a rapid but continuous crossover. For energies
E < EC , the data drift towards 〈r〉P as the system size L

increases since the localized wave functions are independent
only for L → ∞, while they drift in the opposite direction
for E > Ec. The crossing of the curves corresponding to
different system sizes indicates the critical energy (see the
inset of Fig. 3). To pinpoint Ec we fit the data close to the
transition with the scaling Ansatz 〈r〉 = g[(E − Ec)L1/ν] [51],
where ν is the critical exponent of the correlation length and
g[x] is the scaling function (universal up to a rescaling of
the argument) which we Taylor expand up to second order.
For the case of Fig. 3, from the best-fit analysis we obtain
Ec = 0.576(10)Eσ , in quantitative agreement with the result
of transfer-matrix theory from Ref. [46]: Ec = 0.570(7)Eσ .
For the critical exponent we obtain ν = 1.6(2), which is
consistent with the prediction for the Anderson model: ν =
1.571(8) [52]. It is worth mentioning that in the energy regime
E ∼ V0 classical particles would be completely delocalized
since the energy threshold εp for classical percolation in
three-dimensional speckle patterns is extremely small, namely,
εp ∼ 10−4V0 [53]. We consider also a red-detuned speckle
field. Its distribution of intensities Prd(V ) is the opposite of
what corresponds to blue-detuned speckles, that is, Prd(V ) =

Pbd(−V ). The corresponding average value is 〈V (r)〉 = −V0.
At the disorder strength V0 = Eσ , we obtain the mobility
edge Ec = −0.81(4)Eσ , which (marginally) agrees with the
result of transfer-matrix theory: Ec = −0.863(6)Eσ [46]. It is
worth noticing that for blue-detuned speckles the mobility
edge is well below the average intensity of the potential,
while for red-detuned speckles it is instead above it. This
strong asymmetry was already found in Ref. [46] using
transfer-matrix theory, but it was not captured by previous
approximate calculations based on the self-consistent theory
of localization. This means that predicting the position of the
mobility edge requires quantitatively accurate methods.

We now turn the discussion to concrete experimental
configurations. We first consider the setup where a single laser
beam with wavelength λ, propagating along the positive z axis
(see Fig. 1), is transmitted through a diffusive plate and then
focused onto the atomic cloud using a lens with focal length f .
We assume the lens to be uniformly lit over a circular aperture
of diameter D. The simplified numerical procedure employed
before for isotropic models [47,48] does not apply in this case.
The complex amplitude of the speckle field at the position
r = (x,y,z) measured from the focal point can be computed
using the Fresnel diffraction integral [45]:

A1(r) = 1

iλf
exp[i2π (z + f )/λ]

∫∫
a1(α,β)

× exp

[
iπ

(x − α)2 + (y − β)2

λ(z + f )

]
dαdβ, (1)

where a1(α,β) is the complex field amplitude at the point l ≡
(α,β) just behind the focusing lens. The potential intensity is
V1(r) = |A1(r)|2. Equation (1) was derived assuming paraxial
approximation. Consistently, we will consider only small
(positive) displacements from the focal point: x,y,z 
 f,D.
A convenient procedure to evaluate the Fresnel integral is
to simulate the effect of a large number N of scattering
centers randomly placed on the aperture [45,54]. On the
lens plane, one has a1(α,β) = ∑N

n=1 on exp(iφn)δ(2)(l − ln),
where ln ≡ (αn,βn) is the position of the nth scatterer, on is
the modulus of the corresponding scattered wave, and φn is
its phase, which has to be sampled from a uniform random
distribution in the interval from −π to π . To simulate the
effect of a uniform illumination, which is the case considered
in this Rapid Communication, the moduli on have to be
identically and independently distributed random variables,
while the random positions of the scattering centers must fill
the aperture circle uniformly [44]. Substituting the expression
for a1(α,β) in Eq. (1), one obtains the complex field A1(r) as
the sum of wavelets propagating from the scattering center
to the observation point. The field A1(r) then has to be
normalized to have the desired average intensity V0. We
verified that for N � 100 the resulting potential has the
statistical properties of fully developed speckle patterns [45].
The intensities have the exponential probability distribution
Pbd(V ) defined above. The spatial correlation function is
anisotropic, with cylindrical symmetry around the propagation
axis z. If one takes two points aligned in the radial direction, the
correlation function reads �rad(r) = [2J1(r/σ )/(r/σ )]2 [45],
where the correlation length is fixed by the parameters of the
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optical apparatus: σ = λf/(Dπ ). Instead, in the axial direction
the correlation function is [45] �z(r) = [sin(r/σz)/(r/σz)]2,
where the axial correlation length is σz = 8λ(f/D)2/π . In
current experimental implementations, the optical parameters
are typically such that σz > σ , meaning that the speckle grains
are elongated along the beam propagation axis. For example,
in the experiment of Ref. [13] the anisotropy parameter was
σz/σ ≈ 6, while in the later experiment [55] it was varied
in the range 1 � σz/σ � 10 by adjusting the aperture of the
focusing length [56].

In order to investigate the effects due to the correlation
anisotropy, we compute Ec for varying values of the axial
correlation length σz, considering both squeezed speckle
grains (σz/σ < 1) and elongated speckle grains (σz/σ > 1).
In our computations the box shape is adapted to the disorder
anisotropy (see [44]). The disorder intensity is set at V0 =
Eσ = �

2/mσ 2, defined using the (fixed) radial correlation
length σ . We find that Ec monotonously decreases as we
increase the anisotropy parameter σz/σ . In the quasi-isotropic
case σz/σ = 1, the result agrees with the idealized isotropic
model considered above, while it is approximately 50% larger
for σz/σ = 1/9 and 15% lower for σz/σ = 6 (see Fig. 4). It
is worth noticing that this dependence of Ec on the anisotropy
parameter is not trivially related to the scaling of the average
correlation energy Eσ̃ = �

2/mσ̃ 2, defined from the geometric
mean of the correlation lengths in the three spatial directions:
σ̃ = (σσσz)1/3. This suggests that the geometric mean σ̃ is
not the unique relevant length scale and that the structure of
the spatial correlations plays a central role. We emphasize that
in this Rapid Communication we are considering the speckle
pattern created by a uniform aperture function. With different
kinds of illumination (e.g., the Gaussian illumination [12,13]),
Ec might be somewhat different.

While the reduction of Ec due to a large axial correlation
length could be observed using currently available experi-
mental setups, the increase of Ec is not easily accessible
since the optical apparatuses do not permit us to create
squeezed speckle grains. However, we can show that a similar
increase in Ec is induced when two orthogonal speckle patterns
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FIG. 4. (Color online) Mobility edge Ec/Eσ as a function of
the anisotropy parameter σz/σ . σz and σ are the axial and radial
correlation lengths, respectively. The horizontal purple line indicates
the disorder intensity V0 = Eσ . The solid black curve is a guide to
the eye (the dashed parts are an extrapolation).

are superimposed. Explicitly, we numerically construct the
potential due to the sum of two speckle patterns generated
by laser beams with the same wavelength λ. The first pattern
propagates along z, and the second propagates along y (see
Fig. 1), and they interfere coherently, as is the case when the
two laser beams have the same linear polarization. The total
complex amplitude is then [57,58] Atot(r) = A1(r) + A2(r).
The complex amplitude of the second speckle pattern A2(r) can
be computed using Eq. (1) as described above, just exchanging
the roles of the coordinates y and z in the right-hand side. For
simplicity, we consider two patterns created with equal circular
apertures, lit with the same (uniform) intensity, and focused
using identical lenses. Thus the corresponding potentials
|A1(r)|2 and |A2(r)|2 have the same radial correlations lengths,
which we set at σ ∼= 0.75λ. Their axial correlation lengths are
extremely large, so that their variations along the respective
propagation axes are irrelevant. This configuration is inspired
by the experimental setup of Ref. [42]. The potential V (r) =
|A(r)|2 corresponding to the coherent sum of two blue-detuned
fields has the same exponential intensity distribution Pbd(V )
as a single (blue-detuned) speckle pattern [45]. The structure
of the spatial correlations of this total potential is instead much
more intricate [42]. To describe it, it is convenient to consider
the principal axes y ′ and z′, obtained with a 45◦ rotation of the
y and z axes around the x axis (see Fig. 1). The correlation
between two points aligned in parallel with the first principal
axis z′ is �z′

(r) = �rad(r/
√

2), meaning that the correlation
length is σp = √

2σ [42]. Moving in parallel with the second
principal axis y ′, the potential is seen to oscillate rapidly due
to the interference fringes, and the corresponding correlation
function is �y ′

(r) = [2J1(r/σp)/(r/σp) cos(
√

2πr/λ)]2. The
correlation function along the transverse axis x is instead the
same as that for a single speckle pattern: �x(r) = �rad(r).
For our choice of parameters, the correlation function along
the second principal axis �y ′

(r) touches zero four times
before the first zero of the corresponding function along
the transverse axis �x(r), indicating the strong anisotropy of
the disorder correlations. We consider again a potential with
average intensity V0 = Eσ . The corresponding mobility edge
is found to be Ec = 0.67(1)Eσ , significantly higher than for
the idealized isotropic disorder. This result is comparable to the
one for a single speckle pattern with squeezed axial correlation
length σz/σ � 1/3. We argue that this increase of Ec is induced
by the rapid variations of the potential due to the interference
fringes, which effectively reduce the spatial correlation length
along the second principal axis. Experimentalists can easily
modify the width of the interference fringes, either by changing
the angle between the two beams or by using lasers with
different wavelengths. Observing the increase of Ec is thus
within experimental reach.

We now turn the discussion to the comparison with the
available experimental data. Ec was first measured in Ref. [13]
in the single-pattern configuration. The speckle grains were
elongated, corresponding approximately to the anisotropy
parameter σz/σ ≈ 6 [56]. In the regime of disorder strengths
V0 ≈ Eσ , the results were in the range 1.5V0 � Ec � 2V0.
These findings do not agree with our results for strongly
elongated speckle grains: Ec ≈ 0.5V0. Most likely, the reason
of this discrepancy traces back to the procedure used to extract
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the values of Ec from the measurement of the fraction of
atoms that remain Anderson localized. In this derivation, the
spectral function was approximated using the disorder-free
value [59,60]. This approximation is not reliable at the disorder
strength necessary to observe Anderson localization. Notice
also that in the experiment of Ref. [13] a Gaussian pupil
function was employed. More recently, the mobility edge
was measured in the configuration with two crossed speckle
patterns created with approximately uniform apertures [42].
For disorder intensities comparable to the correlation energy
V0 ≈ Eσ , the mobility edge was found in the regime Ec ≈ V0.
This result is significantly larger than the predictions for
idealized isotropic models of the disorder and, in this sense, is
consistent with our findings. However, it also overestimates
our prediction for V0 = Eσ . This discrepancy is probably
due to the fact that in the experiment the two interfering
speckle patterns are not equivalent because they were created
using slightly different apertures and lenses with different
focal lengths. Also, the width of the experimental interference
fringes is slightly smaller compared that in to our model.
Furthermore, an exact modeling of the experiment of Ref. [42]
would require us to go beyond the paraxial approximation.

All of these details of the experimental setup, once fully
characterized, could be easily implemented in our formalism
to compute Ec.

In conclusion, we have studied the Anderson localization of
matter waves exposed to optical speckles in the framework of
quantum-chaos theory. We have shown that the structure of the
spatial correlation of the disorder determines the position of
the mobility edge, and we have described the effects induced
by the correlation anisotropy in concrete experimental con-
figurations, thus paving the way to a quantitative comparison
between theory and experiment. This study sets the basis for
future investigations of the effects due to interactions on the
transport and on the coherence properties of disordered atomic
gases [61] and on the role played by the fractality of the critical
wave functions close the mobility edge [62].
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acknowledged for helpful discussions and for providing the
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[36] F. Milde, R. A. Römer, and M. Schreiber, Phys. Rev. B 61, 6028

(2000).
[37] L. Schweitzer and H. Potempa, J. Phys. Condens. Matter 10,

L431 (1998).

061601-5

http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/18347
http://dx.doi.org/10.1038/18347
http://dx.doi.org/10.1038/18347
http://dx.doi.org/10.1038/18347
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nature05623
http://dx.doi.org/10.1038/nphys1101
http://dx.doi.org/10.1038/nphys1101
http://dx.doi.org/10.1038/nphys1101
http://dx.doi.org/10.1038/nphys1101
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1103/PhysRevLett.101.255702
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nphys2256
http://dx.doi.org/10.1038/nphys2256
http://dx.doi.org/10.1038/nphys2256
http://dx.doi.org/10.1038/nphys2256
http://dx.doi.org/10.1126/science.1209019
http://dx.doi.org/10.1126/science.1209019
http://dx.doi.org/10.1126/science.1209019
http://dx.doi.org/10.1126/science.1209019
http://dx.doi.org/10.1364/OL.37.002304
http://dx.doi.org/10.1364/OL.37.002304
http://dx.doi.org/10.1364/OL.37.002304
http://dx.doi.org/10.1364/OL.37.002304
http://dx.doi.org/10.1038/ncomms4362
http://dx.doi.org/10.1038/ncomms4362
http://dx.doi.org/10.1038/ncomms4362
http://dx.doi.org/10.1038/ncomms4362
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.47.1546
http://dx.doi.org/10.1103/PhysRevLett.47.1546
http://dx.doi.org/10.1103/PhysRevLett.47.1546
http://dx.doi.org/10.1103/PhysRevLett.47.1546
http://dx.doi.org/10.1103/PhysRevLett.105.046403
http://dx.doi.org/10.1103/PhysRevLett.105.046403
http://dx.doi.org/10.1103/PhysRevLett.105.046403
http://dx.doi.org/10.1103/PhysRevLett.105.046403
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevLett.82.4062
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1103/PhysRevLett.98.210401
http://dx.doi.org/10.1088/1367-2630/10/4/045019
http://dx.doi.org/10.1088/1367-2630/10/4/045019
http://dx.doi.org/10.1088/1367-2630/10/4/045019
http://dx.doi.org/10.1088/1367-2630/10/4/045019
http://dx.doi.org/10.1103/PhysRevA.80.023605
http://dx.doi.org/10.1103/PhysRevA.80.023605
http://dx.doi.org/10.1103/PhysRevA.80.023605
http://dx.doi.org/10.1103/PhysRevA.80.023605
http://dx.doi.org/10.1103/PhysRevA.79.063617
http://dx.doi.org/10.1103/PhysRevA.79.063617
http://dx.doi.org/10.1103/PhysRevA.79.063617
http://dx.doi.org/10.1103/PhysRevA.79.063617
http://arxiv.org/abs/arXiv:1501.05433
http://dx.doi.org/10.1103/PhysRevA.85.063611
http://dx.doi.org/10.1103/PhysRevA.85.063611
http://dx.doi.org/10.1103/PhysRevA.85.063611
http://dx.doi.org/10.1103/PhysRevA.85.063611
http://dx.doi.org/10.1140/epjst/e2013-01758-6
http://dx.doi.org/10.1140/epjst/e2013-01758-6
http://dx.doi.org/10.1140/epjst/e2013-01758-6
http://dx.doi.org/10.1140/epjst/e2013-01758-6
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1038/nphys1507
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1088/1751-8113/45/14/143001
http://dx.doi.org/10.1140/epjb/e2014-50123-4
http://dx.doi.org/10.1140/epjb/e2014-50123-4
http://dx.doi.org/10.1140/epjb/e2014-50123-4
http://dx.doi.org/10.1140/epjb/e2014-50123-4
http://arxiv.org/abs/arXiv:1502.00584
http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1103/PhysRevB.49.14726
http://dx.doi.org/10.1103/PhysRevB.49.14726
http://dx.doi.org/10.1103/PhysRevB.49.14726
http://dx.doi.org/10.1103/PhysRevB.49.14726
http://dx.doi.org/10.1103/PhysRevB.61.6028
http://dx.doi.org/10.1103/PhysRevB.61.6028
http://dx.doi.org/10.1103/PhysRevB.61.6028
http://dx.doi.org/10.1103/PhysRevB.61.6028
http://dx.doi.org/10.1088/0953-8984/10/25/003
http://dx.doi.org/10.1088/0953-8984/10/25/003
http://dx.doi.org/10.1088/0953-8984/10/25/003
http://dx.doi.org/10.1088/0953-8984/10/25/003


RAPID COMMUNICATIONS

E. FRATINI AND S. PILATI PHYSICAL REVIEW A 91, 061601(R) (2015)

[38] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
[39] E. Cuevas, M. Feigel’man, L. Ioffe, and M. Mezard, Nat.

Commun. 3, 1128 (2012).
[40] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91,

081103(R) (2015).
[41] C. R. Laumann, A. Pal, and A. Scardicchio, Phys. Rev. Lett.

113, 200405 (2014).
[42] G. Semeghini, M. Landini, P. Castilho, S. Roy, G. Spagnolli,

A. Trenkwalder, M. Fattori, M. Inguscio, and G. Modugno,
arXiv:1404.3528.

[43] The Parallel Linear Algebra for Scalable Multi-core Architec-
tures (PLASMA) project, http://icl.cs.utk.edu/plasma/.

[44] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.91.061601 for more details on the box size
and shape, on the boundary conditions, and on the Hamiltonian
matrix representation.

[45] J. Goodman, Speckle Phenomena in Optics: Theory and Appli-
cations (Roberts, Englewood, CO, 2007).

[46] D. Delande and G. Orso, Phys. Rev. Lett. 113, 060601 (2014).
[47] J. M. Huntley, Appl. Opt. 28, 4316 (1989).
[48] M. Modugno, Phys. Rev. A 73, 013606 (2006).
[49] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Phys. Rev.

Lett. 110, 084101 (2013).

[50] V. E. Kravtsov, I. V. Lerner, B. L. Altshuler, and A. G. Aronov,
Phys. Rev. Lett. 72, 888 (1994).

[51] S. Chakravarty, in 50 Years of Anderson Localization, edited by
E. Abrahams (World Scientific, Singapore, 2010).

[52] K. Slevin and T. Ohtsuki, New J. Phys. 16, 015012 (2014).
[53] S. Pilati, S. Giorgini, M. Modugno, and N. Prokof’ev, New J.

Phys. 12, 073003 (2010).
[54] J. C. Dainty, in Progress in Optics XIV, edited by E. Wolf (North-

Holland, Amsterdam, 1977), pp. 1–46.
[55] W. R. McGehee, S. S. Kondov, W. Xu, J. J. Zirbel, and B.

DeMarco, Phys. Rev. Lett. 111, 145303 (2013).
[56] The experiments of Ref. [13,55] implemented a Gaussian

illumination, so the identification with the anisotropy parameter
used here is only semiquantitative.

[57] L. Leushacke and M. Kirchner, J. Opt. Soc. Am. A 7, 827 (1990).
[58] T. Okamoto and S. Fujita, J. Opt. Soc. Am. A 25, 3030 (2008).
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