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Super-resolving interference without intensity-correlation measurement
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The high-order intensity correlation function of N -photon interference with thermal light observed in a
recent experiment [S. Oppel, T. Büttner, P. Kok, and J. von Zanthier, Phys. Rev. Lett. 109, 233603 (2012)] is
analyzed. The terms in the expansion of the N th-order correlation function are put into three groups. One group
contributes a homogeneous background. Both of the other two contribute (N − 1)-fold super-resolving fringes.
In principle they correspond to coherent and incoherent superpositions of classical optical fields, respectively.
Therefore similar super-resolving fringes can be obtained without intensity-correlation measurements. We report
the experimental results of the coherent and incoherent super-resolving diffraction fringes, which are observed
directly in the intensity distribution. The N − 1 sources in both the coherent and incoherent cases are set in
certain definite positions. In the coherent case, moreover, the phase difference between two adjacent source fields
is π . The fringe visibility is unity in the incoherent case, while it decreases as N increases in the incoherent case.
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I. INTRODUCTION

Subwavelength interference fringes, which usually repre-
sent the shrinkage of the spatial spectrums of the objects,
are one of the key characteristics for super-resolving optical
imaging, optical lithography, and quantum metrology. In
practice, the subwavelength diffraction pattern of an object
can be obtained with NOON states [1,2] and with thermal
light sources [3,4]. The physics behind this is that the de
Broglie wavelength of the N -photon wave packet becomes
1/N of the single-photon wavelength [5]. Similar super-
resolving interference fringes have been investigated with
N th harmonic generation [6], Fock state projection [7], time-
reversal analysis [8], and multimode Gaussian states [9].

In previous subwavelength interference experiments, the
N -photon correlation measurement systems are indispensable.
In 2007, Thiel et al. [10] theoretically proposed a subwave-
length N -photon interference scenario in which photons from
N single-photon sources trigger N joint detectors. To obtain
the super-resolving fringes, the N single-photon detectors are
set jointly in a way that two detectors move in opposite direc-
tions, while the other detectors are located at certain definite
positions. Recently, Oppel et al. [11] observed (N − 1)-photon
super-resolving fringes in an N -slit diffraction experiment
with thermal light, where the N -photon correlation system
contains one moving detector and N − 1 fixed detectors.

However, such super-resolving fringes do not depend on
N -photon correlation systems. Consider an ordinary N -slit
diffraction experiment in which a laser beam, with complex
field amplitude An and wavelength λ, illuminates N slits with
slit spacing d. In the Frauhofer diffraction limit, the optical
field in the detection plane is written as

E(δ,δn) = An

N∑
m=1

cos

[
(N + 1 − 2m)

δ − δn

2

]
, (1)
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where δ = 2πd sin θ/λ, θ is the diffraction angle, and δn is
the phase shift to describe the initial phase of the incident
laser beam. Equation (1) is the sum of coherent superposed
fields with a variety of spatial frequencies. The fundamental
frequency term is cos[(δ − δn)/2]. The highest frequency term
cos[(N − 1)(δ − δn)/2] stands for the (N − 1)-fold super-
resolving fringes. One can acquire the pure super-resolving
fringes of the highest frequency, as long as the highest
frequency terms dominate.

In this paper, we propose an N -slit diffraction experiment
to directly obtain pure super-resolving fringes in intensity-
distribution measurements. We make the highest frequency
terms dominant by introducing coherent or incoherent N − 1
sources. In both coherent and incoherent cases, the (N − 1)
optical beams from the sources are arranged carefully to wash
out the lower frequency terms in Eq. (1). Especially in the
coherent case, the phase difference between the adjacent laser
beams is π . The fringe visibility is unity in the coherent case,
and 2/N in the incoherent case.

Our paper is organized as follows. The theoretical anal-
ysis of N -photon super-resolving fringes with thermal light
is given in detail in Sec. II. We analyze the high-order
intensity-correlation function of N -photon interference with
thermal light in Ref. [11]. In the expansion of the N th-
order correlation function, we find two kinds of (N − 1)-fold
super-resolving fringes, which correspond to the coherent
and incoherent superpositions of classical optical fields. In
Sec. III we perform N -slit diffraction experiments in which
N − 1 coherent or incoherent beams along certain definite
directions are employed. The super-resolving interference
fringes are acquired directly in intensity observation, but not
in intensity-correlation measurements. The fringe visibility is
unity in the coherent case but decreases when the slit number
increases in the incoherent case. The experimental results are
in good agreement with our theoretical analysis. Section IV
presents discussions and conclusions. The Appendix shows
the calculations of the first-order and N th-order correlation
functions.
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FIG. 1. (a) Setup of the N -photon super-resolving diffraction
experiment performed by Oppel et al. [11] with thermal light. TLS
represents the thermal light source. NPCM represents the N -photon
correlation measurement. D1, D2, . . . , DN are the N detectors. (b)
The unfolded version of (a). The N − 1 detectors (D2, D3, . . . , DN )
are imagined to be N − 1 sources (S1, S2, . . . , SN−1).

II. THERMAL LIGHT Nth-ORDER CORRELATION
FUNCTIONS AND SUPER-RESOLVING FRINGES

The schematic diagram of the N -photon super-resolving
diffraction experiment performed by Oppel et al. [11] is
replotted in Fig. 1(a). A beam of thermal light goes through
N slits and then triggers N detectors. In the detection plane,
one detector (D1) scans and others (D2, . . . ,DN ) are fixed in
certain definite positions in which [11]

δn = 2πd sin θn/λ = 2π (n − 2)/(N − 1), (2)

where n = 2, . . . ,N . These positions in Eq. (2) are in accor-
dance with the magic phase-shift settings proposed by Oppel,
et al. [11].

The joint intensity-correlation measurement of the N

detectors gives rise to the N -photon super-resolving diffraction
patterns. In the far-field diffraction limit, by taking both the
magic positions (2) and complete incoherence of the thermal
light source into account, we calculate out the normalized
first-order correlation functions as

g(1)(δ,δn) = 〈E∗(δ)E(δn)〉√〈I (δ)〉 〈I (δn)〉 = sin [N (δ − δn)/2]

N sin [(δ − δn)/2]
, (3)

g(1)(δ,δ) = g(1)(δn,δn) = 1, (4)

g(1)(δm,δn) = (−1)m−n

N
(m �= n), (5)

where 〈· · · 〉 represents ensemble averaging, E is the detected
field, I (δ) = E∗(δ)E(δ) is the instant intensity function, and
m,n = 2, . . . ,N . According to the Gaussian moment theorem,
one can expand the N th-order correlation function

g(N)(δ,δ2, . . . ,δN ) = 〈I (δ)I (δ2) · · · I (δN )〉
〈I (δ)〉 〈I (δ2)〉 · · · 〈I (δN )〉 (6)

into terms of first-order correlation functions [12,13]

g(N)(δ,δ2, . . . ,δN )

=
∑
N!

P[g(1)(δ,δ)g(1)(δ2,δ2) · · · g(1)(δN,δN )], (7)

where P represents the N ! possible permutations of the
underlined fields. It is obvious in Eq. (7) that the spatial fringes
come from terms of g(1)(δ,δn) [Eq. (3)]. We then put the N !

permutations in Eq. (7) into three groups. The first group con-
tains (N − 1)! permutations which has the term of g(1)(δ,δ).
The second group contains (N − 1)! permutations, each of
which has terms of |g(1)(δ,δn)|2. The third group contains
(N − 2) × (N − 1)! permutations, each of which has terms of
g(1)(δ,δn)g(1)(δm,δ)m�=n. By summarizing the analysis above,
we obtain the normalized high-order correlation function (see
the Appendix)

g(N)(δ,δ2, . . . ,δN ) = A + B

∣∣∣∣∣
N∑

n=2

(−1)ng(1)(δ,δn)

∣∣∣∣∣
2

+C

N∑
n=2

|g(1)(δ,δn)|2. (8)

The three coefficients are

A =
N−1∑
k=0

!k

Nk
Ck

N−1, (9)

B =
N−3∑
j=0

N−j (N − 3)!

(N − 3 − j )!

N−3−j∑
k=0

Ck
N−3−j

!k

Nk+1
, (10)

C =
N−2∑
k=0

!k

Nk
Ck

N−2 − B, (11)

respectively, where Ck
M = M!

k!(M−k)! , and !k = k!
∑k

j=0
(−1)j

j ! is
the derangement number [14].

In the right side of Eq. (8), the first term contributes
a homogeneous background. Both of the last two terms
contribute super-resolving fringes. Specifically, by substituting
Eq. (3) into the last two terms of Eq. (8), we obtain

∣∣∣∣∣
N∑

n=2

(−1)ng(1)(δ,δn)

∣∣∣∣∣
2

= 2(N − 1)2 1 + cos[(N − 1)δ]

N2
,

(12)

N∑
n=2

|g(1)(δ,δn)|2 = N − 1

N

[
1 + 2

N
cos(N − 1)δ

]
, (13)

both of which manifest (N − 1)-fold super-resolving fringes.
It is obvious that Eq. (12) represents the coherent superposition
of N − 1 correlated fields. While Eq. (13) represents the
incoherent superposition of N − 1 correlated fields. The two
kinds of super-resolving fringes can be obtained in intensity
detection, as shown in the next section.

We further substitute Eqs. (12) and (13) into Eq. (8) and
find the maximum and minimum values of g(N) as

g(N)
max = A + 4(N − 1)2

N2
B + N − 1

N

N + 2

N
C, (14)

g(N)
min = A + N − 1

N

N − 2

N
C, (15)

respectively. So in the thermal light N th-order corre-
lation function (8), the visibility of the super-resolving
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fringes is

V0(N ) = 2

N2

(N − 1)2B + (N − 1)C

A + 2(N−1
N

)2B + N−1
N

C
, (16)

which decreases from V0(2) = 1/3.
Since the thermal light source can be regarded as a conju-

gate mirror in high-order intensity-correlation functions [15],
we unfold the configuration of the experimental setup as
shown in Fig. 1(b). The N − 1 detectors (D2, D3, . . . , DN )
are imagined to be N − 1 sources (S1, S2, . . . , SN−1), and
the thermal light source (TLS) is omitted. The thermal light
correlation in the experiment can become comprehensible as
follows. The light beams from the N − 1 fixed sources (S1,
S2, . . . , SN−1) go back to the thermal source plane, then go
forth through the N slits, and finally are registered by the
moving detector D.

What we should emphasize is that the super-resolving
(N − 1)-fold interference fringes can be obtained just in the
intensity distribution itself (not in the intensity correlation).
In other words, the super-resolving (N − 1 )-fold fringes can
be obtained in single-photon N -slit diffraction experiments,
however, using a set of carefully arranged optical beams
as the source configurations. Let us reexamine the forms
of Eqs. (12) and (13). The former, which is the modulus
square of the summation of N − 1 parts, corresponds to
coherent superposition of N − 1 correlated fields. While the
latter, which is the summation of the modulus squares of
N − 1 correlated parts, corresponds to incoherent superpo-
sition. These suggest that there are at least two methods
for obtaining (N − 1)-fold super-resolving fringes without
intensity-correlation measurements.

III. COHERENT AND INCOHERENT SUPER-RESOLVING
FRINGES IN INTENSITY DISTRIBUTION

We consider the N -slit interference experiment in which the
N − 1 beams from the optical source illuminate the N slits.
According to Eq. (1), the total field in the detection plane
is E(δ) = ∑N

n=2 E(δ,δn). Owing to the fact that E(δ,δn) =
NAng

(1)(δ,δn), we write the intensity distribution function in
the detection plane as

〈I (δ)〉 = N2
N∑

m,n=2

〈A∗
mAn〉g(1)(δ,δm)g(1)(δ,δn), (17)

where the real functions g(1)(δ,δm) are considered. The
complex amplitude correlation term 〈A∗

mAn〉 of course plays an
important role in obtaining super-resolving fringes. According
to the last two terms in the right side of Eq. (8), we consider
two kinds of illuminations, the coherent case and incoherent
case, discussed as follows. Moreover we assume all the beam
powers are equal, i.e., 〈A∗

nAn〉 = I0, where I0 is a constant,
n = 2, . . . ,N .

A. Coherent case

In coherent illumination, the N − 1 source beams have
certain definite initial phases. By comparing Eqs. (12) and (17),
we first set the directions of the N − 1 coherent beams to meet
the magic phase shifts (2). Second, we set the initial phase

difference between any two adjacent beams to be π , so that
the complex amplitude can be written as

An =
√

I0 exp(inπ ) = (−1)n
√

I0, (18)

where n = 2, . . . ,N . After some algebra, we obtain the
detected field as

E(δ) = 2(N − 1)
√

I0 cos[(N − 1)δ/2]. (19)

The intensity-distribution function, which is the modulus
square of Eq. (19), is proportional to Eq. (12). We should
note that the visibility of the diffraction pattern is V1 ≡ 1.

B. Incoherent case

In the incoherent case, the source beams have completely
random phases so that

〈A∗
mAn〉m�=n = 0. (20)

By considering the magic phase-shift settings (2) and the
incoherent complex amplitude correlations (20), we obtain
the intensity distribution function (17) as

I2(δ) = N (N − 1)I0

[
1 + 2

N
cos(N − 1)δ

]
. (21)

The visibility of the diffraction pattern is V2(N ) = 2/N .
Figure 2 shows the fringe visibility functions V0, V1, and V2.

As the correlation number N (which is also the slit number)
increases, the value of V0 decreases from 1/3. The coherent
fringe visibility without intensity correlation V1 always keeps
its value of unity. While the value of V2 decreases from unity.
Both V0 and V2 tend to zero for very large N . It is interesting
that the visibility value of V2 is very close to that of V0 at
N = 9.

As a result, the fringe spaces in both Eqs. (19) and (21) are
equal to 1/(N − 1) of that in the ordinary N -slit interference
experiment. The coherent sources can be acquired with N − 1
well-arranged correlated laser beams. The initial phase differ-
ence between two adjacent beams is π . While the incoherent
correlated sources can be acquired by using, for example,
N − 1 independent sources. All the correlated sources in both
coherent and incoherent cases are located at certain definite
positions as shown in Eq. (2).
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FIG. 2. Visibility functions vs N . The lines with circles, squares,
and crosses are the visibility values for V0, V1, and V2, respectively.
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FIG. 3. Experimental setup of super-resolving fringes without
intensity correlation. The laser beam gets through N − 1 slits (G0)
and then N slits (G) in succession, and finally is detected by a CCD
in the detection plane. GG is a ground glass plate, which is just used
in the incoherent case. The slit spacing is d0 = 0.821 mm for grating
G0, and d = 0.197 mm for grating G.

C. Experimental results

Figure 3 depicts the diagram of the experimental setup to
observe coherent and incoherent super-resolving interference
fringes without intensity correlation. The (N − 1) sources are
composed of an optical beam and N − 1 slits (G0). The source
beams go across the N slits (G), and then they are detected by
a charge coupled device (CCD) in the detection plane.

In the case of coherent illumination, more precisely, the
incident laser beam is projected onto G0 at a certain angle α.
This makes an initial phase difference 2πd0 sin α/λ between
the optical fields at two adjacent slits of G0. Therefore, the
initial phase difference π between any two adjacent beams in
Eq. (18) can be met by setting the incident angle α as

sin α = (m + 1/2)
λ

d0
, (22)

where m = 0, ±1, ±2, . . . , and d0 is the slit spacing of grating
G0. To meet the magic phase-shift settings (2), the distance
between the two gratings is

z0 = (N − 1)d0d/λ, (23)

where d is the slit spacing of grating G. The coherent super-
resolving interference fringes can be directly read out from the
CCD signals.

To imitate the incoherent case, we insert a rotating ground
glass plate (GG) between the laser source and G0, and thus
form (N − 1) pseudoindependent sources. The incoherent
super-resolving fringes, however, can be obtained through
averaging a certain number of CCD frames.

In the experiment, the laser wavelength is λ = 650 nm.
The slit spacing is d0 = 0.821 mm for grating G0, and
d = 0.197mm for grating G. According to Eq. (23) we have
z0 = (N − 1) × 248.8 mm. The distance from grating G to
the detection plane (CCD) is z = 547.0 mm. Particularly, the
slant angle of the incident beam in the coherent case is about
α = 1.792 × 10−3 rad, which meets Eq. (22). We note that
δ = 2πdx/(λz).

The experimental results are shown in Fig. 4. The slit
number of G is N = 2 in Figs. 4(a) and 4(b), N = 3 in
Figs. 4(c) and 4(d), and N = 4 in Figs. 4(e) and 4(f). In
Figs. 4(a), 4(c), and 4(e), the circles indicate the coherent
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FIG. 4. Experimental results of (N − 1)-fold super-resolving
fringes (a), (c), and (e); and ordinary N-slit interference fringes (b),
(d), and (f). We set N = 2 in (a) and (b), N = 3 in (c) and (d),
and N = 4 in (e) and (f). The circles, squares, and pluses are the
normalized I1, I2, and |g(1)(x,0)|2, respectively. The solid lines are
the theoretical curves.

(N − 1)-fold super-resolving fringes (I1), which are obtained
from one CCD shot. The squares indicate the incoherent
(N − 1)-fold super-resolving fringes (I2), which are obtained
by averaging 2 000 CCD frames. In contrast, the pluses in
Figs. 4(b), 4(d), and 4(f) are the experimental data for ordinary
N -slit interference fringes [|g(1)(δ,0)|2] illuminated by a single
laser beam. Each experimental fringe is normalized with its
maximum. All the solid lines in Fig. 4 are the theoretical
curves.

Specifically, Fig. 4(a) shows the ordinary two-slit interfer-
ence fringes with coherent (circles) and incoherent (squares)
point sources. Their visibility values are close (V1 = 1.0 and
V2 = 0.955), reflecting the spatial coherence of the sources.
Figure 4(c) shows the coherent and incoherent two-fold super-
resolving diffraction fringes. Their visibility values are V1 =
0.975 and V2 = 0.622, respectively. Figure 4(e) shows the
coherent and incoherent three-fold super-resolving diffraction
fringes. Their visibility values are V1 = 0.978 and V2 = 0.496,
respectively. It is obvious that the visibility retains in the
coherent case, and decreases in the incoherent case as slit
number N increases.

The ordinary N -slit interference fringes, which are obtained
by injecting a single coherent beam into the N slits, are shown
in Figs. 4(b), 4(d), and 4(f). The fringe visibility values are
V = 0.970, 0.966, and 0.961, respectively.

IV. DISCUSSIONS AND CONCLUSIONS

In summary, we in detail analyzed the N th-order correla-
tion functions in a multiphoton super-resolving interference
experiment with thermal light. We put the expanded terms of
the N th-order correlation function into three categories. One
contributes a background. The other two contribute the super-
resolving fringes. However, the last two categories correspond
to coherent and incoherent superpositions of correlated fields.
So the super-resolving fringes can be obtained without multi-
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photon processes or intensity-correlation measurements. We
experimentally demonstrated (N − 1 )-fold super-resolving
diffraction patterns in just intensity detection by projecting
N − 1 coherent and incoherent beams onto N slits. In the case
of coherent illumination, the fringe visibility is unity. While
for incoherent illumination, the fringe visibility decreases as
the slit number increases.

The super-resolving N -fold fringes are just derived from the
coherent and incoherent superpositions of N − 1 correlated
fields. Nevertheless, these superpositions are not the shrunk
spatial spectra of the objects. Therefore there is a long way
from such super-resolving fringes to super-resolving imaging.
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APPENDIX: ARBITRARY NTH-ORDER CORRELATION
FUNCTIONS WITH THERMAL LIGHT

First-order correlation function. We designate the Cartesian
coordinates of the source plane and the detection plane in Fig. 1
by xs and x, respectively. The optical field in the detection
plane is written as

E(x) =
∫

Es(xs)T (xs)h(xs,x)dxs, (A1)

where Es is the source field, the impulse response function is

h(xs,x) = 1√
iλz

exp

[
i2πz + i

π

λz
(x − xs)

2

]
(A2)

in Fresnel diffraction limit, and T is the source profile which
is composed of N slits,

T (xs) =
N∑

n=1

δ

[
xs −

(
n − N + 1

2

)
d

]
, (A3)

where d is the slit distance. Taking into account the complete
incoherence of the thermal light source 〈E∗

s (xs)Es(x ′
s)〉 =

Isδ(xs − x ′
s) and Eqs. (A1) and (A2), we obtain the field

cross-correlation function

〈E∗(x)E(x ′)〉 = Is

λz

∫
|T (xs)|2 exp

[
i2π

x − x ′

λz
xs

]
dxs.

(A4)

Substituting Eq. (A3) into the above equation we obtain

〈E∗(x)E(x ′)〉 = Is

λz

sin
[

Nπd
λz

(x − x ′)
]

sin
[

πd
λz

(x − x ′)
] . (A5)

Equation (3) is the normalized form of (A5) by defining δ =
2πdx
λz

and δn = 2πdxn

λz
.

Normalized high-order correlation function. In the N -
photon detection system in Fig. 1, one detector scans and
other detectors are fixed in the detection plane. What the joint-
detection system gives is the N th-order correlation function
as shown in Eq. (7). Consequently, this can be regarded as a

permutation problem in which the positions of the negative
fields (E∗) are fixed, while the positions of the positive fields
(E) permute randomly. There are N ! possible permutations.
Each of them in Eq. (7) is the product of N first-order
correlation functions. Only the permutations, which contain
terms of g(1)(δ,δn) and g(1)(δm,δ), directly contribute to the
super-resolving fringes.

We then put all the N ! permutations into three groups.
The first group is composed of permutations, each of which
contains g(1)(δ,δ). This group contributes a homogeneous
background. In the second group, each permutation is con-
cerned with |g(1)(δ,δn)|2. In the third group, each permutation
contains g(1)(δ,δn) and g(1)(δm,δ), in which n �= m. The last
two groups contribute super-resolving fringes.

As shown above, one or two first-order correlation functions
are determined in all permutations in the three groups.
The underlined variables of the other first-order correlation
functions in each permutation can permute freely. To calculate
out the sum of all the permutations, we call g(1)(δ,δ) and
g(1)(δn,δn) in Eq. (3) the ordered terms, and g(1)(δm,δn)m�=n

in Eq. (4) the deranged terms. According to Eqs. (3) and (4),
the value of each permutation is governed by the deranged
terms.

According to combinatorial mathematics, the combination
of the deranged terms forms a derangement, which is a
permutation in which no element appears in its original
position. The number of derangements is [14]

!k = k!
k∑

j=0

(−1)j

j !
(A6)

for the case that all of the k elements in a set change their
initial places.

In each permutation in the first group, the ordered term
g(1)(δ,δ) = 1 is set. There are (N − 1)! permutations for other
N − 1 first-order correlation functions. The sum of all the
elements in the first group is

N−1∑
k=0

!k

Nk
Ck

N−1, (A7)

where Ck
M = M!

k!(M−k)! . In the summation of Eq. (A7), there
are k deranged terms and N − 1 − k ordered terms. We
note that

∑N−1
k=0 Ck

N−1 !k = (N − 1)!, which is the number of
permutations in the first group.

In each permutation in the second group, two terms,
g(1)(δ,δn) and g(1)(δn,δ) (n = 2, . . . N), are set in the product
of N first-order correlations. Once n is chosen, other N − 2
first-order correlation functions have (N − 2)! possible per-
mutations. According to the derangement theory, we sum up
the second group and obtain

N−2∑
k=0

!k

Nk
Ck

N−2

N∑
n=2

|g(1)(δ,δn)|2. (A8)

We note that
∑N−2

k=0 Ck
N−2 !k

∑N
n=2 1 = (N − 1)!, which is the

number of permutations in the second group.
In the last group, two different terms g(1)(δ,δn)g(1)(δm,δ)

(m �= n) in each permutation are preset. In the other N − 2
terms, the negative fields E∗(δn) and E∗(δ) are absent, and
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the positive fields E(δm) and E(δ) are absent. Therefore the
maximum number of ordered terms is N − 3. The sum of all
the elements in the third group is

N−3∑
j=0

N−j (N − 3)!

(N − 3 − j )!

N−3−j∑
k=0

Ck
N−3−j

!k

Nk

×
N∑

m�=n=2

(−1)n−m

N
g(1)(δ,δn)g(1)(δm,δ). (A9)

We note that
∑N−3

j=0
(N−3)!

(N−3−j )!

∑N−3−j

k=0 Ck
N−3−j !k

∑N
m�=n=2 1 =

(N − 2)(N − 1)!, which is the number of permutations in the
third group.

The expression of the N th-order correlation function with
thermal light can be obtained by considering Eqs. (A7)–(A9).
However, the last summation in Eq. (A9) is not complete,
m �= n. The lack can be supplied by combining Eqs. (A8)
and (A9). We then write the normalized N th-order correlation
function as

g(N)(δ,δ2, . . . ,δN ) = A + B

∣∣∣∣∣
N∑

n=2

(−1)ng(1)(δ,δn)

∣∣∣∣∣
2

+C

N∑
n=2

|g(1)(δ,δn)|2, (A10)

where the coefficients are

A =
N−1∑
k=0

!k

Nk
Ck

N−1, (A11)

B =
N−3∑
j=0

N−j (N − 3)!

(N − 3 − j )!

N−3−j∑
k=0

Ck
N−3−j

!k

Nk+1
, (A12)

C =
N−2∑
k=0

!k

Nk
Ck

N−2 − B. (A13)

Some examples. In the case N = 2, the three coefficients are
A = 1, B = 0, and C = 1. And the second-order correlation
function is

g(2)(δ,δ2) = 1 + |g(1)(δ,δ2)|2 = 3
2

[
1 + 1

3 cos δ
]
. (A14)

The visibility is V = 1/3.
In the case N = 3, the three coefficients are A = 10

9 , B = 1
3 ,

and C = 2
3 . And the third-order correlation function is

g(N)(δ,δ2,δ3) = 50

27

[
1 + 8

25
cos 2δ

]
.

The visibility is V = 0.32.
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