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We study the propagation of guided light along an array of three-level atoms in the vicinity of an optical
nanofiber under the condition of electromagnetically induced transparency. We examine two schemes of atomic
levels and field polarizations where the guided probe field is quasilinearly polarized along the major or minor
principal axis, which is parallel or perpendicular, respectively, to the radial direction of the atomic position. Our
numerical calculations indicate that 200 cesium atoms in a linear array with a length of 100 μm at a distance
of 200 nm from the surface of a nanofiber with a radius of 250 nm can slow down the speed of guided probe
light by a factor of about 3.5 × 106 (the corresponding group delay is about 1.17 μs). In the neighborhood of
the Bragg resonance, a significant fraction of the guided probe light can be reflected back with a negative group
delay. The reflectivity and the group delay of the reflected field do not depend on the propagation direction of
the probe field. However, when the input guided light is quasilinearly polarized along the major principal axis,
the transmittivity and the group delay of the transmitted field substantially depend on the propagation direction
of the probe field. Under the Bragg resonance condition, an array of atoms prepared in an appropriate internal
state can transmit guided light polarized along the major principal in one specific direction even in the limit of
infinitely large atom numbers. The directionality of transmission of guided light through the array of atoms is a
consequence of the existence of a longitudinal component of the guided light field as well as the ellipticity of
both the field polarization and the atomic dipole vector.
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I. INTRODUCTION

Optical properties of materials can be dramatically mod-
ified by quantum interference between the excitation path-
ways [1,2]. Intensive attention has been devoted to the
manipulation and control of the propagation of light through
coherently driven optical media, especially in the connection
with the possibility of enormous slowing down, storage, and
retrieval of optical pulses [1–9]. The interest to this topic is
related to the applications for optical delay lines, optical data
storage, optical memories, quantum computing, and sensitive
measurements. Through the technique of electromagnetically
induced transparency (EIT) [1–6], ultralow group velocities
of light have been obtained in hot [7] and cold [8] atomic
gases. This technique allows one to render the material highly
transparent and still retain the strong dispersion required for
the generation of slow light. In addition, the transmitted pulse
can experience strong nonlinear effects due to the constructive
interference in the third-order susceptibility χ (3). This leads
to new techniques in nonlinear optics at the few-photon level,
which may find important applications to quantum information
processing.

The EIT technique has been extended to media embed-
ded in a variety of waveguide systems, such as rectan-
gular waveguides [10], hollow-core photonic-crystal fibers
[11–13], coupled resonator optical waveguides [14], quantum
well waveguides [15], waveguide-cavity systems [16], and
optical nanofibers [17–22]. EIT-based photon switches in
waveguides [13,23] have been examined. The generation
and waveguiding of solitons in an EIT medium have been

studied [24]. Waveguiding of ultraslow light in an atomic
Bose-Einstein condensate [25] has been investigated.

Nanofibers are optical fibers that are tapered to a diameter
comparable to or smaller than the wavelength of light [26–28].
Slowing down of guided light in an optical nanofiber embedded
in an EIT medium has been investigated [17–22]. The first
observation of EIT at very low power levels of guided pump
and probe light was reported in Ref. [20]. Very recently,
coherent storage of guided light has been experimentally
demonstrated [21,22]. In Ref. [17], the propagation of light is
described in terms of the averages of the local refractive index,
the local absorption coefficient, and the local group delay in
the fiber cross-section plane. The studies in Refs. [18,19] are
based on a more rigorous formalism that takes into account
the inhomogeneous density distribution of the atomic gas and
the inhomogeneous mode-profile function of the guided field
in the fiber transverse plane. The atomic medium considered
in [17–21] is continuous. Meanwhile, recent experiments with
atom-waveguide interfaces [29–34] used linear arrays of atoms
prepared in a nanofiber-based optical dipole trap [35–37]. It
has recently been demonstrated experimentally that spin-orbit
coupling of guided light can lead to directional spontaneous
emission [33,38] and optical diodes [34]. When the array
period is near to the Bragg resonance, the discreteness and
periodicity of the array may lead to significant effects, such as
nearly perfect atomic mirrors, photonic band gaps, long-range
interaction, and self-ordering [39–51]. In the prior work on
atoms trapped in a one-dimensional optical lattice under the
EIT condition [47,48], scalar light fields in free space were
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considered. Scattering of a scalar light field from an array
of three-level atoms with two degenerate lower levels in a
waveguide has also been studied [52].

In a nanofiber, the guided field penetrates an appreciable
distance into the surrounding medium and appears as an
evanescent wave carrying a significant fraction of the propaga-
tion power and having a complex polarization pattern [53,54].
Since the nanofiber is thin, the guided modes of the nanofiber
are the fundamental HE11 modes [53,54]. These modes are
hybrid modes. The field in such a mode has longitudinal
electric and magnetic components. The local polarization of
the mode varies in the fiber cross-section plane [54] and
depends on the propagation direction [33,38]. Therefore, the
use of the scalar field formalism to treat the interaction
of a nanofiber-guided field with an atom is not always
appropriate. When the local polarization of the guided field is
elliptical and the dipole matrix-element vector of the atom is a
complex vector, direction-dependent effects in the atom-field
interaction may occur [33,34,38,51,55].

In view of the recent results and insights, it is necessary to
develop a systematic theory for the propagation of guided light
under the EIT condition in an atomic array taking into account
the vector nature of the guided field and the discreteness and
periodicity of the array.

In this paper, we study EIT in a one-dimensional periodic
array of three-level atoms trapped along an optical nanofiber.
We examine two schemes of atomic levels and field polariza-
tions where the guided probe field is quasilinearly polarized
along the major principal axis x or the minor principal axis
y, which lie in the fiber cross-section plane and are parallel
or perpendicular, respectively, to the radial direction of the
atomic position. We take into account the vector nature of the
guided field and the discreteness and periodicity of the atomic
array. We study the transmittivity and reflectivity of guided
light and the time evolution of the transmitted and reflected
fields.

The paper is organized as follows. In Sec. II, we describe
two schemes of atomic levels and field polarizations for
nanofiber-based EIT, and present the coupled-mode propaga-
tion equations. In Sec. III, we study EIT in the homogeneous-
medium approximation and the phase-matching approxima-
tion. In Sec. IV, we investigate EIT in a discrete array of
atoms with the help of the transfer matrix formalism. Our
conclusions are given in Sec. V.

II. NANOFIBER-BASED EIT SCHEMES AND
COUPLED-MODE PROPAGATION EQUATIONS

We consider a linear periodic array of �-type three-level
atoms trapped outside an optical nanofiber (see Fig. 1). The
nanofiber has a cylindrical silica core, with radius a and
refractive index n1, surrounded by vacuum, with refractive
index n2 = 1. We use the Cartesian coordinate system {x,y,z}
and the associated cylindrical coordinate system {r,ϕ,z}, with
z being the fiber axis. We assume that the array of atoms
is parallel to the fiber axis z and lies in the zx plane. The
positions of the atoms in the array are characterized by the
Cartesian coordinates xj = x0, yj = 0, and zj = (j − 1)�.
Here, the index j = 1,2, . . . ,N labels the atoms, with N being
the number of atoms in the array, and the parameter � is
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FIG. 1. (Color online) Left column: An array of atoms outside
an optical nanofiber with a plane-wave control field Ec, a guided
probe field Ep , and a guided reflected field Eb. The atomic array
is aligned parallel to the fiber axis z and lies in the zx plane
of the Cartesian coordinate frame {x,y,z}. The probe field Ep is
quasilinearly polarized along the major principal axis x in scheme
(a) and the minor principal axis y in scheme (b). The control field
Ec propagates along the axis x and is linearly polarized along the
axis y in scheme (a), and propagates along the axis y and is circularly
polarized in scheme (b). Right column: The diagram of atomic energy
levels and electric dipole transitions for the analysis. Atomic cesium
is used. The quantization axis zQ is the axis y. In both schemes
(a) and (b), the upper level is |e〉 = |6P3/2,F

′ = 4,M ′ = ±4〉. In
scheme (a), the lower levels are |g〉 = |6S1/2,F = 3,M = ±3〉 and
|h〉 = |6S1/2,F = 4,M = ±4〉. In scheme (b), the lower levels are
|g〉 = |6S1/2,F = 4,M = ±4〉 and |h〉 = |6S1/2,F = 3,M = ±3〉.

the period of the array. The axes x and y, which lie in the
fiber cross-section plane and are parallel and perpendicular,
respectively, to the radial direction of the atomic position,
are called the major and minor principal axes, respectively.
Although our theory is general and applicable, in principle,
to arbitrary multilevel atoms, we assume cesium atoms
throughout this paper. For simplicity, we neglect the effect of
the surface-induced potential on the atomic energy levels. This
approximation is reasonable when the atoms are not close to
the fiber surface. We also neglect the effect of the far-detuned
trapping light fields.

A. Quasilinearly polarized nanofiber-guided modes

We represent the electric component of a nanofiber-guided
light field as E = (Ee−iωt + c.c.)/2 = (Eue−iωt + c.c.)/2,
where ω is the angular frequency and E = Eu is the slowly
varying envelope of the positive-frequency part, with E and
u being the field amplitude and the polarization vector,
respectively. In general, the amplitude E is a complex scalar
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and the polarization vector u is a complex unit vector. The
guided light field can be decomposed into a superposition of
quasilinearly polarized modes [53]. These guided modes can
be labeled by the index (ω,f,ξ ), where f = +1 or −1 (or
simply + or −) stands for the positive (+ẑ) or negative (−ẑ)
propagation direction, respectively, and ξ = x or y stands for
the principal polarization axis. In the cylindrical coordinates,
the transverse-plane profile functions of the positive-frequency
parts of the electric components of the modes (ω,f,ξ ) are given
by [51,53–55]

e(ωf x) =
√

2 (r̂er cos ϕ + iϕ̂eϕ sin ϕ + f ẑez cos ϕ),
(1)

e(ωfy) =
√

2 (r̂er sin ϕ − iϕ̂eϕ cos ϕ + f ẑez sin ϕ).

Here, the notations r̂ = x̂ cos ϕ + ŷ sin ϕ, ϕ̂ = −x̂ sin ϕ +
ŷ cos ϕ, and ẑ stand for the unit basis vectors of the cylindrical
coordinate system, where x̂ and ŷ are the unit basis vectors
of the Cartesian coordinate system for the fiber cross-section
plane xy. The notations er = er (r), eϕ = eϕ(r), and ez = ez(r)
stand for the cylindrical components of the profile function
e(ω,+,+)(r,ϕ) of the forward counterclockwise polarized guided
mode and are given in Refs. [51,53–56]. Equations (1) show
that the x- and y-polarized guided modes have, in general,
not only transverse but also longitudinal components. The
local polarizations of these modes vary in the fiber cross-
section plane, and are generally not strictly linear [53,54].
It is interesting to note from Eqs. (1) that the signs of
the longitudinal components f ez cos ϕ and f ez sin ϕ for
the x- and y-polarized modes, respectively, depend on the
propagation direction f . Thus, the difference between the
mode profile functions for the forward (f = +) and backward
(f = −) guided fields is expressed by the change in sign
of the longitudinal components. This change may affect the
magnitude of the coupling between the atom and the field and,
consequently, may lead to directional spontaneous emission
and directional scattering [33,34,38,51,55].

Since the radial direction of the atomic position in our study
is parallel to the axis x, the polar angle for the atomic position
is ϕ = 0. Therefore, when we evaluate the mode functions (1)
at the positions of the atoms, we find

e(ωf x)|x axis =
√

2 (i|er |x̂ + f |ez|ẑ), (2a)

e(ωfy)|x axis = i
√

2 |eϕ|ŷ. (2b)

In deriving the above equations we have used the properties
er = i|er |, eϕ = −|eϕ|, and ez = |ez| [51,53–55].

Equation (2a) indicates that, on the x axis, the x-polarized
guided mode has two components, the transverse component
i
√

2 |er | (aligned along the x axis) and the longitudinal
component f

√
2 |ez| (aligned along the z axis). The difference

in phase between these components is f π/2. It depends of the
mode propagation direction f . The polarization vector of the
x-polarized guided mode on the x axis is

u = i|er |x̂ + f |ez|ẑ√
|er |2 + |ez|2

. (3)

It is clear that the local polarization of the x-polarized guided
mode on the x axis is elliptical in the zx plane. The ellipticity

vector is given by i[u × u∗] = σellŷ, where

σell = f
2|er ||ez|

|er |2 + |ez|2 (4)

is the ellipticity parameter. The circulation direction of the
above elliptical polarization depends on the mode propa-
gation direction f . The polarization vector (3) is a linear
superposition of the circular polarization basis vectors σ+ =
(ẑ + ix̂)/

√
2 and σ− = −(ẑ − ix̂)/

√
2 with the coefficients

uσ+ = 1√
2

|er | + f |ez|√
|er |2 + |ez|2

,

(5)

uσ− = 1√
2

|er | − f |ez|√
|er |2 + |ez|2

.

The corresponding weight factors |uσ±|2 are given in terms
of the polarization ellipticity parameter σell as |uσ±|2 = (1 ±
σell)/2. When |ez| � |er |, we have σell � ±1, |uσ±|2 � 1, and
|uσ∓|2 � 0 for f = ±. In this case, the local polarization
of the x-polarized guided mode at the position of the atom
on the x axis is almost circular. As an example, we consider
the case where the nanofiber radius is a = 250 nm and the
atom-to-surface distance is r − a = 200 nm. These parameters
correspond to the Vienna atom trap experiment [35]. We
find the ratio |ez|/|er | � 0.55, which leads to σell � ±0.84,
|uσ±|2 � 0.92, and |uσ∓|2 � 0.08 for f = ± [33,38].

Equation (2b) indicates that, on the x axis, the y-polarized
guided mode has a single component i

√
2 |eϕ|, which is aligned

along the y axis. Thus, the local polarization of the y-polarized
guided mode at the position of the atomic array is exactly linear
along the y axis. This local polarization does not depend on
the mode propagation direction f .

B. Atomic levels and EIT schemes

We assume that the atoms have a single upper level |e〉
of energy �ωe and two lower levels |g〉 and |h〉 of energies
�ωg and �ωh, respectively. The atoms are initially prepared in
the lower level |g〉. The levels |e〉 and |g〉 are coupled by a
weak probe field Ep of frequency ωp. The levels |e〉 and |h〉
are coupled by a strong control field Ec of frequency ωc. The
transition between the lower levels |g〉 and |h〉 is electric-dipole
forbidden. We assume that the probe field Ep is guided by the
nanofiber and propagates along the fiber axis z in the direction
fp = ±, where + or − corresponds to the positive direction
+ẑ or the negative direction −ẑ, respectively. The detuning of
the probe field with respect to the atomic transition |e〉 ↔ |g〉
is denoted by

	 = ωp − ω0, (6)

where ω0 = ωeg ≡ ωe − ωg . The control field Ec is an external
plane-wave field propagating perpendicularly to the fiber axis
z. The two-photon (Raman) transition between the lower levels
|g〉 and |h〉 may be off resonance, and the corresponding two-
photon detuning is denoted by

δ = ωp − ωc − ωh + ωg. (7)

In our general analytical calculations, the single-photon
detuning 	 and the two-photon detuning δ can be different
from each other. However, in our numerical calculations, we
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will study only the case where 	 = δ, that is, the case where the
control field is on exact resonance with the atomic transition
|e〉 ↔ |h〉.

To be specific, we use the transitions between the Zeeman
sublevels of the D2 line of atomic cesium in our calculations.
In order to specify the internal atomic states, we use the minor
principal axis y as the quantization axis zQ. The purpose of
this choice is that it allows us to identify appropriate atomic
states |e〉 and |g〉 which are coupled to each other by just
one type of polarization of guided probe light. Indeed, as
shown in the previous subsection, at an arbitrary position
on the axis x, the local polarization of x-polarized guided
light is elliptical in the zx plane and the local polarization
of y-polarized guided light is exactly linear along the y axis.
Therefore, an atomic transition between two Zeeman sublevels
specified with respect to the quantization axis y can interact
with either x- or y-polarized guided light but not with both.

We consider two schemes that are illustrated in Figs. 1(a)
and 1(b). In both schemes, we use the excited-state sublevel
|6P3/2,F

′ = 4,M ′ = ±4〉 as the upper level |e〉. Furthermore,
we use the ground-state sublevels |6S1/2,F = 3,M = ±3〉 and
|6S1/2,F = 4,M = ±4〉 as the levels |g〉 and |h〉, respectively,
in scheme (a) of Fig. 1, and as the levels |h〉 and |g〉,
respectively, in scheme (b) of Fig. 1. The effects of other
Zeeman sublevels are removed by applying an external
magnetic field. We emphasize that the atomic states in the
above schemes are specified by using the minor principal axis
y as the quantization axis. In addition, the quantum numbers
of the lower states |g〉 and |h〉 are interchangeable between the
two different schemes (see Fig. 1).

In scheme (a) of Fig. 1, the guided probe field Ep is
quasilinearly polarized along the x direction. Meanwhile,
the control field Ec is a plane wave propagating along
the axis x and linearly polarized along the axis y = zQ in
accordance with the π type of the atomic transition |e〉 ↔
|h〉. In scheme (b) of Fig. 1, the guided probe field Ep is
quasilinearly polarized along the y direction. Meanwhile, the
control field Ec is a plane wave propagating along the axis
y and counterclockwise or clockwise circularly polarized in
accordance with the σ+ or σ− type of the atomic transition
|e〉 ↔ |h〉. In what follows, schemes (a) and (b) of Fig. 1
are called the x- and y-polarization schemes, respectively. In
both schemes, we neglect the reflection of the control field
Ec from the fiber surface. Since the control field propagation
direction and the atomic array axis are perpendicular and
parallel, respectively, to the fiber axis z, the effect of the
reflection of the control field Ec can be easily accounted for by
modifying the magnitude of Ec at the position of the atomic
array.

We introduce the notation Mα for the magnetic quantum
number of the atomic level α, where α = e,g,h. In the
analytical calculations, we use Mg = ±3 and Mh = ±4 for
the x-polarization scheme, Mg = ±4 and Mh = ±3 for the
y-polarization scheme, and Me = ±4 for both schemes.

We note that, in both schemes (a) and (b) of Fig. 1, the probe
transition |e〉 ↔ |g〉 is not coupled to the guided modes with
the polarization ξ̄p that is orthogonal to the polarization ξp of
the incident guided probe field. Here, we have introduced the
notation ξ̄ = y for ξ = x and ξ̄ = x for ξ = y. For the control
field Ec, we can use a guided field instead of an external

plane-wave field. Indeed, the control transition |e〉 ↔ |h〉 can
be coupled by an additional guided field that is quasilinearly
polarized along the y direction in scheme (a) of Fig. 1 or along
the x direction in scheme (b) of the figure.

Due to the interaction between the atoms and the guided
probe field Ep, a guided reflected field Eb with the frequency
ωb = ωp, the propagation direction fb = −fp, and the polar-
ization ξb = ξp may be generated. In order to describe the
reflection, we need to include both propagation directions
f = + and f = − into the analysis. We introduce the notation
Ef for the positive frequency component of the electric part
of the field in the guided mode with the frequency ωp, the
polarization ξp, and the propagation direction f = ±. The
electric field vector Ef = Ef (r,ϕ,z,t) is related to the photon
flux amplitude Af = Af (z,t) via the formula

Ef = i

√
2�ωp

ε0vg

Af e(ωpf ξp). (8)

Here, vg = (dβ/dω)−1|ω=ωp
is the group velocity of the guided

field, where β is the longitudinal propagation constant. The
notation e(ωf ξ ) stands for the normalized profile function for the
guided mode with the frequency ω, the propagation direction
f , and the polarization ξ [51,53,55,56]. According to [18],
the amplitudes Af = A± of the photon fluxes of the guided
fields Ef = E± are governed, in the framework of the slowly
varying envelope approximation, by the propagation equations

(
∂

∂z
− iβp

)
A+ = nAG∗

+ρeg,

(9)(
∂

∂z
+ iβp

)
A− = −nAG∗

−ρeg.

Here, βp = β(ωp) is the longitudinal propagation constant for
the forward and backward guided fields,

nA =
∑

j

δ(z − zj ) (10)

is the one-dimensional atom-number density, G+ and G− are
the coupling coefficients for the guided fields E+ and E−,
respectively, and ραα′ ≡ 〈α|ρ|α′〉 with α,α′ = e,g,h are the
elements of the density matrix ρ of the atom in the inter-
action picture. The coupling coefficient Gf = G± is defined
as

Gf =
√

ωp

2ε0�vg

deg · e(ωpf ξp). (11)

Here, deg is the dipole matrix element for the atomic transition
|e〉 ↔ |g〉. We emphasize that the photon flux amplitudes
A±(z,t) are independent of x and y.

It is clear from Eq. (11) that the atom-field coupling
coefficient Gf depends on the local polarization of the guided
probe field at the position of the atom. This coefficient also
depends on the orientation and magnitude of the dipole matrix
element deg . We emphasize again that, in our study, the
internal atomic states and the atomic transitions are specified
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by using the minor principal axis y as the quantization axis.
Moreover, in order to obtain nonzero atom-field coupling
coefficients, different transitions |e〉 ↔ |g〉 of atomic cesium,
with different dipole matrix elements deg , are used in the
different polarization schemes (see Fig. 1).

In the case of the x-polarization scheme, the coupling
coefficient Gf is given as

Gf = −
√

ωp

2ε0�vg

deg[|er | + f (Me − Mg)|ez|]. (12)

Here, er and ez are, respectively, the radial and axial com-
ponents of the mode profile function e ≡ e(ωp,+,+) of the
forward counterclockwise quasicircularly polarized guided
modes [51,53,55,56].

In the case of the y-polarization scheme, the coupling
coefficient Gf is given as

Gf = i

√
ωp

ε0�vg

deg|eϕ|. (13)

Here, eϕ is the azimuthal component of the mode profile
function e ≡ e(ωp,+,+) of the forward counterclockwise qua-
sicircularly polarized guided modes [51,53,55,56].

Note that |Gf |2 = γ
(f ξp)
eg , where γ

(f ξp)
eg is the rate of

spontaneous emission of the atomic transition |e〉 ↔ |g〉 into
the guided mode with the propagation direction f and the
polarization ξp. Since the probe transition |e〉 ↔ |g〉 is not
coupled to the guided modes with the polarization ξ̄p in
the cases of schemes (a) and (b) of Fig. 1, we have the
relation γ

(f )
eg = γ

(f ξp)
eg , where γ

(f )
eg is the rate of spontaneous

emission of the atomic transition |e〉 ↔ |g〉 into the guided
modes with the propagation direction f . Hence, we obtain
|Gf |2 = γ

(f )
eg .

The Rabi frequency caused by the guided field Ef is given
by

�f = deg · Ef /� = 2iGfAf . (14)

The Rabi frequency caused by the control field Ec is �c =
deh · Ec/�, where deh is the dipole matrix element for the
atomic transition |e〉 ↔ |h〉. We assume that |�±| � |�c|. In
the adiabatic approximation, the expression for ρeg to first
order in �± is found to be

ρeg = �+ + �−
2

F , (15)

where [1–6]

F = δ + i�hg

|�c|2/4 − (	 + i�eg)(δ + i�hg)
. (16)

Here, �eg is the decay rate of the atomic probe transition
coherence ρeg , and �hg is the decay rate of the lower-level
coherence ρhg .

We insert Eq. (15) into Eqs. (9) and make use of expres-
sion (14). Then, we obtain(

∂

∂z
− iβp

)
A+ = i(K̃++A+ + K̃+−A−),

(17)(
∂

∂z
+ iβp

)
A− = −i(K̃−+A+ + K̃−−A−),

where

K̃ff ′ = nAG∗
f Gf ′F (18)

for f,f ′ = +,−. In general, the one-dimensional atom-
number density nA and consequently the coupling coefficients
K̃ff ′ are generalized functions of z [see Eq. (10)].

III. CONTINUOUS-MEDIUM APPROXIMATIONS

In this section, we approximate the generalized-function
representation (10) of the one-dimensional atom-number
density nA by two different continuous-function representa-
tions and present the corresponding analytical and numerical
results. In Sec. III A, we replace nA by a constant and solve
the corresponding coupled-mode propagation equations. In
Sec. III B, we expand nA into a Fourier series and neglect the
terms that do not correspond to the phase-matching condition
in the coupled-mode propagation equations.

A. Homogeneous-medium approximation

We consider the case where the lattice constant � is not
close to any integer multiple of the in-fiber half-wavelength
λF /2 = π/βp of the probe field, that is, the atomic array is
far off the Bragg resonance. In this case, the effect of the
interference between the beams reflected from different atoms
in the array is not significant and, therefore, we can neglect
the discreteness and periodicity of the atomic array. This
approximation means that we can use the one-dimensional
atom-number distribution

nA = 1/�, (19)

which is continuous and constant in the axial coordinate z.
With the use of this approximation, expression (18) for the
coefficients K̃ff ′ reduces to

K̃ff ′ = Kff ′ , (20)

where the coefficients

Kff ′ = G∗
f Gf ′

F
�

(21)

are independent of z. Note that K+−K−+ = K++K−−. In the
case of the x-polarization scheme, we have K++ �= K−− and
K+− = K−+. In the case of the y-polarization scheme, we have
K++ = K−− = K+− = K−+. It is convenient to introduce the
notations K+ = K++ and K− = K−−.

We can easily solve Eqs. (17) with the constant coefficients
given by Eq. (20). We assume that z = 0 and z = L =
(N − 1)� are the left- and right-edge positions of the atomic
medium, respectively. In the case where the incident probe
field is A+(0), the boundary condition is A−(L) = 0. In this
case, the reflection and transmission coefficients are R

(+)
A =

A−(0)/A+(0) and T
(+)
A = A+(L)/A+(0), respectively. In the

case where the incident probe field is A−(L), the boundary
condition is A+(0) = 0. In this case, the reflection and trans-
mission coefficients are R

(−)
A = A+(L)/A−(L) and T

(−)
A =

A−(0)/A−(L), respectively. With the help of the relation
K+− = K−+, we can show that R

(+)
A = R

(−)
A ≡ RA. The
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expressions for RA and T
(f )
A are found to be

RA = iK−+ sin(QL)

Q cos(QL) − i[βp + (K+ + K−)/2] sin(QL)
,

(22)

T
(f )
A = Q exp[if (K+ − K−)L/2]

Q cos(QL) − i[βp + (K+ + K−)/2] sin(QL)
,

where

Q =
√

β2
p + βp(K+ + K−) + (K+ − K−)2

4
. (23)

We note that, in the case of the y-polarization scheme, we have
K+ = K−, which leads to T

(+)
A = T

(−)
A ≡ TA.

Since |G∗
f Gf ′ | < 2�eg , |F | � 1/�eg , and � ∼ π/βp, we

have |Kff ′ | � βp. Hence, we find Q � βp + (K+ + K−)/2.
With this approximation, Eqs. (22) reduce to

RA � K−+
2βp + K+ + K−

{exp[i(2βp + K+ + K−)L] − 1},

T
(f )
A � exp[i(βp + Kf )L]. (24)

Since |K−+| � βp, the reflectivity of the array is
|RA|2 � 0. The transmission of the probe field is |T (f )

A |2 �
exp(−2κf L), where

κf = Im(Kf ) (25)

is the absorption coefficient for the probe field in the case
where the reflection is negligible. The corresponding phase
shift coefficient for the probe field is

θf = Re(Kf ). (26)

The optical depth per atom Df ≡ 2κf � is

Df = 2|Gf |2Im

[
δ + i�hg

|�c|2/4 − (	 + i�eg)(δ + i�hg)

]
. (27)

The phase shift per atom �f ≡ θf � is

�f = |Gf |2Re

[
δ + i�hg

|�c|2/4 − (	 + i�eg)(δ + i�hg)

]
. (28)

We now describe time dependence of the guided probe
field Af , where f = fp. In the case where the period
of the atomic array is far from the Bragg resonance, the
reflection is, as shown analytically above and illustrated
numerically in Figs. 4(b) and 5(b) below, negligible. Then,
in the frequency domain, the Fourier-transformed amplitude
Ãf (z,ω) = (2π )−1/2

∫ ∞
−∞ Af (z,t)ei(ω−ωp)t dt of the probe field

is governed by the propagation equation

∂Ãf (z,ω)

f ∂z
= i[β(ω) + Kf (ω)]Ãf (z,ω). (29)

Here, we have introduced the notation Kf (ω) = Kff (ω),
where Kff ′(ω) = Kff ′ |ωp=ω is given by Eq. (21) with the sub-
stitution ωp = ω. We neglect the dispersion of the fiber-mode
group velocity, that is, we take β(ω) = βp + β ′

p(ω − ωp),
where ωp is the central frequency of the input guided probe
field. We expand Kf (ω) up to the second order of ω − ωp as

Kf (ω) = Kf + K ′
f (ω − ωp) + 1

2K ′′
f (ω − ωp)2, (30)

where

Kf = |Gf |2
�

δ + i�hg

|�c|2/4 − (	 + i�eg)(δ + i�hg)
,

K ′
f = |Gf |2

�

|�c|2/4 + (δ + i�hg)2

[|�c|2/4 − (	 + i�eg)(δ + i�hg)]2
,

K ′′
f = 2

|Gf |2
�

× [	 + i�eg + 2(δ + i�hg)]|�c|2/4 + (δ + i�hg)3

[|�c|2/4 − (	 + i�eg)(δ + i�hg)]3
.

(31)

We substitute Eq. (30) into Eq. (29) and perform the inverse
Fourier transformation. Then, we obtain

∂Af (z,t)

f ∂z
= i(βp + Kf )Af (z,t) − (β ′

p + K ′
f )

∂Af (z,t)

∂t

− i
K ′′

f

2

∂2Af (z,t)

∂t2
. (32)

In general, Kf , K ′
f , and K ′′

f are complex parameters. The
imaginary and real parts of the parameter Kf , namely, the
coefficients κf = Im(Kf ) and θf = Re(Kf ), are, as already
discussed above, the absorption and phase shift coefficients,
respectively, for the guided probe light field. We emphasize
that the coefficients Kf , K ′

f , and K ′′
f are the propagation

characteristics for the photon flux amplitude Af (z,t).
We analyze the case of exact one- and two-photon reso-

nances, that is, the case where 	 = δ = 0. It is clear from the
expression for Kf in Eqs. (31) that, when |�c|2 � �hg�eg , the
absorption coefficient κf = Im(Kf ) and the phase shift coeffi-
cient θf = Re(Kf ) are small. These features are the signatures
of EIT [1–6]. We note that the width of the corresponding

transparency window is given by 	ωtrans = 1/
√

L Im(K ′′
f ).

When the dephasing rate �hg is negligible, the expression for
K ′′

f in Eqs. (31) yields Im(K ′′
f ) ∝ γ

(f )
eg �eg/�|�c|4, leading

to [1–6]

	ωtrans ∝ |�c|2√
γ

(f )
eg �eg

1√
N

. (33)

When the input probe pulse is long enough, the group velocity
V

(f )
g of the probe field is determined by the equation 1/V

(f )
g =

1/vg + Re(K ′
f ). When the dephasing rate �hg is negligible, the

expression for K ′
f in Eqs. (31) yields Re(K ′

f ) ∝ γ
(f )
eg /�|�c|2,

leading to [1–6]

1

V
(f )
g

− 1

vg

∝ nA

γ
(f )
eg

|�c|2 , (34)

where the atom-number density nA in the framework of the
homogeneous-medium approximation is given by Eq. (19).

We calculate numerically the optical depth per atom Df ,
the phase shift per atom �f , the group-velocity reduction
factor c/V

(f )
g , the transmittivity |T (f )

A |2, and the reflectivity
|RA|2 as functions of the detuning 	 of the guided probe
field. In the numerical calculations presented in this paper, we
use, as already stated, the outermost Zeeman sublevels of the
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hyperfine levels 6P3/2F
′ = 4, 6S1/2F = 3, and 6S1/2F = 4 of

the D2 line of atomic cesium, with the free-space wavelength
λ0 = 852.35 nm. In the calculations for the x-polarization
scheme, we use the levels |e〉 = |6P3/2,F

′ = 4,M ′ = 4〉, |g〉 =
|6S1/2,F = 3,M = 3〉, and |h〉 = |6S1/2,F = 4,M = 4〉. In
the calculations for the y-polarization scheme, we use the lev-
els |e〉 = |6P3/2,F

′ = 4,M ′ = 4〉, |g〉 = |6S1/2,F = 4,M =
4〉, and |h〉 = |6S1/2,F = 3,M = 3〉. The rate �eg of decay
of the atomic optical-transition coherence is calculated by
using the results of Ref. [56]. The obtained value is �eg �
2π × 2.67 MHz. The corresponding value of the linewidth of
the upper level |e〉 is 2�eg � 2π × 5.34 MHz. This value is
slightly larger than the literature value γ0 � 2π × 5.2 MHz for
the atomic natural linewidth [57,58]. The obtained increase
of the atomic linewidth is caused by the presence of the
nanofiber. The lower-level decoherence rate is assumed to
be �hg = 2π × 50 kHz. This value is comparable to the
experimental value of about 2π × 32 kHz, measured in the
Vienna experiment [32]. The control field is at exact resonance
with the atomic transition |e〉 ↔ |h〉. The fiber radius is
a = 250 nm and the distance from the atoms to the fiber surface
is r − a = 200 nm [35].

We plot in Figs. 2 and 4 the results of the calculations
for scheme (a) of Fig. 1, where the guided probe field is x

polarized. We show in Figs. 3 and 5 the results for scheme
(b) of Fig. 1, where the guided probe field is y polarized.
For the calculations of Figs. 2–5, we use the one-dimensional

(a) (b)

f 
Θ

f 
c/

V g
( f

 )

(c) (d)

(e) (f)

f = + f =-

Probe field detuning Δ/2π (MHz)

FIG. 2. EIT of an x-polarized guided probe field propagating
along an array of cesium atoms with a σ -type probe transition. The
optical depth per atom Df (upper row), the phase shift per atom �f

(middle row), and the group-velocity reduction factor c/V (f )
g (lower

row) are plotted as functions of the detuning 	. The working levels
are |e〉 = |6P3/2,F

′ = 4,M ′ = 4〉, |g〉 = |6S1/2,F = 3,M = 3〉, and
|h〉 = |6S1/2,F = 4,M = 4〉. The lower-level decoherence rate is
�hg = 2π × 50 kHz. The probe field propagates in the positive (left
column) or negative (right column) direction of the fiber axis z. The
fiber radius is a = 250 nm. The distance from the atoms to the fiber
surface is r − a = 200 nm. The atom-number density is nA = 1/�

with � = 498.13 nm. The control field is at exact resonance with the
atomic transition |e〉 ↔ |h〉 and is a plane wave propagating along the
x direction and polarized along the y direction. The intensity of the
control field is Ic = 1 mW/cm2 (the corresponding Rabi frequency is
�c = 0.46γ0).

(a)

(b)

(c)

Θ
 

c/
V g

Probe field detuning Δ/2π (MHz)

FIG. 3. EIT of a y-polarized guided probe field propagating along
an array of cesium atoms with a π -type probe transition. The optical
depth per atom D (a), the phase shift per atom � (b), and the
group-velocity reduction factor c/Vg (c) are plotted as functions of the
detuning 	. The working levels are |e〉 = |6P3/2,F

′ = 4,M ′ = 4〉,
|g〉 = |6S1/2,F = 4,M = 4〉, and |h〉 = |6S1/2,F = 3,M = 3〉. The
lower-level decoherence rate is �hg = 2π × 50 kHz. The atom-
number density is nA = 1/� with � = 498.13 nm. The control
field is at exact resonance with the atomic transition |e〉 ↔ |h〉
and is a plane wave propagating along the y direction with the
counterclockwise circular polarization. The intensity of the control
field is Ic = 1 mW/cm2 (the corresponding Rabi frequency is �c =
0.43γ0). Other parameters are as for Fig. 2. The results do not depend
on the propagation direction of the guided probe field.

atom-number density nA = 1/�, where � = 498.13 nm. The
chosen value of � is one-half of the in-fiber wavelength of
the red-detuned standing-wave guided light field used in the
Vienna atom trap experiment [35]. Such a value of the array
period is far from the Bragg resonance (the Bragg resonant
array period is �res = nλF /2, where n = 1,2, . . . and λF ≡

(a)

(b)

|TA     |
2( - )

|RA|2

Probe field detuning Δ/2π (MHz)
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|TA     |
2(+)

FIG. 4. (Color online) Transmittivity |T (f )
A |2 (a) and reflectivity

|RA|2 (b) of an x-polarized guided probe field as functions of the
detuning 	 in the homogeneous-medium approximation. The atom-
number density is nA = 1/� with � = 498.13 nm. The medium
length is L = (N − 1)� with N = 200. Other parameters are as for
Fig. 2.
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FIG. 5. Transmittivity |TA|2 (a) and reflectivity |RA|2 (b) of a
y-polarized guided probe field as functions of the detuning 	 in the
homogeneous-medium approximation. The atom-number density is
nA = 1/� with � = 498.13 nm. The medium length is L = (N −
1)� with N = 200. Other parameters are as for Fig. 3.

2π/βp � 745.16 nm for the probe field with the free-space
atomic resonance wavelength λp = λ0 = 852.35 nm).

Figures 2 and 3 show the familiar features of EIT: in the
vicinity of the exact resonance, the optical depth Df achieves
a low minimum, the magnitude of the phase shift �f is small
but the slope of the phase shift is steep, and consequently
the reduction of the group velocity V

(f )
g is large [1–9]. These

features occur in a region of frequency which is narrower than
the atomic natural linewidth γ0 and is called the EIT window.

Figures 4(a) and 5(a) show that the transmittivity |T (f )
A |2

has a narrow peak at 	 = 0. We observe from Figs. 4(b)
and 5(b) that the reflectivity |RA|2 is very small and is slightly
asymmetric with respect to 	. The asymmetry results from the
fact that the relative phase βpL is not an integer multiple of π

for the parameters used. Due to this fact, the magnitude of the
reflectivity |RA|2 depends on the sign of the detuning 	.

When we compare the left and right columns of Fig. 2,
where the probe field polarization is ξp = x and the propa-
gation direction is f = + for the left column and f = − for
the right column, and compare these two columns with Fig. 3,
where ξp = y and f = ±, we see that the optical depth per
atom Df , the phase shift per atom �f , the group-velocity
reduction factor c/V

(f )
g are different in the three cases.

Similarly, when we compare the solid red and dashed blue
curves of Fig. 4(a), where the probe field polarization is ξp = x

and the propagation direction is f = + for the solid red curve
and f = − for the dashed blue curve, and compare these two
curves with the curve of Fig. 5(a), where ξp = y and f = ±,
we observe that the transmittivity |T (f )

A |2 is also different in
the three cases. The differences between the results for the
three cases arise from the fact that the atom-field coupling
characterized by the coefficient Gf depends on the local
polarization of the guided probe field at the position of the
atom [see Eq. (11)], that is, on the mode polarization ξp = x,y

and on the propagation direction f in the case of ξp = x [see
Eqs. (12) and (13)]. Another reason is that different atomic
transitions |e〉 ↔ |g〉, which have different complex dipole

matrix elements deg , are used in the x- and y-polarization
schemes (see Fig. 1).

Thus, in the case of the x-polarization scheme, the optical
depth Df , the phase shift �f , the group velocity V

(f )
g , and the

transmittivity |T (f )
A |2 substantially depend on the propagation

direction f . The directionality of transmission of guided
light through the array of atoms is a consequence of the
existence of a longitudinal component of the guided light
field as well as the ellipticity of both the field polarization
and the atomic dipole vector [51,55]. We note that directional
spontaneous emission into an optical nanofiber has been
recently demonstrated experimentally for trapped atoms [33]
and for nanoparticles [38]. An optical diode based on the
chirality of guided photons has also been reported [34].

We observe from Figs. 2(a), 2(b), and 4(a) for the x-
polarization scheme and Figs. 3(a) and 5(a) for the y-
polarization scheme that, at zero detuning, the absorption is not
completely suppressed and, hence, the induced transparency
is not 100%. This is a consequence of the fact that a nonzero
lower-level decoherence rate �hg is included in our calcula-
tions. Without this decoherence, the induced transparency is
100% at zero detuning. Comparison between Figs. 2(a), 2(b),
and 3(a) and between Figs. 4(a) and 5(a) shows that, for a given
lower-level decoherence, the residual absorption depends on
the probe field polarization ξp and on the propagation direction
f in the case of ξp = x. The reason is twofold: (1) the
atom-field coupling depends on the local polarization of the
field and (2) the different atomic transitions |e〉 ↔ |g〉 are used
in the different polarization schemes.

B. Phase-matching approximation

We now take into account the periodicity of the atomic array
but still consider the array as a continuous one-dimensional
medium. For this purpose, we rewrite expression (10) for the
one-dimensional atom-number distribution nA in the Fourier
series form nA = (1/�)

∑∞
n=−∞ e2nπiz/� for 0 � z � L =

(N − 1)�. Then, Eq. (18) for the coupling coefficients K̃ff ′

becomes

K̃ff ′ = Kff ′

∞∑
n=−∞

e2niβlatz. (35)

Here, the parameter βlat = π/� is the wave number that
characterizes the periodicity of the atom distribution in the
array. The coupling coefficients Kff ′ are independent of z and
are given by Eq. (21).

Let n be the nearest integer number to βp/βlat. This
specific integer number n indicates the dominant role of the
corresponding harmonic in Eq. (35). We note that the equality
βp = nβlat means βp� = nπ , which is the geometric condition
for the nth-order Bragg resonance.

We introduce the transformationA+ = a+einβlatz andA− =
a−e−inβlatz. When we insert Eq. (35) into Eqs. (17) and keep
only the phase-matching terms, we obtain(

∂

∂z
− iδβp

)
a+ = iK++a+ + iK+−a−,

(36)(
∂

∂z
+ iδβp

)
a− = −iK−+a+ − iK−−a−.
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Here, the factor δβp = βp − nβlat characterizes the phase
mismatch between the guided probe field and the nth harmonic
of the atomic distribution. In Eqs. (36), the terms iK++a+
and −iK−−a− describe the self-coupling of the modes and
originate from the zeroth-order harmonic in the Fourier
expansion of nA, while the terms iK+−a− and −iK−+a+
describe the coupling between the forward and backward
fields and originate from the nth-order harmonic in the
Fourier expansion of nA. Similar to the results of the previous
subsection, the reflection and transmission coefficients in the
phase-matching approximation are found to be

RA = iK−+ sin(UL)

U cos(UL) − i[δβp + (K+ + K−)/2] sin(UL)
,

(37)

T
(f )
A = U exp[if (K+ − K−)L/2] exp(inβlatL)

U cos(UL) − i[δβp + (K+ + K−)/2] sin(UL)
,

where

U =
√

(δβp)2 + δβp(K+ + K−) + (K+ − K−)2

4
. (38)

The condition for the validity of the above results is |δβp| �
βp. When the phase-mismatch factor δβp is sufficiently large
that |Kff ′ | � |δβp|, Eqs. (37) reduce to

RA � K−+
2δβp + K+ + K−

{exp[i(2δβp + K+ + K−)L] − 1},

T
(f )
A � exp[i(βp + Kf )L]. (39)

Under the condition |K−+| � |δβp|, the reflectivity of the
array is |RA|2 � 0, while the transmittivity is |T (f )

A |2 �
exp(−2κf L), with the absorption coefficient κf being given
by Eq. (25).

We plot in Figs. 6 and 7 the tuning dependencies of the
transmittivity |T (f )

A |2 and the reflectivity |RA|2, calculated from
Eqs. (37) for the parameters of Figs. 4 and 5. We observe
that Figs. 6(a) and 7(a) are almost identical to Figs. 4(a)
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FIG. 6. (Color online) Transmittivity |T (f )
A |2 (a) and reflectivity

|RA|2 (b) of an x-polarized guided probe field as functions of the
detuning 	 in the phase-matching approximation. The array period
is � = 498.13 nm and the array length is L = (N − 1)�, where
N = 200. Other parameters are as for Fig. 2.
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FIG. 7. Transmittivity |TA|2 (a) and reflectivity |RA|2 (b) of a
y-polarized guided probe field as functions of the detuning 	 in
the phase-matching approximation. The array period is � = 498.13
nm and the array length L = (N − 1)�, where N = 200. Other
parameters are as for Fig. 3.

and 5(a), respectively. However, the peak values of the curves
in Figs. 6(b) and 7(b) are one order of magnitude larger than
those in Figs. 4(b) and 5(b), respectively. The discrepancy
is due to the fact that the periodicity of the atomic array is
neglected in the homogeneous-medium approximation but is
taken into account in the phase-matching approximation.

IV. TRANSFER MATRIX FORMALISM FOR
A DISCRETE ARRAY

We now take into account not only the periodicity of the
atomic position distribution nA = ∑

j δ(z − zj ) but also the
discrete nature of this distribution. For this purpose, we use
the transfer matrix formalism.

A. Transfer matrix and input-output relation

We first consider atom j with the axial coordinate zj . We
introduce the notations z±

j = limε→0+ (zj ± ε) for the right-
and left-hand-side limiting points. The fields A+(z−

j ) and
A−(z+

j ) with the propagation directions f = + and f = −,
respectively, at the limiting points z−

j and z+
j , respectively,

can be interpreted as incoming fields with respect to the
atom. Meanwhile, the fields A+(z+

j ) and A−(z−
j ) with the

propagation directions f = + and f = −, respectively, at the
limiting points z+

j and z−
j , respectively, can be considered as

outgoing fields with respect to the atom. According to the
causal principle, the atom interacts with the incoming fields
A±(z∓

j ) but not with the outgoing fields A±(z±
j ).

We introduce the notations AL = A(z−
1 ) and AR =

A(z+
N ), where A is the vector consisting of the components

Af . When we integrate Eqs. (17) over an infinitely small
interval dz around the position zj of the atom and follow
the procedures of Ref. [51], we find the input-output relation

AR = WAL, (40)
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where

W = TN−1M (41)

is the transfer matrix for the whole atomic array, with

T = MF (42)

being the transfer matrix for a single spatial period of the array.
The matrix M in Eqs. (41) and (42) is the transfer matrix for a
single atom. The matrix elements of this matrix are given as

M++ = 1 − S++ + S+−S−+
1 + S−−

, M−− = 1

1 + S−−
,

(43)

M+− = − S+−
1 + S−−

, M−+ = − S−+
1 + S−−

,

where

Sff ′ = −if �Kff ′ = −if G∗
f Gf ′F . (44)

Note that we have S+− = −S−+ and S++S−− = S+−S−+. The
matrix F in Eq. (42) is the atom-free guided-field propagator.
The elements of this matrix are given as

Fff ′ = eifβp�δff ′ . (45)

It is easy to diagonalize the single-period transfer matrix T.
Using the result of this diagonalization, we find the following
expressions for the elements of the transfer matrix W for the
array:

W++ = ZN/2

{
M++√

Z
sin(Nζ )

sin ζ
− e−iβp� sin[(N − 1)ζ ]

sin ζ

}
,

W−− = ZN/2

{
M−−√

Z
sin(Nζ )

sin ζ
− eiβp� sin[(N − 1)ζ ]

sin ζ

}
,

W−+ = −W+− = ZN/2 M−+√
Z

sin(Nζ )

sin ζ
. (46)

Here, we have introduced the notations

Z = det(M) = 1 − S++
1 + S−−

= 1 + i|G+|2F
1 + i|G−|2F (47)

and

ζ = i ln(D ± i
√

1 − D2), (48)

where

D = 1

2
√
Z

(
M++eiβp� + M−−e−iβp�

)
. (49)

Note that ζ is, in general, a complex parameter and satisfies
the relations cos ζ = D and sin ζ = ∓√

1 − D2.
In the case of the x-polarization scheme, the elements of

the transfer matrix M for a single atom are found to be

M++ = 1 − Sr + Sz + 2Srz

1 − Sr − Sz + 2Srz

,

M−− = 1

1 − Sr − Sz + 2Srz

, (50)

M+− = −M−+ = − Sr − Sz

1 − Sr − Sz + 2Srz

.

Here, we have introduced the notations

Sr = −i
ωpd2

eg

2ε0�vg

|er |2F ,

Sz = −i
ωpd2

eg

2ε0�vg

|ez|2F , (51)

Srz = −i
ωpd2

eg

2ε0�vg

(Me − Mg)|er ||ez|F .

We find Z �= 1 in the case of the x-polarization scheme.
In the case of the y-polarization scheme, the elements of

the transfer matrix M for a single atom are found to be

M++ = 1 − 2Sϕ

1 − Sϕ

,

M−− = 1

1 − Sϕ

,

M+− = −M−+ = − Sϕ

1 − Sϕ

. (52)

Here, we have introduced the notation

Sϕ = −i
ωpd2

eg

ε0�vg

|eϕ|2F . (53)

We find Z = 1 in the case of the y-polarization scheme.

B. Reflection and transmission of probe light

For the guided probe field propagating in the direction
f = +, the reflection and transmission coefficients of a single
atom are given by R(+) = −M−+/M−− and T (+) = Z/M−−,
respectively. The explicit expressions for these coefficients are

R(+) = S−+, T (+) = 1 − S++. (54)

The corresponding reflection and transmission coefficients of
the atomic array are given by R

(+)
N = −W−+/W−− and T

(+)
N =

ZN/W−−, respectively.
For the guided probe field propagating in the direction

f = −, the reflection and transmission coefficients of a single
atom are given by R(−) = M+−/M−− and T (−) = 1/M−−,
respectively. The explicit expressions for these coefficients are

R(−) = −S+−, T (−) = 1 + S−−. (55)

The corresponding reflection and transmission coefficients of
the atomic array are given by R

(−)
N = W+−/W−− and T

(−)
N =

1/W−−, respectively.
It follows from the properties S+− = −S−+ and W+− =

−W−+ that the single-atom reflection coefficient R(f ) and the
linear-array reflection coefficient R

(f )
N do not depend on the

field propagation direction f , that is, R(+) = R(−) ≡ R and
R

(+)
N = R

(−)
N ≡ RN . However, the corresponding transmission

coefficients T (f ) and T
(f )
N may depend on the propagation

direction f . We find

RN = R sin(Nζ )

sin(Nζ ) − √
Z T (−)eiβp� sin[(N − 1)ζ ]

,

(56)

T
(f )
N = Z (1+f N)/2 T (−) sin ζ

sin(Nζ ) − √
Z T (−)eiβp� sin[(N − 1)ζ ]

.
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We can show that RN and T
(f )
N satisfy the recurrence formulas

RN+1 = RN + T
(+)
N T

(−)
N Re2iβp�

1 − RNRe2iβp�
,

(57)

T
(f )
N+1 = T

(f )
N T (f )eiβp�

1 − RNRe2iβp�
,

which are in agreement with ray optics. It is clear that the
reflection and transmission coefficients RN and T

(f )
N for the

atomic array depend on the polarization of the guided probe
light field. We note that, in the vicinity of a Bragg resonance,
we can reduce Eqs. (56) to Eqs. (37), which were obtained in
the phase-matching approximation.

The phases of the transmission and reflection coefficients
are given by �

(f )
T = Im (ln T

(f )
N ) and �R = Im (ln RN ), respec-

tively. The group delays of the transmitted and reflected fields
are given by τ

(f )
T = �

(f )′
T and τR = �′

R , respectively, where
�′ ≡ d�/dωp. Thus, from the frequency dependencies of the
transmission and reflection coefficients we can calculate the
group delays of the transmitted and reflected fields.

It follows from the expression for T
(f )
N in Eqs. (56) that

T
(+)
N

T
(−)
N

= ZN =
(

1 + i|G+|2F
1 + i|G−|2F

)N

. (58)

In the case of the x-polarization scheme, we have |G+| �=
|G−| and, hence, Z �= 1. In this case, the single-atom and
linear-array transmission coefficients T (f ) and T

(f )
N and

the transmitted-field group delay τ
(f )
T depend on the field

propagation direction f . In the case of the y-polarization
scheme, we have G+ = G− and, hence, Z = 1. In this case,
the single-atom transmission coefficient T (f ), the linear-array
transmission coefficient T

(f )
N , and the transmitted-field group

delay τ
(f )
T are independent of the propagation direction f ,

that is, we have T (+) = T (−) ≡ T , T
(+)
N = T

(−)
N ≡ TN , and

τ
(+)
T = τ

(−)
T ≡ τT .

The dependence of the single-atom transmission coefficient
T (f ) on the propagation direction f = ± in the case of
x-polarized guided light is a consequence of the difference
between the coupling coefficients G+ and G− for the dif-
ferent propagation directions + and −, respectively. The
independence of the single-atom reflection coefficient R from
the field propagation direction f is a consequence of the
fact that R is proportional to the product of both coupling
coefficients G+ and G−. The dependence of the linear-array
transmission coefficient T

(f )
N on the propagation direction f

in the case of x-polarized guided light is a consequence of the
difference between T (+) and T (−) for each atom in the array.
The independence of the linear-array reflection coefficient
RN from the field propagation direction f is a consequence
of the fact that all the atoms in the array considered here
have the same reflection coefficient R. We note that the
above properties of reflection and transmission of guided
light in the atomic array are different from that of light in
a conventional Fabry-Pérot cavity formed by two mirrors,
with the reflection coefficients R

(+)
1 = R

(−)
1 ≡ R1 and R

(+)
2 =

R
(−)
2 ≡ R2 and the transmission coefficients T

(+)
1 = T

(−)
1 ≡ T1

and T
(+)

2 = T
(−)

2 ≡ T2. The transmission coefficient Tcav of
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FIG. 8. (Color online) Transmittivity |T (f )
N |2 (a) and reflectivity

|RN |2 (b) of an x-polarized guided probe field as functions of the
detuning 	. The array period is � = 498.13 nm, which is far from
the Bragg resonance. The atom number is N = 200. Other parameters
are as for Fig. 2.

such a cavity does not depend on the propagation direction.
However, in the case where R1 �= R2 or T1 �= T2, the cavity
reflection coefficient R

(f )
cav may depend on the propagation

direction f .
We calculate numerically the transmittivity |T (f )

N |2, the
reflectivity |RN |2, the transmitted-field group delay τ

(f )
T , and

the reflected-field group delay τR as functions of the detuning
	 of the guided probe field. We plot in Figs. 8 and 9 the
results for the x-polarization scheme, and in Figs. 10 and 11
the results for the y-polarization scheme. In the calculations
for these figures, we used the value � = 498.13 nm, which
corresponds to the array period in the situation of the atom
trap experiment [35]. This value of the array period is, as

τT
(+)

τT
(−)

(a)

(b)

(c)

G
ro

up
 d

el
ay

 (μ
s)

τR

Probe field detuning Δ/2π (MHz)

FIG. 9. (Color online) Group delays τ
(+)
T (a), τ

(−)
T (b), and τR (c)

of an x-polarized guided probe field as functions of the detuning 	.
The array period is � = 498.13 nm, which is far from the Bragg
resonance. The atom number is N = 200. Other parameters are as
for Fig. 2. The dotted red line is for the zero group delay and is a
guide to the eye.
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FIG. 10. Transmittivity |TN |2 (a) and reflectivity |RN |2 (b) of a y-
polarized guided probe field as functions of the detuning 	. The array
period is � = 498.13 nm, which is far from the Bragg resonance. The
atom number is N = 200. Other parameters are as for Fig. 3.

already noted in the previous section, far from the Bragg
resonance. We observe that Figs. 8(a) and 10(a) are almost
identical to Figs. 4(a) and 5(a), respectively. This means
that the homogeneous-medium approximation is a very good
approximation for the calculations of the transmittivity in the
case where the array period is far from the Bragg resonance.
Figures 8(b) and 10(b) show that the discrete-array reflectivity
|RN |2, like the homogeneous-medium reflectivity |RA|2 in
Figs. 4(b) and 5(b), is very small and is slightly asymmetric
with respect to 	. However, the maximum magnitude of
discrete-array reflectivity |RN |2 is about 20 times larger than
that of the homogeneous-medium reflectivity |RA|2. Thus,
the homogeneous-medium approximation is not reliable in
evaluating the reflectivity. The discrepancy is due to the fact
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τT
(a)

(b)
τR

Probe field detuning Δ/2π (MHz)

FIG. 11. (Color online) Group delays τT (a) and τR (b) of a y-
polarized guided probe field as functions of the detuning 	. The array
period is � = 498.13 nm, which is far from the Bragg resonance.
The atom number is N = 200. Other parameters are as for Fig. 3.
The dotted red line is for the zero group delay and is a guide to the
eye.

that the reflected field results from the interference between
the fields reflected from different atoms in the array. The
periodicity of the array greatly affects the interference but
is neglected in the homogeneous-medium approximation.
Comparison between Figs. 4(b), 6(b), and 8(b) and between
Figs. 5(b), 7(b), and 10(b) shows that the reflectivity calculated
in the phase-matching approximation is closer to the rigorous
result |RN |2 than that calculated in the homogeneous-medium
approximation.

Figures 9(a), 9(b), and 11(a) show that the group delay τ
(f )
T

of the transmitted field has a positive peak at 	 = 0. This result
means that the transmitted field is slow light in the vicinity of
the atomic resonance. Close inspection shows that the results
for the group delay τ

(f )
T plotted in Figs. 9(a), 9(b), and 11(a)

are in full agreement with the results for the group-velocity
reduction factor c/V

(f )
g plotted in Figs. 2(e), 2(f), and 3(c),

respectively. According to Figs. 9(c) and 11(b), the group
delay τR of the reflected field has a negative-valued dip at
	 = 0. This result means that the reflected field is fast light in
the vicinity of the atomic resonance [5,6,59,60]. Comparison
between the solid red and dashed blue curves of Fig. 8(a)
and between Figs. 9(a) and 9(b) shows that the transmittivity
|T (f )

N |2 and the corresponding group delay τ
(f )
T depend on

the propagation direction f in the case of the x-polarization
scheme. This dependence is a consequence of the directional
dependence of the coupling between the x-polarized guided
probe field and the atomic transition |e〉 ↔ |g〉, which is of
the σ type with respect to the y axis in the case considered
[see Eq. (12)]. We observe from Figs. 9 and 11 that the dip
of the reflected-field group delay τR has a narrower width
and a larger magnitude than the peak of the transmitted-
field group delay τ

(f )
T . The difference is due to the fact

that the transmitted field is determined by the interference
between the incident field and the single-atom scattered fields
while the reflected field is determined by the interference
between the fields reflected from different atoms.

C. Time evolution of guided-probe-field pulses

We now consider the time evolution of guided-field pulses
propagating along the atomic array. We assume that the
guided input pulse is incident onto the atomic array in the f

direction. The amplitudes Ain(t) and Ãin(ω) of the incident
field in the time and frequency domains, respectively, are
related to each other by the Fourier transformation Ãin(ω) =
(2π )−1/2

∫ ∞
−∞ Ain(t)eiωtdt . The time-dependent transmitted

field is

Aout(t) = 1√
2π

∫ ∞

−∞
T

(f )
N (ω)Ãin(ω)e−iωtdω, (59)

where T
(f )
N (ω) = T

(f )
N |ωp=ω. The time-dependent reflected

field is

Aref(t) = 1√
2π

∫ ∞

−∞
RN (ω)Ãin(ω)e−iωtdω, (60)

where RN (ω) = RN |ωp=ω.
We plot in Figs. 12 and 13 the time dependencies of the

normalized intensities |Aout,ref/A0|2 of the transmitted and
reflected pulses in the cases of the x- and y-polarization
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FIG. 12. (Color online) Time dependencies of the normalized
intensities |Aout,ref/A0|2 of the transmitted and reflected pulses in the
case of the x-polarization scheme. The input pulse is of the Gaussian
form, with the central frequency ωp = ω0, the pulse length τ0 = 2 μs,
and the peak time t = 0. The number of atoms is N = 200. The array
period is � = 498.13 nm. Other parameters are as for Fig. 2. The
dotted red line is for the input pulse peak time t = 0 and is a guide to
the eye.

schemes, respectively. In the numerical calculations for these
figures, we used an input pulse of the Gaussian form Ain(t) =
A0e

−t2/τ 2
0 e−iωpt , where τ0 is the initial characteristic pulse

length. The Fourier transform of the input pulse is Ãin(ω) =
(A0τ0/

√
2)e−τ 2

0 (ω−ωp)2/4. We observe that, when the probe
pulse is incident onto the array in the direction f = + in
the case of the x-polarization scheme [see Fig. 12(a)] and
when the probe pulse is incident onto the array in an arbitrary
direction f = ± in the case of the y-polarization scheme [see
Fig. 13(a)], the transmitted pulse is weakened and slowed

Time t (μs)

transmitted

reflected

(a)

(b)
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d |
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0|2

FIG. 13. (Color online) Time dependencies of the normalized
intensities |Aout,ref/A0|2 of the transmitted and reflected pulses in the
case of the y-polarization scheme. The input pulse is of the Gaussian
form, with the central frequency ωp = ω0, the pulse length τ0 = 2 μs,
and the peak time t = 0. The number of atoms is N = 200. The array
period is � = 498.13 nm. Other parameters are as for Fig. 3. The
dotted red line is for the input pulse peak time t = 0 and is a guide to
the eye.

down significantly by the atomic array. For N = 200 atoms
in the array with the length L = (N − 1)� � 100 μm, we
obtain the group delays of about 1.17 μs in the case of
Fig. 12(a) and 0.53 μs in the case of Fig. 13(a). These group
delays correspond to the group-velocity reduction factors
c/Vg � 3.5 × 106 and � 1.6 × 106 in the cases of Figs. 12(a)
and 13(a), respectively. Figure 12(b) shows that, when the
probe pulse is x polarized and incident onto the array in
the direction f = −, the intensity reduction and the group
delay of the transmitted pulse are not significant. According to
Figs. 12(c) and 13(b), the reflected pulse has a negative group
delay (fast light) [5,6,59,60]. However, the intensity of this fast
light is negligible.

D. Bragg resonance

We examine the transmission and reflection of the guided
probe field under the EIT condition in the specific case
where the geometric Bragg resonance condition is satisfied,
that is, βp� = nπ , with n = 1,2, . . . being the order of the
Bragg resonance. This condition involves the frequency ωp

of the guided light field. Therefore, when we vary ωp in an
interval 	ωp around a Bragg resonance frequency, the Bragg
resonance condition βp� = nπ will be broken. However, if
the frequency variation interval 	ωp is small as compared to
the optical frequency ωp, the effect of the deviation from the
Bragg resonance can be neglected.

1. Dependence on the probe-field detuning

We plot in Figs. 14–17 the transmittivity |T (f )
N |2, the

reflectivity |RN |2, the transmitted-field group delay τ
(f )
T , and

the reflected-field group delay τR as functions of the detuning
	 of the guided probe field in the case where the array period
is � = 745.16 nm. This value of the array period satisfies the
second-order Bragg resonance condition � = �res = nλF /2,
where n = 2 and λF ≡ 2π/βp � 745.16 nm for the probe field
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FIG. 14. (Color online) Transmittivity |T (f )
N |2 (a) and reflectivity

|RN |2 (b) of the atomic array in the x-polarization scheme as functions
of the detuning 	. The period of the array is � = 745.16 nm, which
satisfies the second-order Bragg resonance condition. The number of
atoms in the array is N = 200. Other parameters are as for Fig. 2.
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FIG. 15. (Color online) Group delays τ
(+)
T (a), τ

(−)
T (b), and τR

(c) in the x-polarization scheme as functions of the detuning 	. The
period of the array is � = 745.16 nm, which satisfies the second-order
Bragg resonance condition. The atom number is N = 200. Other
parameters are as for Fig. 2. The dotted red line is for the zero group
delay and is a guide to the eye.

with the atomic resonance wavelength λp = λ0 = 852.35 nm.
We avoid the first-order Bragg resonance with the aim of
minimizing the effects of the direct dipole-dipole interaction
between the atoms. It is worth mentioning here that, in the
framework of our treatment, the magnitudes of the reflectivity
|RN |2 and transmittivity |TN |2 of the atomic array for the
guided fields do not depend on the order of the Bragg
resonance.

Figures 14 and 15 show the numerical results for the
x-polarization scheme. Comparison between Fig. 14, where
the array period � is in the Bragg resonance, and Fig. 8,
where � is far from the Bragg resonance, shows that the
positive-direction (f = +) transmittivity |T (+)

N |2 is almost the
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FIG. 16. Transmittivity |TN |2 (a) and reflectivity |RN |2 (b) of the
atomic array in the y-polarization scheme as functions of the detuning
	. The period of the array is � = 745.16 nm, which satisfies the
second-order Bragg resonance condition. The atom number is N =
200. Other parameters are as for Fig. 3.
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FIG. 17. (Color online) Group delays τT (a) and τR (b) in the
y-polarization scheme as functions of the detuning 	. The period of
the array is � = 745.16 nm, which satisfies the second-order Bragg
resonance condition. The atom number is N = 200. Other parameters
are as for Fig. 3. The dotted red line is for the zero group delay and
is a guide to the eye.

same in the two cases [see the solid red lines in Figs. 14(a)
and 8(a)]. Meanwhile, the negative-direction (f = −) trans-
mittivity |T (−)

N |2 in the Bragg resonance case is higher than that
in the far-off Bragg resonance case, except for a very narrow
frequency region around 	 = 0, where it is the same [see the
dashed blue lines in Figs. 14(a) and 8(a)]. The reflectivity |RN |2
in the Bragg resonance case [see Fig. 14(b)] is dramatically
higher than that in the far-off Bragg resonance case [see
Fig. 8(b)]. The dependence of |RN |2 on 	 is almost symmetric
in the case of the Bragg resonance [see Fig. 14(b)]. Comparison
between Figs. 15(a) and 9(a) shows that the positive-direction
transmitted-field group delay τ

(+)
T is almost the same in the two

cases. Comparison between Figs. 15(b) and 9(b) and between
Figs. 15(c) and 9(c) shows that the Bragg resonance modifies
the values of the negative-direction transmitted-field group
delay τ

(−)
T and the reflected-field group delay τR . However, the

changes are not dramatic.
Figures 16 and 17 show the results of the numerical cal-

culations for the y-polarization scheme. Comparison between
Figs. 16(a) and 10(a) and between Figs. 17 and 11 shows that
the effects of the Bragg resonance on the transmittivity |TN |2,
the transmitted-field group delay τT , and the reflected-field
group delay τR are noticeable but not dramatic. Comparison
between Figs. 16(b) and 10(b) shows that, due to the Bragg
resonance condition, the reflectivity |RN |2 is dramatically
increased.

2. Dependence on the atom number

We plot in Figs. 18 and 19 the dependencies of the
transmittivity |T (f )

N |2, the reflectivity |RN |2, the transmitted-
field group delay τ

(f )
T , and the reflected-field group delay τR

on the atom number N for the array period � = 745.16 nm,
which satisfies the second-order Bragg resonance condition.
We assume the atomic resonance 	 = 0 in these calculations.
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FIG. 18. Dependencies of the transmittivities |T (+)
N |2 and |T (−)

N |2,
the reflectivity |RN |2, and the group delays τ

(+)
T , τ

(−)
T , and τR on the

atom number N in the case of the x-polarization scheme. The period
of the array is � = 745.16 nm, which satisfies the second-order Bragg
resonance condition. The detuning of the probe field is 	 = 0. Other
parameters are as for Fig. 2.

Figure 18 shows the numerical results for the x-polarization
scheme. We observe from the left column of Fig. 18 that,
when N increases, the positive-direction transmittivity |T (+)

N |2
decreases to zero, the negative-direction transmittivity |T (−)

N |2
decreases to a nonzero limiting value |T (−)

∞ |2 � 0.84 [see
Eq. (62b) in the next part], and the reflectivity |RN |2 increases
to a limiting value |R∞|2 � 0.08, which is smaller than unity
[see Eq. (61) in the next part]. Figures 18(b) and 18(d) show
that, when N increases, the positive-direction transmitted-field
group delay τ

(+)
T increases almost linearly and hence can
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FIG. 19. Dependencies of the transmittivity |TN |2, the reflectivity
|RN |2, and the group delays τT and τR on the atom number N in
the case of the y-polarization scheme. The period of the array is
� = 745.16 nm, which satisfies the second-order Bragg resonance
condition. The detuning of the probe field is 	 = 0. Other parameters
are as for Fig. 3.

achieve an arbitrarily large value, while the negative-direction
transmitted-field group delay τ

(−)
T increases to about 0.1 μs and

then decreases in the range N � 4000 of the figure. Additional
calculations for N > 4000 show that τ

(−)
T decreases to about

24 ps at N � 7400 and then starts to slowly increase. We
observe from Fig. 18(f) that the reflected-field group delay τR

is negative and its absolute value |τR | decreases with increasing
N in the range N � 4000 of the figure. Additional calculations
for N > 4000 show that τR becomes positive at N � 8440 and
then tends to increase very slowly.

Figure 19 shows the numerical results for the y-polarization
scheme. We observe from the figure that, when N increases,
the reflectivity |RN |2 increases and approaches unity [see
Eq. (65a) in the next part], the transmitted-field group delay
τT approaches a limiting value of about 3 μs, and the
reflected-field group delay τR is negative and approaches zero.

3. Limiting values

We derive analytical expressions for the transmittivity and
reflectivity of the atomic array in the limit of large N . We first
analyze the case of the x-polarization scheme under the Bragg
resonance condition. In this case, in the limit N → ∞, we
obtain the reflection coefficient

RN → R∞ = −|er | − |ez|
|er | + |ez| (61)

and the transmission coefficients∣∣T (f0)
N

∣∣ → 0, (62a)∣∣T (−f0)
N

∣∣ → |T (−f0)
∞ | = 4|er ||ez|

(|er | + |ez|)2
�= 0, (62b)

where f0 = sign(Me − Mg).
It is clear that the limiting value R∞ is determined by

the guided-mode profile functions er and ez only. Since
|er | > |ez| > 0, we have |R∞|2 < 1, that is, the limiting value
|R∞|2 of the reflectivity for the x-polarized guided fields is
strictly smaller than unity. It is interesting to note that Eq. (61)
coincides with the result of Ref. [55] for the case where the
initial state of the atoms is an incoherent mixture of the Zeeman
sublevels of the ground state.

It is surprising that, unlike the transmittivity |T (f0)
N |2 for

the propagation direction f0, the transmittivity |T (−f0)
N |2 for

the propagation direction −f0 does not reduce to zero with
increasing atom number N . Due to this feature, the atomic
array can act as an optical diode even in the limit N → ∞ [34].
The property |T (−f0)

N | → |T (−f0)
∞ | �= 0 in the limit N → ∞ is

not related to the EIT effect. Indeed, this property occurs even
in the case where there is no control field (�c = 0). This
property is a consequence of the Bragg resonance condition
and the difference between the coupling coefficients |G+| and
|G−| for the guided modes with the opposite propagation
directions f = + and −, respectively. The difference between
|G+| and |G−| is related to the existence of the longitudinal
component ez of the x-polarized guided field [55].

In order to get insight into the above result, we consider
the change from the case of N atoms to the case of N + 1
atoms by adding an atom to the array of N atoms under the
Bragg resonance condition βp� = nπ . We use the recurrence
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relations (57) to describe the change. In the limit N → ∞,
we have RN → R∞ and T

(f0)
N → 0. We find that a nonzero

asymptotic solution T
(−f0)
N → (−1)(N+1)nT

(−f0)
∞ �= 0 exists if

T (−f0)

1 − R∞R
= 1, (63)

that is, if R∞ = (1 − T (−f0))/R, in agreement with Eq. (61).
The inverse of the denominator 1 − R∞R in the expression
on the left-hand side of condition (63) characterizes the
enhancement due to multiple reflections between the initial
array and the added atom. Condition (63) requires that the
enhancement of transmission caused by multiple reflections
compensates the reduction caused by a single pass through
the added atom. Thus, in the limit of large N , the reflection
coefficient RN of the array approaches an appropriate value
R∞, which satisfies condition (63), and hence the transmittivity
|T (−f0)

N |2 for the propagation direction −f0 = −sign(Me −
Mg) tends to a nonzero value given by Eq. (62b).

We now analyze the case of the y-polarization scheme under
the Bragg resonance condition. In this case, we find

RN = NR

1 − (N − 1)R
,

(64)

TN = (−1)(N+1)n T

1 − (N − 1)R
.

In the limit N → ∞, we have

RN → −1, (65a)

TN → 0, (65b)

that is, |RN |2 → 1 and |TN |2 → 0. This result means that
the atomic array under the Bragg resonance condition can
act as a perfect mirror for the y-polarized guided light
fields in the limit N → ∞. The loss due to the scattering
into the radiation modes is suppressed due to the collective
enhancement of scattering into the backward guided modes. In
the limit NR � 1, Eqs. (64) yield RN � NR + N (N − 1)R2

and TN � (−1)(N+1)n[T + (N − 1)RT + (N − 1)2R2T ]. The
last terms in these expressions contain N2. They are signatures
of the collective effects.

4. Dependence on the array period

We consider the effect of the array period � on the Bragg
resonance. For this purpose, we plot in Figs. 20 and 21
the dependencies of the transmittivity |T (f )

N |2, the reflectivity
|RN |2, the transmitted-field group delay τ

(f )
T , and the reflected-

field group delay τR on the array period �.
The figures show that both the transmittivity and the

reflectivity have a local maximum at the array period � =
745.16 nm, which satisfies the Bragg resonance condition for
the field frequency ωp = ω0. The coexistence of the local
maxima of the transmittivity and reflectivity at the Bragg
resonance is an interesting feature. This result indicates that
the scattering from the atoms into the radiation modes is
suppressed due to the Bragg resonance, in agreement with
the results of Ref. [51]. It is clear that, in the vicinity of the
Bragg resonance, the reflectivity for the y-polarized guided
field [see Fig. 21(c)] is larger than that for the x-polarized
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FIG. 20. Dependencies of the transmittivities |T (+)
N |2 and |T (−)

N |2,
the reflectivity |RN |2, and the group delays τ

(+)
T , τ

(−)
T , and τR on

the array period � in the case of the x-polarization scheme. The
detuning of the probe field is 	 = 0. The number of atoms in the
array is N = 200. Other parameters are as for Fig. 2.

guided field [see Fig. 20(e)]. We note that the linewidth of the
dependence of the reflectivity and transmittivity on the array
period � is on the order of a few nanometers. The reason
is that, when βpδ� � 1, that is, when δ� � λF ≡ 2π/βp �
745.16 nm for λp = λ0 = 852.35 nm, there is no significant
deviation from the Bragg resonance condition βp� = nπ ,
with n = 1,2, . . . . Here, δ� is a small deviation of the array
period � from a Bragg resonant value. We observe narrow
dips in the � dependence of τR [see Figs. 20(f) and 21(d)].
These dips occur at the points where |RN |2 have minima [see
Figs. 20(e) and 21(c)]. In other words, the dips correspond to
the interference fringes that surround the Bragg resonance. The
separation 	� between the positions of the dips is determined
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FIG. 21. Dependencies of the transmittivity |TN |2, the reflectivity
|RN |2, and the group delays τT and τR on the array period � in
the case of the y-polarization scheme. The detuning of the probe
field is 	 = 0. The number of atoms in the array is N = 200. Other
parameters are as for Fig. 3.
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FIG. 22. Dependencies of the transmittivities |T (+)
N |2 and |T (−)

N |2,
the reflectivity |RN |2, and the group delays τ
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control field intensity Ic in the case of the x-polarization scheme. The
period of the array is � = 745.16 nm, which satisfies the second-order
Bragg resonance condition. The detuning of the probe field is 	 = 0.
The number of atoms in the array is N = 200. Other parameters are
as for Fig. 2.

by the half-period of the function sin Nζ , which appears in
Eqs. (56). Using the approximation ζ � βp�, we obtain the
estimate 	� � π/Nβp.

5. Dependence on the control field intensity

In order to show the effect of the control field on the
transmission and reflection of the probe field, we plot in
Figs. 22 and 23 the transmittivity |T (f )

N |2, the reflectivity |RN |2,
the transmitted-field group delay τ

(f )
T , and the reflected-field
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FIG. 23. Dependencies of the transmittivity |TN |2, the reflectivity
|RN |2, and the group delays τT and τR on the control field intensity
Ic in the case of the y-polarization scheme. The period of the array
is � = 745.16 nm, which satisfies the second-order Bragg resonance
condition. The detuning of the probe field is 	 = 0. The number of
atoms in the array is N = 200. Other parameters are as for Fig. 3.

transmitted
      f = +

transmitted
      f = -

reflected

(a)

(b)

(c)

Time t (μs)

|
ou

t /
0|2 

an
d  |

re
f /

0|2

FIG. 24. (Color online) Time dependencies of the normalized
intensities |Aout,ref/A0|2 of the transmitted and reflected pulses in the
case of the x-polarization scheme. The input pulse is of the Gaussian
form, with the central frequency ωp = ω0, the pulse length τ0 = 2 μs,
and the peak time t = 0. The number of atoms is N = 200. The array
period is � = 745.16 nm, which satisfies the second-order Bragg
resonance condition. Other parameters used are as for Fig. 2. The
dotted red line is for the input-pulse peak time t = 0 and is a guide
to the eye.

group delay τR as functions of the intensity Ic of the control
field Ec.

The left columns of these figures show that, when Ic in-
creases, the transmittivity |T (f )

N |2 increases but the reflectivity
|RN |2 decreases. We observe from the right columns of Figs. 22
and 23 that, when Ic increases and is not too small, the group
delay τ

(f )
T of the transmitted field decreases, and the absolute

value |τR| of the negative group delay τR < 0 of the reflected
field increases. The above-mentioned features are the results
of the dispersion properties in the EIT window.

6. Slow transmitted light and fast reflected light

We plot in Figs. 24 and 25 the time dependencies of the
normalized intensities |Aout,ref/A0|2 of the transmitted and
reflected pulses in the cases of the x- and y-polarization
schemes, respectively. The parameters used are as for Figs. 12
and 13 except for the array period � = 745.16 nm, which
satisfies the second-order Bragg resonance condition.

We observe that, when the probe pulse is x polarized and
incident onto the array in the direction f = + [see Fig. 24(a)]
and when the probe pulse is y polarized an incident in an
arbitrary propagation direction f = ± [see Fig. 25(a)], the
transmitted pulse is significantly weakened and delayed by
the atomic array. For N = 200 atoms in the array with the
length L = (N − 1)� � 148 μm, we obtain the group delays
of about 1.11 μs in the case of Fig. 24(a) and 0.37 μs in
the case of Fig. 25(a). These group delays correspond to
the group-velocity reduction factors c/Vg � 2.2 × 106 and �
0.75 × 106 in the cases of Figs. 24(a) and 25(a), respectively.
Figure 24(b) shows that, when the probe pulse is x polarized
and incident onto the array in the direction f = −, the intensity
reduction and the group delay of the transmitted pulse are not
significant. According to Figs. 24(c) and 25(b), the reflected
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FIG. 25. (Color online) Time dependencies of the normalized
intensities |Aout,ref/A0|2 of the transmitted and reflected pulses in the
case of the y-polarization scheme. The input pulse is of the Gaussian
form, with the central frequency ωp = ω0, the pulse length τ0 = 2 μs,
and the peak time t = 0. The number of atoms is N = 200. The array
period is � = 745.16 nm, which satisfies the second-order Bragg
resonance condition. Other parameters used are as for Fig. 3. The
dotted red line is for the input-pulse peak time t = 0 and is a guide
to the eye.

pulse has a negative group delay (fast light) and its intensity is
substantial due to the Bragg resonance condition.

Comparison between Figs. 24 and 12 and between Figs. 25
and 13 shows that the shapes and group delays of the
transmitted and reflected pulses are not affected much by
the Bragg resonance condition. However, the intensity of the
reflected pulse in the presence of a Bragg resonance [see
Figs. 24(c) and 25(b)] is much higher than that in the absence
of a Bragg resonance [see Figs. 12(c) and 13(b)].

E. Photonic band gaps

It is known that, in the neighborhood of a Bragg resonance,
where � = �res = nλF /2 with n = 1,2, . . . , band gaps may
be formed when the number of atoms N in the array is
large enough [39,45,51]. In order to show the band gaps,
we plot in Figs. 26 and 27 the transmittivity |T (f )

N |2 and
the reflectivity |RN |2 of the atomic array with the period
� = 745.16 nm (corresponding to 	� ≡ � − �res = 0 for
λp = λ0) as functions of the field detuning 	 for a very large
number of atoms, namely, for N = 200 000. In the calculations
for these figures, we used a large value for the control field
intensity Ic, namely Ic = 20 mW/cm2, in order to show clearly
the tiny features of the transmittivity and reflectivity for the
probe field in the EIT window. Other parameters are as for
Figs. 2 and 3.

Figure 26 shows the frequency dependencies of |T (+)
N |2,

|T (−)
N |2, and |RN |2 for the x-polarization scheme in the vicinity

of a Bragg resonance 	� = 0. We observe from this figure
that, in addition to a narrow plateau around the atomic
resonance 	 = 0, there are two wide plateaus, one on the
left side and the other one on the right side. The left- and
right-side plateaus are the photonic band gaps that extend over

(a)

(b)

|T
N

   
  |2

(+
)

|R
N
|2

Probe field detuning Δ/2π (MHz)

(c)

|T
N

   
  |2

(−
)

FIG. 26. Photonic band gaps in the case of the x-polarization
scheme with 	� = 0. The transmittivities |T (+)

N |2 (a) and |T (−)
N |2 (b)

and the reflectivity |RN |2 (c) are plotted as functions of the detuning
	. The period of the array is � = 745.16 nm, which satisfies the
second-order Bragg resonance condition. The number of atoms in
the array is N = 200 000. The intensity of the control field is Ic =
20 mW/cm2 (the corresponding Rabi frequency is �c = 2.06γ0).
Other parameters are as for Fig. 2. The insets show the narrow
structures around the point 	 = 0.

the frequency range from ωc − 	max to ωc − 	min and from
ωc + 	min to ωc + 	max [39,51]. Here, we have introduced
the notations ωc = (ω0 + ωlat)/2 and

	max =
√

δ2
lat

4
+ u0|er |2vg

�
,

(66)

	min =
√

δ2
lat

4
+ u0|ez|2vg

�
,

with δlat = ωlat − ω0, and u0 = ωpd2
eg/ε0�vg . The Bragg reso-

nant frequency ωlat is determined by the equation β(ωlat)� =
nπ , where the integer number n = 1,2, . . . is the order of the
Bragg resonance. In deriving Eqs. (66) for the edges of the
band gaps, we have neglected the atomic decay rate �eg and
the control field Rabi frequency �c. In the case of |δlat| �√

u0|er,z|2vg/�, we find that the band gaps will be formed
when N � Ngap, where Ngap = √

vg/u0�/(|er | − |ez|). We
obtain from Eqs. (66) the estimates 	min = 2π × 847 MHz
and 	max = 2π × 1544 MHz for the parameters of Fig. 26.
In the band-gap regions of Fig. 26, we have |RN |2 � 1
and |T (±)

N |2 � 0. In the central plateau, we have |RN |2 �
0.085 < 1, |T (+)

N |2 � 0, and |T (−)
N |2 � 0.84, in agreement with

Eqs. (61) and (62). The limiting values |T (+)
∞ |2 � 0 and

|T (−)
∞ |2 � 0.84 �= 0 of the transmittivities in the central plateau

area indicate that the atomic array can operate as an optical
diode even in the limit of an infinitely large value of N .
The insets of Figs. 26(a)–26(c) show that there are narrow
structures in the frequency dependencies of the transmittivity
|T (f )

N |2 and the reflectivity |RN |2 in the vicinity of the atomic
resonance 	 = 0. These tiny structures are the consequences
of the interplay between the scattering into the guided and
radiation modes, the EIT effect, and the Bragg resonance.
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FIG. 27. Photonic band gaps in the case of the y-polarization
scheme with 	� = 0. The transmittivity |TN |2 (a) and the reflectivity
|RN |2 (b) are plotted as functions of the detuning 	. The period
of the array is � = 745.16 nm, which satisfies the second-order
Bragg resonance condition. The number of atoms in the array is
N = 200 000. The intensity of the control field is Ic = 20 mW/cm2

(the corresponding Rabi frequency is �c = 1.94γ0). Other parameters
are as for Fig. 3. The insets show the narrow structures around the
point 	 = 0.

Figure 27 shows the frequency dependencies of |TN |2
and |RN |2 for the y-polarization scheme in the vicinity of a
Bragg resonance 	� = 0. We observe that there is a wide
plateau around the atomic resonance 	 = 0. This plateau
corresponds to the set of two photonic band gaps that extend
over the frequency range from ωc − 	max to ωc + 	max,
with frequencies between the atomic frequency ω0 and the
frequency ωlat excluded [39,51]. Here, we have introduced the
notation

	max =
√

δ2
lat

4
+ 2u0|eϕ|2vg

�
. (67)

In deriving Eqs. (67) for the edges of the band gaps, we
have neglected the atomic decay rate �eg and the control
field Rabi frequency �c. In the case of |δlat| � √

u0|eϕ|2vg/�,
we find that the band gaps will be formed when N � Ngap,
where Ngap = √

2vg/3u0�/|eϕ|. We obtain from Eq. (67)
the estimate 	max = 2π × 1561 MHz for the parameters of
Fig. 27. In the band-gap region of Figs. 27, we have |RN |2 � 1
and |TN |2 � 0, in agreement with Eqs. (65). The narrow
structures in the insets of Figs. 27(a) and 27(b) are the
consequences of the interplay between the scattering into the
guided and radiation modes, the EIT effect, and the Bragg
resonance.

The band gaps illustrated in Figs. 26 and 27 may ap-
pear even when �c = 0, that is, when there is no control
field [39,45,51]. These band gaps are not related to the
EIT effect. We call them the non-EIT band gaps. When the
condition

|δlat| �
√

u0|er,ϕ,z|2vg

�
� γ0 (68)
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FIG. 28. As Fig. 26 but for 	� = 0.3 nm.

is satisfied, one of the two non-EIT band gaps is far away from
the atomic resonance frequency ω0 while the other one is close
to ω0. We plot in Figs. 28 and 29 the transmittivity |T (f )

N |2
and the reflectivity |RN |2 of the atomic array as functions
of the field detuning 	 in the case of � = 745.46 nm, that
is, 	� ≡ � − �res = 0.3 nm, which corresponds to δlat =
−vgβ

2
p	�/nπ � −107 GHz. Other parameters are the same

as for Figs. 26 and 27. We observe from the insets of Figs. 28(c)
and 29(b) that, in the vicinity of 	 = 0, there are two peak
regions where the reflectivity |RN |2 is significant [47,48]. One
of these peak regions is broad and is a non-EIT band gap.
The other peak region is narrow and is also a band gap. The
occurrence of this additional band gap is due to the EIT effect
caused by the action of the control field Ec [47,48].

In the above calculations, we did not include the experi-
mental limited filling ratio of the atomic array. In the Vienna
atom trap experiment [35], due to the small trapping volumes,
the loading operated in the collisional blockade regime [61].
This results in an occupancy of at most one atom per trapping
site. For the parameters of the experiment [35], the filling ratio
is about 0.5 [35,61]. We note that, in the case where the array
period � is far from the Bragg resonance, the inclusion of the
filling ratio will lead to just a reduction of the atom-number
density nA and an increase of the medium length L for a given

|T
N
|2

(a)

(b)

|R
N
|2

Probe field detuning Δ/2π (MHz)

FIG. 29. As Fig. 27 but for 	� = 0.3 nm.
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atom number N . In the case where the array period � is near
to a Bragg resonance, the presence of a void in the array will
lead to just an additional phase of nπ for the transmission
coefficient T

(f )
N , where n is the order of the Bragg resonance.

Therefore, we expect that the inclusion of the filling ratio
will not affect the results for the above limiting cases. In the
intermediate case where the array period is not far from and
not close to a Bragg resonance, the inclusion of the filling
ratio will lead to a reduction of the reflectivity (and possibly
also a reduction of the transmittivity) of the array with a given
atom number N . In particular, the widths of the resonances in
Figs. 20 and 21 will be reduced.

V. SUMMARY

We have studied the propagation of guided light along
an array of three-level atoms trapped in the vicinity of an
optical nanofiber under the EIT condition. We have examined
two schemes of atomic levels and field polarizations where
the guided probe field is quasilinearly polarized along the
major principal axis x or the minor principal axis y. We have
derived the coupled-mode propagation equations, the input-
output relation, the scattering matrix, and the transfer matrix
for the transmitted and reflected fields. We have taken into
account the complexity of the polarization of the guided field
and the discreteness and periodicity of the atomic positions
in the array. We have calculated the reflection and transmission
coefficients. We have found that, when the array period is far
from the Bragg resonance, the reflection is negligible and the
homogeneous-medium approximation can be used. We have
numerically demonstrated that 200 cesium atoms in a linear

array with a length of 100 μm at a distance of 200 nm from the
surface of a nanofiber with a radius of 250 nm can slow down
the speed of guided probe light by a factor of about 3.5 × 106

(the group delay is about 1.17 μs). In the neighborhood of
the Bragg resonance, a significant fraction of the guided probe
light can be reflected back with a negative group delay (that is,
with a positive group advance). The reflectivity and the group
delay of the reflected field do not depend on the propagation
direction of the probe field. However, when the input guided
light is quasilinearly polarized along the major principal axis
x, the transmittivity and the group delay of the transmitted
field substantially depend on the propagation direction of
the probe field. When the input guided light is quasilinearly
polarized along the major principal axis x and propagates in the
direction f = −sign(Me − Mg), under the Bragg resonance
condition for an array of atoms in an appropriate internal state,
the transmission of the guided light is not zero even in the
limit of large atom number N . This result indicates that the
atomic array can operate as an optical diode even in the limit
of infinitely large atom numbers [34]. The directionality of
transmission of guided light through the atomic array is a
consequence of the existence of a longitudinal component of
the guided light field as well as the ellipticity of both the field
polarization and the atomic dipole vector.
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