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Spin correlations as a probe of quantum synchronization in trapped-ion phonon lasers
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We investigate quantum synchronization theoretically in a system consisting of two cold ions in microtraps.
The ions’ motion is damped by a standing-wave laser while also being driven by a blue-detuned laser which
results in self-oscillation. Working in a nonclassical regime, where these oscillations contain only a few phonons
and have a sub-Poissonian number variance, we explore how synchronization occurs when the two ions are
weakly coupled using a probability distribution for the relative phase. We show that strong correlations arise
between the spin and vibrational degrees of freedom within each ion and find that when two ions synchronize
their spin degrees of freedom in turn become correlated. This allows one to indirectly infer the presence of
synchronization by measuring the ions’ internal state.
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Introduction. Two macroscopic self-oscillators synchronize
when their relative phase locks to a fixed value [1]. Important
studies of synchronization effects were carried out using
lasers [2], with arrays of Josephson junctions [3] and over the
last few years much attention has been devoted to exploring
synchronization in micromechanical oscillators [4]. Recently,
theoretical work has begun to explore synchronization in
the quantum regime [5–14]: the formation of a relative
phase preference between two (or more) weakly coupled
quantum oscillators operating in a regime far from the
classical correspondence limit. Differences between classical
and quantum predictions for the synchronization of van der Pol
oscillators have been identified in the case where the oscillators
are only weakly excited [5]. Nevertheless, many important
questions about quantum synchronization remain open, such
as how it should be quantified and how it can best be probed
experimentally.

Cold ions in microtraps provide a natural platform for
exploring synchronization in the quantum regime [5]. The
generation of self-oscillations in the motional state of ions,
phonon lasing, has already been observed [15]. Furthermore,
precise control of trapping potentials of the individual ions can
now be achieved with microtraps [16] allowing the vibrational
frequencies of individual ions and the coupling between
different ions to be tuned. Here, we investigate synchronization
in two trapped-ion phonon lasers which are pumped in a similar
way to that demonstrated in recent experiments [15].

We identify a parameter regime where phonon lasing of
an individual ion occurs with just a few quanta leading
to a nonclassical state of the phonons and investigate the
emergence of synchronization in this regime when a weak
interion coupling is introduced (weak as it is the slowest time
scale in the system). Our model includes two of the electronic
levels of the ions used in the pumping process (which we
refer to as “spin”), allowing us to uncover strong correlations
which arise between the electronic and vibrational degrees
of freedom of the individual ions. We study the degree of
synchronization as the strength and detuning of the pumping
lasers are varied by calculating the probability distribution
for the relative phase of the ion’s phonons. Lastly we show
that synchronization between the ion’s vibrational degrees of

freedom can lead to correlations between the “spins” of the two
ions. Indeed, observation of spin correlations form a sufficient
and convenient method of inferring synchronization between
two phonon lasers.

Trapped ion setup. A sketch of the system we study is shown
in Fig. 1. Each ion is in a microtrap [16] with frequency ωj=1,2.
The quantized vibrational degrees of freedom (phonons) are
linearly damped at a rate �, which can be realized by laser
cooling techniques [17,18]. Each ion’s spin (internal) degree
of freedom is driven by standing wave lasers with Rabi
frequencies �̃j=1,2, which are set to be resonant with the
first blue sideband transition. The two ions interact weakly
via a dipole interaction which leads to a linear coupling of
their phonons with strength J [16]. In the rotating wave
approximation, the dynamics of the ions is governed by the
master equation,

ρ̇ = −i[H,ρ] +
∑
j=1,2

{
γ

2

∫ 1

−1
dzW (z)D[eiηqj zσ−

j ](ρ)

+�D[aj ](ρ)

}
, (1)

where the two-ion Hamiltonian H , angular distribution for
spontaneous emission W (z), and Lindblad dissipator D[L](ρ)

FIG. 1. (Color online) (a) Trapped-ion setup. Each ion is damped
at a rate � by a standing-wave laser and driven by a blue-detuned laser
of strength �j=1,2. The phonons have a dipole interaction of strength
J and the trap frequencies are ω1 and ω2. (b) Internal electronic states
of each ion. The “spin” states are pumped by a laser blue detuned
by frequency ωj=1,2 and undergo spontaneous emission at a rate γ .
The damping is achieved using a red-detuned drive on a different
electronic transition (not shown) and is eliminated adiabatically.
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are

H =
∑
j=1,2

1

2

[
ωj (2a

†
j aj − σ z

j ) + �̃jσ
x
j sin(ηqj )

]

+ Jq1q2,

W (z) = 3

4
(1 + z2),

D[L](ρ) = LρL† − 1

2
(L†Lρ + ρL†L),

where aj are the annihilation operators for the phonons,
σ

α=x,y,z

j are the Pauli operators for the spins, qj = a
†
j + aj

is the position operator, and η is the Lamb-Dicke parameter.
We have adjusted the laser such that the detuning with respect
to the spin is −ωj .

We simplify the master equation by assuming that the
system is in the Lamb-Dicke regime (η � 1), and retain only
terms up to and including first order in η. We also assume
that the trapping potentials are tight, ωj � γ,�,
,η�̃j . This
allows us to neglect terms that are rotating at or above the mean
frequency ω = (ω1 + ω2)/2 after we move to a frame rotating
at the frequency ω. This leads to the following simplified
master equation,

ρ̇ ≈ − i[He,ρ] +
∑
j=1,2

{γD[σ−
j ](ρ) + �D[aj ](ρ)}, (2)

with

He ≈
∑
j=1,2

1

4

[
(−1)j
(2a

†
j aj − σ z

j )

+2�j (a†
j σ

+
j + ajσ

−
j )

]
+ J (a†

2a1 + a
†
1a2),

where σ±
j = (σx

j ± iσ
y

j )/2, �j = η�̃j , and 
 = ω2 − ω1.
Hence the spin-photon coupling is described by the anti-
Jaynes-Cummings Hamiltonian He. After simplification, we
see that using a standing wave configuration (as opposed to
a running wave) means that the leading contribution from
the spin-phonon coupling expansion is linear in η, while
higher order terms can be neglected safely. The numerical
results described below were all obtained using the steady-state
solution to Eq. (2), ρss [19].

Individual ions. A prerequisite for synchronization is that
each individual ion undergoes self-oscillations in their motion,
so-called phonon lasing [15]. When the phonons are driven
sufficiently strongly to overcome the damping, �2 > γ�, the
mean-field equations of motion show a limit-cycle solution
with 〈n〉 = γ /2� − γ 2/2�2 where n = a†a [20]. We have
confirmed these mean-field predictions numerically by finding
the steady state of an ion for fixed driving � and decreasing
damping rate � (
 = 0 and J = 0). The onset of phonon
lasing can be seen using the average phonon number 〈n〉 and
the phonon number which is most likely to be observed nm.
In Fig. 2(a) we see both these parameters get larger as the
damping is decreased. The onset of lasing is also visible in the
Mandel-Q parameter, Q = (〈n2〉 − 〈n〉2)/〈n〉 − 1. Moreover,
we see sub-Poissonian statistics around the lasing transition;
this is because we are using a single two-level system for the
pump [21]. In the following we investigate synchronization
in a quantum regime where �/γ = 1 and �/γ = 1/3; here
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FIG. 2. (Color online) (a) Average phonon number 〈n〉 (blue
hexagons) and most likely phonon number nm (green octagons) of
the phonon distribution plotted against damping strength γ /�; we
also plot the Mandel-Q parameter (red stars) which becomes negative
around the lasing transition. (b) Wigner distribution of the phonons for
�/γ = 1/3. (c) Wigner distribution of the phonons after projection
onto different spin eigenstates ρj,±

ss (�/γ = 1/3). σ x/y operators are
correlated with phase and σ z operators are correlated with number,
which is confirmed by calculating the correlations, given beneath
their corresponding Wigner distributions. Here �/γ = 1, and 
 = 0
throughout.

〈n〉 = 1.2, nm = 1 and Q = −0.1. The steady-state Wigner
distribution [20] for these parameters is shown in Fig. 2(b).
It has a “doughnut” shape, as the state has a nonzero average
amplitude, but no phase preference.

Before investigating synchronization in coupled ions, we
examine the correlations that build up between the spin
and phonon degrees of freedom in an individual ion due
to their strong coupling. We later exploit these correlations
to show how the presence of synchronization between the
ions’ phonons can be inferred through measurements of
their spins. The spin-phonon correlations become apparent in
Fig. 2(c), where we plot the Wigner distribution of the density
matrix for an individual ion after projection with one of the
Pauli-operator eigenstates. Specifically, we apply P α,±, where
σαP α,± = ±P α,± and (P α,±)2 = P α,±, to the steady state of
the system: ρα,±

ss = Trs[P α,±ρss]. We see that the projections
onto the eigenstates of σ z are correlated with phonon number,
but not phase. Interestingly, we see some negativity in the
Wigner distribution after projection with P z,−, which provides
further evidence that we are in the quantum regime. On the
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other hand, projections onto the eigenstates of, σx , and σy are
correlated with the phase of the phonons, but not the number.
We confirm these observations by studying the correlators
C(σα,a) and C(σα,n) which relate to the spin-phonon phase
and number correlations, respectively (shown in Fig 2), with
the correlation between two operators X and Y defined as
C(X,Y ) = 〈XY 〉 − 〈X〉〈Y 〉.

Coupled ions. We now consider how synchronization
arises for two weakly coupled ions. Classically synchro-
nization originates from the development of stable fixed
points in the equation of motion for the relative phase. For
a quantum system, our intuition suggests that there exists
some relative-phase distribution which is not flat when the
ions are synchronized. A candidate phase distribution is the
Wigner distribution after integrating over the radial and total
phase coordinates [5]. But, in general, a distribution based
on a quasiprobability distributions is not unique as other
representations could be used [22], which would give different
results. We circumvent this ambiguity by directly calculating a
relative phase distribution from the density matrix using phase
states [23]:

P (φ) =
∫∫ 2π

0
dφ1dφ2 δ(φ1 − φ2 − φ)〈φ1,φ2|ρp

ss|φ1,φ2〉

=
∞∑

n,m=0

ei(m−n)φ

2π

∞∑
d=max(n,m)

〈n,d − n|ρp
ss|m,d − m〉,

(3)

where |φj 〉 = ∑∞
n=0 eiφj n/

√
2π |n〉 and ρ

p
ss = Trs[ρss] is the

steady-state density matrix after tracing over the spins. P (φ)
is positive and normalized.

We look for a signature of synchronization by calculating
the relative phase distribution P (φ) from the steady-state
solution to the master equation when ions are in the lasing
regime and weakly coupled: J/γ = 1/10. We plot P (φ) in
Fig. 3 with different values for 
 and �1/�2:
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FIG. 3. (Color online) Phase distribution P (φ) (a) when the
system is perfectly symmetric (�1/�2 = 1, 
 = 0); (b) while the
oscillators are detuned 
/γ (�1/�2 = 1); and (c) for different
relative pumping strengths �1/�2 (
 = 0). In (d) and (e) the
synchronization measure S (black solid) is plotted against the same
parameters as (b) and (c), respectively. Here �2/γ = 1, �/γ = 1/3,
and J/γ = 1/10 throughout.

First, we consider the symmetric case (
 = 0 and
�1/�2 = 1) for which P (φ) is shown in Fig 3(a). The
ions show signatures of synchronization as P (φ) is not flat,
in fact the distribution is bimodal and π periodic. This
bimodal feature is analogous to the bistability typically seen
in synchronized classical systems with inertial coupling [24].

Next we consider detuning of the oscillators frequencies
[see Fig. 3(b)]. Here we see the maximum height of P (φ) gets
smaller as it approaches a flat (unsynchronized) distribution.
The P (φ) distribution stays exactly π periodic and bimodal
during this process, although the phase of the distribution does
shift. Loss of synchronization due to detuning is also seen in
classical systems [24]; but it is typically a sharp transition (in
the absence of thermal noise), while we see in the quantum
case it is smooth [7,8].

Last, when one of the ions is pumped more strongly than
the other such that �1 > �2 (while 
 = 0), we find that P (φ)
changes continuously from being bimodal to unimodal [see
Fig. 3(c)]. Such transitions between monostable and bistable
synchronized states have also been observed in classical
systems with unequal driving [25].

In order to quantify synchronization for a given ρss,
we propose a simple measure based on the relative phase
distribution:

S = 2π max[P (φ)] − 1. (4)

S is in essence the peak height of P (φ) above a flat distribution.
It is a useful measure for synchronization as it is nonzero if
and only if P (φ) is not flat, which we regard as the signature
for the presence of synchronization. We plot S in Figs. 3(d)
and 3(e) to summarize the strength of synchronization in the
system. In Fig. 3(d) we see S goes to zero as the two oscillators
are increasingly detuned and synchronization vanishes.

Synchronization and spin correlations. We have shown
that synchronization is present in the motional state of our
ions using the distribution P (φ) and the related measure S.
Sophisticated experimental techniques have been developed
to perform full state tomography of an ion’s phonons which
would give access to ρ

p
ss [26], from which P (φ) and S could

be calculated. Nevertheless, the spin-phonon locking seen in
Fig. 2(c) suggests we may be able to infer the presence of
synchronization indirectly through measurements [26] of the
spin degrees of freedom alone.

The spin-phonon locking occurs faster than the phonon-
phonon synchronization as the interion coupling provides the
longest time scale in the system. Thus it is reasonable to make a
measurement of each ion’s spin and use our a priori knowledge
of the spin-phonon locking to infer the phase of the oscillators.
We focus on the spin-spin correlations in particular, which we
split into two types: “number correlations” [e.g., C(σ 1

z ,σ 2
z )]

and “phase correlations” [e.g., C(σ 1
x ,σ 2

x ) and C(σ 1
x ,σ 2

y )].
The phase correlations can be related semiclassically to

statistical moments of P (φ), which in turn give us information
about the ion’s state of synchronization. Solving the mean-field
dynamics for 〈σ−

j 〉 in terms of 〈aj 〉 gives 〈σ−
j 〉 ∝ −ie−iφj

with φj = arg[〈aj 〉], in agreement with Fig. 2(c). Although,
strictly speaking all correlations are zero in a mean-field
calculation, we can use this mean-field equality as an ansatz to
describe how the spin and phonon operators are related in the
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FIG. 4. (Color online) (a) and (c) C(σ z
1 ,σ z

2 ) (green circles),
C(σ x

1 ,σ x
2 ) (blue up triangles), C(σ x

1 ,σ
y

2 ) (red pentagons), �c (cyan
diamonds), and �s (magenta squares) are plotted against 
. In (a)
the driving is balanced (�1/�2 = 1) while in (c) �1 is stronger
(�1/γ = 5/4 and �2/γ = 1). (b) and (d) S (black solid) is plotted
for comparison with the same parameters as (a) and (c), respectively.
Here �1/γ = 1, �/γ = 1/3, and J/γ = 1/10. In (c), the red down-
triangles, purple stars, and yellow hexagons come from calculations
of C(σ x

1 ,σ x
2 ), C(σ x

1 ,σ
y

2 ), and C(σ z
1 ,σ z

2 ), respectively, using a version
of Eq. (1) in which we neglect only terms O(η4) and higher. They
agree well with the results obtained using Eq. (2).

steady state. We assume σ−
j ∝ −ie−iφj and then calculate the

expectation values by taking an average over the corresponding
steady-state phase distributions (remembering that there is no
preferred total phase so its distribution is always flat). This
then leads us to the approximate relationships between the
expectation values and moments of the relative phase distri-
bution: C(σ 1

x ,σ 2
x ) ∝ �c ≡ ∫

dφ cos φP (φ) and C(σ 1
x ,σ 2

y ) ∝
�s ≡ − ∫

dφ sin φP (φ). When P (φ) is flat �c,s = 0, this
means �c,s �= 0 is a sufficient (but not necessary) condition
for the ions to be synchronized. Consequently, we expect that
measurements of spin correlations can be used to infer the
presence of synchronization.

We investigate the connection between spin correlations
and synchronization in Fig. 4(a), where we plot C(σ z

1 ,σ z
2 ),

C(σx
1 ,σ x

2 ), C(σx
1 ,σ

y

2 ), �c, and �s , as a function of the detuning

 for equal driving strength (�1/�2 = 1). We plot S for the
same parameters in Fig. 4(b) to measure the synchronization
strength. The number correlation C(σ z

1 ,σ z
2 ) is initially negative

and approaches zero as the detuning is increased. This
indicates that the phonon numbers of the oscillators are
correlated at small 
, but does not directly indicate a phase
relationship. Note that C(σx

1 ,σ x
2 ) and C(σx

1 ,σ
y

2 ) match �c

and �s , respectively. However, these quantities are all zero.
This is an example where �c,s = 0 which means we do
not have sufficient information to conclude whether the ions
are synchronized or not. Indeed, S is nonzero in this case.
This occurs because P (φ) is π periodic for equal driving,
even as the lasers are detuned [see Fig. 3(b)]; Any phase
distribution that is π periodic will give �c,s = 0 and hence
C(σx

1 ,σ x
2 ) = C(σx

1 ,σ
y

2 ) = 0. Normally one would consider a
different statistical moment of the probability distribution to
circumvent this issue, e.g., if one had two random variables
that were uncorrelated in their averages C(X,Y ) = 0 one could
determine C(X2,Y 2) and possibly find correlations in their

variances. Unfortunately the Pauli operator algebra makes such
an approach impossible, e.g., (σα

j )2 = 1.
This problem can be overcome by introducing a slight

asymmetry in the driving strengths, which breaks the
π -periodic nature of P (φ) [see Fig. 3(c)]. In Fig. 4(c) we
plot the same correlations and moments as Fig. 4(a) against
detuning, but this time with unequal driving �1/�2 = 5/4.
The spin correlations are now all present, with the phase
correlations being much stronger than the number correlations.
Even though we are in a quantum regime, we see C(σ 1

x ,σ 2
x ) and

C(σ 1
x ,σ 2

y ) have behavior that follows that of the semiclassical
estimates �c and �s , respectively (note that for simplicity we
neglected the possibility of any 
 dependence in the constants
of proportionality). As C(σ 1

x ,σ 2
x ) and/or C(σ 1

x ,σ 2
y ) are nonzero,

we can infer that �c and/or �s of the phase distribution
are nonzero, which implies the ions are synchronized. This
prediction is confirmed by S, plotted with the same parameters
in Fig. 4(d), showing that synchronization can indeed be
inferred using measurements of the spins alone (provided �c

or �s are nonzero).
Experimental realization. Detecting correlations on the

order of 10−3 is challenging, but possible with current
technology. Projective measurements of the ions’ internal
states [26,27] have been used to estimate observables with
a precision over an order of magnitude higher than our
requirement [28]. We now describe how the setup shown in
Fig. 1 and the parameter values used in our analysis could
be achieved in practice. For concreteness we consider values
of the Lamb-Dicke parameter η = 1/30 and trap frequencies
(ω1 + ω2)/2γ = 500 to ensure that the approximations used
to derive Eq. (2) are valid. We have checked this explicitly by
also calculating the correlation functions for these parameters
using a version of Eq. (1) in which we neglect only terms
O(η4) and higher. The results are shown in Fig. 4 and overlay
those obtained using Eq. (2).

The parameters we require could be achieved with two
Ca+ ions. Lasers at different wavelengths are readily available
for manipulating their ground state |4S〉 and weakly excited
states (|4PJ 〉 and |3DJ 〉 with J the total angular momentum
quantum number). Both the microtrap and the laser cooling
technique have been demonstrated experimentally with this
ion. The spin-down state is formed by the ground state |4S〉
and spin-up state by the |3D5/2〉 state, which are coupled by a
standing-wave laser with a 729-nm wavelength. This requires
ωj ≈ 2π × 8.4 MHz to have η = 1/30. Given ωj , other
quantities can be calculated straightforwardly. For example,
the phonon coupling J = 2π × 1.68 kHz, which is in the range
that can be achieved in current experiments [16].

We now explain how γ can be tuned to the required value.
For (ω1 + ω2)/2γ = 500, we should have γ = 2π × 16.8
kHz. The natural decay rate of the |3D5/2〉 state is about 1 Hz,
which is far smaller than γ . In the following we show how the
desired decay rate can be obtained by applying a quantum state
engineering procedure [18]. We couple the |3D5/2〉 state to the
short-lived |4P3/2〉 state by a dressing laser (854 nm). This laser
dressing scheme allows us to tune the decay rate of the dressed
state as γ = [�2

D(�1 + �2)]/[(�1 + �2)2 + 4
2
D]. Here 
D

and �D are the detuning and Rabi frequency of the dressing
laser. �1 = 2π × 135.1 MHz and �2 = 2π × 9.9 MHz are
the decay rate from the |4P3/2〉 state to the ground state and to
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the |3D5/2〉 state [18], respectively. Using 
d = 42 MHz and
�d = 2π × 1.8 MHz, we finally have γ = 2π × 16.8 kHz.

The phonon damping is realized by laser cooling tech-
niques. Here we consider that the ions are cooled by a
standing-wave laser. In this situation, the cooling rate depends
on the position of the ions in the standing-wave pattern.
For simplicity, we assume that the ions are located at
nodes of the standing wave [17]. The corresponding cooling
rate is given by � = η2�c[P (
c + ωj ) − P (
c − ωj )], with
P (x) = �2

c/[4x2 + 4�2
c ]. Here �c and 
c are the Rabi

frequency and detuning of the cooling laser, and �c is the
decay rate of the electronically excited state that is used in
the laser cooling. We assume that the cooling laser couples
the ground state and the |4P1/2〉 state, whose decay rate
is �c ≈ 2π × 129.9 MHz. Choosing �c = 1.0 �c and 
c =
−2π × 100 MHz, this leads to the required cooling rate
� ≈ 2π × 5.6 kHz. Furthermore, these parameters allow us to
adiabatically eliminate the state |4P1/2〉 from coupling to the
spins, as its dynamics happens on a much faster time scale than
all the other processes. In addition, we have verified that the
small difference between the two trapping frequencies will not
change the cooling rate significantly. For example, the cooling
rate of the two ions only differs by about 0.6% when we look
at the maximal difference between the trapping frequencies
(
 = 3γ ), which can easily be compensated for by tuning the
cooling laser parameters of individual ions.

Conclusions and outlook. We have shown that two phonon-
lasing ions undergo synchronization when they are weakly
coupled, leading to a bimodal relative phase distribution.

Strong correlations develop between the internal, spin, degrees
of freedom, and the phonons in each ion and when the ions are
coupled their synchronization leads to characteristic correla-
tions between the spins. These correlations carry information
about the relative phase distribution of the ions and could be
used to infer the presence of synchronization.

The coupled ion phonon-laser system we consider is a
promising model for future studies into quantum synchro-
nization. Correlations between the spins of two ions at
different times could be used to probe the dynamics of the
synchronization process. Furthermore, the question of whether
the nonclassical (number-squeezed) phonon states that occur in
this system might affect the development of synchronization,
leading to significant differences compared to a corresponding
semiclassical description [5], remains to be explored. It would
also be interesting to compare the synchronization of ions
forming a long chain in the quantum and classical regimes [29].
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