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We study two-level systems (2LS) coupled at different points to a one-dimensional waveguide in which one end
is open and the other is either open (infinite waveguide) or closed by a mirror (semi-infinite). Upon injection of two
photons (corresponding to weak coherent driving), the resonance fluorescence and photon correlations are shaped
by the effective qubit transition frequencies and decay rates, which are substantially modified by interference
effects. In contrast to the well-known result in an infinite waveguide, photons reflected by a single 2LS coupled
to a semi-infinite waveguide are initially bunched, a result that can be simply explained by stimulated emission.
As the number of 2LS increases (up to 10 are considered here), rapid oscillations build up in the correlations that
persist for a very long time. For instance, when the incoming photons are slightly detuned, the transmitted photons
in the infinite waveguide are highly antibunched. On the other hand, upon resonant driving, incoherently reflected
photons are mostly distributed within the photonic band gap and several sharp side peaks. These features can
be explained by considering the poles of the single-particle Green function in the Markovian regime combined
with the time delay. Our calculation is not restricted to the Markovian regime, and we obtain several fully
non-Markovian results. We show that a single 2LS in a semi-infinite waveguide can not be decoupled by placing
it at the node of the photonic field, in contrast to recent results in the Markovian regime. Our results illustrate
the complexities that ensue when several qubits are strongly coupled to a bus (the waveguide) as might happen
in quantum information processing.
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I. INTRODUCTION

The study of multiple photons confined in a one-
dimensional (1D) waveguide interacting with local emitters
(qubits) [1–5] has attracted a great deal of attention recently,
and is now referred to by the term “waveguide quantum
electrodynamics (QED).” The 1D geometry greatly limits
the possible propagating directions and hence increases the
interference effects [4,5] while decreasing the mode volume,
which in turn enhances the coupling strength of qubits to the
waveguide [6]. The 1D strong-coupling regime, where the
light-matter interaction dominates over loss and dephasing,
provides an excellent setting in which to investigate interesting
quantum-optical effects theoretically [3–5,7–34], observe such
effects experimentally [35–49], construct building blocks
of quantum information processing and quantum comput-
ing [4,7,14,50–58], and generate qubit-qubit entanglement
[24,59–64].

A variety of artificial systems have been proposed and
realized to implement light-matter interaction in 1D, including
superconducting qubits coupled to a microwave transmission
line [35–49] or surface acoustic waves [65], and semiconductor
quantum dots coupled to either a metallic nanostructure
[66–68] or a photonic-crystal waveguide [69–71]. In addition
to artificial atoms, waveguide QED can also be implemented
using an ion trap [72], cold atoms trapped in [73] or near [74]
an optical fiber, or single molecules doped in an organic crystal
filled in a glass capillary [75]. In several of these systems, the
coupling of the local emitter to the waveguide dominates by
far all other emission or dephasing processes.

The theoretical difficulty of waveguide QED lies in the
fact that the waveguide photons are bidirectional while the
qubits have arbitrary positions in the waveguide. A position-
dependent phase factor is thus introduced even if the coupling

strength for each qubit is the same. As a result, while a
few photons scattering off one qubit (or multiple colocated
qubits) has been extensively studied and exact solutions exist
[8–12,14–17,19,21,22,29,64,76] for treating multiple qubits,
the Markovian approximation has appeared necessary. Such
Markovian multiqubit, bidirectional waveguide calculations
have been pursued recently using several theoretical tech-
niques: a Green function approach [77,78], the master equation
[60,61,79], input-output theory [26,34], and the Lippmann-
Schwinger (LS) equation [24,80]. We note, however, one
exception: an exact solution was obtained recently for two
bidirectional photons scattering off two separated qubits [30].
Furthermore, when entering the ultrastrong-coupling regime
where the rotating-wave approximation (RWA) fails [81,82],
analytical treatments seem impossible, and one has to use
numerical methods such as matrix product states [32,83,84] to
explore the many-body physics of photons.

A single qubit in a semi-infinite waveguide is a more
complex problem than for an infinite waveguide because of the
delay in the reflection from the end and has therefore received
considerable attention [49,85–93]. Although an atom placed in
front of a mirror in three-dimensional (3D) open space has been
studied both theoretically [85] and experimentally [94–97], the
unconfined light in 3D makes the interference effect weak, and
one therefore expects a much stronger effect in 1D. An exact
solution for the wave function of the initially excited qubit can
be derived by solving the delay-differential equation [85,91–
93]. This solution demonstrates the complicated interference
effects caused by the mirror; if the distance to the mirror is
large, non-Markovian effects come into play even for a single
excitation (qubit or photon) [91–93]. Under the Markovian
approximation, the problem reduces to solving an ordinary
differential equation [85,93] which is far easier. The presence
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FIG. 1. (Color online) Schematic of the waveguide-QED system,
in which equally separated, identical 2LS are coupled to a semi-
infinite waveguide with one open end and another closed at x = 0. For
an infinite waveguide with two open ends, the 2LS are instead placed
symmetrically with respect to x = 0 to simplify the calculation.

of the boundary in the semi-infinite case (i.e., the mirror)
causes a modification of qubit frequencies and decay rates by
modulating the structure of the photonic environment [49,90].
We are not aware of the existence of exact solutions for any
cases of multiphoton scattering.

In this paper, we consider N identical, equally separated
two-level systems (2LS) strongly coupled to an infinite or
semi-infinite waveguide (Fig. 1, the infinite waveguide has
two open ends while the semi-infinite is closed by a perfect
reflector on one end). Most of the results are obtained using
the Markovian approximation, which is checked by a full
non-Markovian calculation in a few cases. It has been known
since the introduction of the Dicke model [98] that interaction
among the multiple 2LS can be induced through their coupling
to bosonic modes, leading to subradiance and superradiance.
In 1D waveguides, in particular, recent theoretical [26] and
experimental [46] studies of the power spectrum of two
qubits coupled to an infinite waveguide clearly show that
the qubit-qubit separation L modulates the effective resonant
frequencies and decay rates, resulting in subradiance and
superradiance. While it seems natural, then, to explore situ-
ations with many qubits, in fact discussion beyond two-qubit
systems is limited in the literature [79,80,84,99–101]. Using
the Lippmann-Schwinger equation, we show analytically that
in the Markovian regime the collective behavior is encoded
in the simple poles of the Green function. These poles
reveal themselves in various measurable quantities such as
the transmission spectrum, time delay τ , power spectrum
S(ω) (resonance fluorescence), and two-photon correlation
functions g2(t) (second-order coherence). The Markovian
approximation reduces the number of poles from infinity to
N [24] and so renders the problem tractable. Throughout
the paper, we highlight a number of common features of our
results, such as rapidly oscillating two-photon correlations that
persist for a long time, and the concentration of the reflected
fluorescence within the photonic band gap along with sharp
side peaks.

We point out an intriguing difference between the infinite
and semi-infinite waveguides: while a single qubit coupled
to the former can only reflect one photon at a time, giving
rise to initial antibunching [7,9,102], when coupled to the
latter it instead bunches the reflected photons. This can be
explained simply by the stimulated emission. Another effect
in a semi-infinite waveguide is the possibility of decoupling the

waveguide from the 2LS by placing it at a node of the single-
photon wave function when the qubit-mirror separation is
small, as studied theoretically [90] and experimentally verified
using superconducting qubits [49]. We show that if the distance
is large, however, the non-Markovian effects that come into
play destroy this decoupling: our numerical non-Markovian
calculation in the two-excitation sector shows that the 2LS
remains coupled to the waveguide because of oscillating
nontrivial correlations. These two-photon features, to the best
of our knowledge not addressed by previous 1D studies
[86–93] which mainly concern single-excitation properties,
should be readily measurable using existing experimental
technology.

The rest of this paper is organized as follows: We first
devote Sec. II to discussing the power spectrum of two photons
scattering off multiple distant qubits coupled to an infinite
waveguide using the LS equation. Since the power spectrum is
a “first-order” quantity, one expects it to be easier to calculate
and measure. In Sec. III, we then move on to results for the
second-order photon correlation g2(t). To explain the long-
time behavior of g2, we introduce the concept of time delay in
Sec. IV. In Secs. V and VI, we turn to the discussion of power
spectra and correlations for the semi-infinite waveguide. Some
technical details are left for the Appendixes, including the
details of the LS equation for both infinite and semi-infinite
waveguides, the demonstration of the equivalence between
the LS equation and input-output theory at weak coherent
driving, and finally the two-photon transmission and reflection
probabilities calculated using the LS equation.

II. MULTIPLE QUBITS IN AN INFINITE WAVEGUIDE:
POWER SPECTRA

Our starting point is the standard Hamiltonian used
in waveguide QED [4,7], consisting of a one-dimensional
bosonic field coupled to discrete 2LS. After making the
rotating-wave approximation (RWA) and extending the limits
of the momentum integrals to infinity, one finds that the
Hamiltonian in real space is (taking � = c = 1)

H = Hqubit − i

∫ ∞

−∞
dx

[
a
†
R(x)

d

dx
aR(x) − a

†
L(x)

d

dx
aL(x)

]

+
N∑

i=1

∑
α=L,R

V

∫ ∞

−∞
dx δ(x − xi)[a

†
α(x)σi− + σi+aα(x)],

(1)

where Hqubit = ω0
∑N

i=1 σi+σi−, σi± denotes the Pauli raising
(lowering) operator of the ith qubit with frequency ω0 and
position xi , aR,L denotes the annihilation operator of rightgoing
(leftgoing) photons, and V is the coupling strength between
the qubit and the photons. The decay rate for each qubit (to
the waveguide) is � ≡ 2V 2. Throughout this paper we focus
on the lossless limit, but loss could be simply introduced by
tracing out an auxiliary waveguide or modifying the S-matrix
elements [90,103,104].

We calculate physical quantities by using the wave function
|ψ2〉 ≡ |ψ2(k1,k2)〉RR of two incoming rightgoing photons
(RR) with momenta k1 and k2. Throughout this work we focus
solely on identical incident photons: k1 = k2 = E/2 where E
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is the total input energy. The first physical quantity we consider
is the power spectrum or resonance fluorescence, which is
simply the Fourier transform of the first-order coherence

Sα(ω) =
∫

dt e−iωt 〈ψ2|a†
α(x0)aα(x0 + t)|ψ2〉, (2)

where x0 denotes the detector position (or, equivalently, time)
far away from the scattering region. Sα(ω) is simply the
spectral decomposition of the photons in the wave function
|ψ2〉. Since the Hamiltonian H preserves the number of
excitations (photon plus qubit), one can insert a one-particle
identity operator I1 = ∑

α

∫
dk|φ1(k)〉α〈φ1(k)| between the

photon operators:

Sα(ω) =
∑

α′=R,L

∫
dk

∫
dt e−iωt 〈ψ2|a†

α(x0)|φ1(k)〉α′

× 〈φ1(k)|aα(x0 + t)|ψ2〉, (3)

where |φ1(k)〉α is the single-particle scattering eigenstate
satisfying H |φ1(k)〉α = k|φ1(k)〉α with the incoming wave
traveling in the α = L or R direction. The power spectrum
follows by computing the matrix elements α′ 〈φ1(k)|aα(x0 +
t)|ψ2〉.

The two-photon wave function |ψ2〉 is obtained via the
Lippmann-Schwinger equation following the procedure in
Refs. [24,80]. The building blocks are the single-particle
eigenstates |φ1〉, the two-particle states |φ2〉 formed from the
direct product of two |φ1〉, and the corresponding retarded
Green function GR(E). In fact, |ψ2〉 can be written as (see
Eq. (20) in Ref. [80])

|ψ2(k1,k2)〉α1,α2 = |φ2(k1,k2)〉α1,α2−
N∑

i,j=1

GR(E)|didi〉(G−1)ij

×〈djdj |φ2(k1,k2)〉α1,α2 . (4)

The second term contains all the nonlinearity and is often
referred to as the two-photon “bound state” [9,12,17]. One can
evaluate the desired matrix elements by inserting two-particle
identity operators I2 in the second term of Eq. (4) and
performing the double momentum integral thereby introduced
(see Eq. (23) in Ref. [80]). This calculation is exact. For
more than one qubit, making the Markovian approximation
allows the integration to be done analytically. In this context,
the Markovian approximation consists in replacing all factors
of exp(ikL) that occur in the Green functions in Eq. (4) by
exp(ik0L), where k0 = ω0/c is the wave vector associated
with ω0 and L = xi+1 − xi is the qubit-qubit separation [80].
In practice, we use a slightly modified expression for the power
spectrum

SR(ω) = 2 Re
∑
α′

∫
dk

∫ ∞

0
dt e−iωt

×〈ψ2|a†
R(x0)|φ1(k)〉α′ 〈φ1(k)|aR(x0 + t)|ψ2〉, (5a)

SL(ω) = 2 Re
∑
α′

∫
dk

∫ 0

−∞
dt eiωt

×〈ψ2|a†
L(x0)|φ1(k)〉α′ 〈φ1(k)|aL(x0 − t)|ψ2〉. (5b)

The calculation of the matrix elements is given in
Appendix A.

After combining all pieces together, the resulting power
spectrum can be divided into two parts

Sα(ω) = Scoherent
α (ω) + S incoherent

α (ω), (6)

where the former contains terms proportional to δ(0)δ(ω −
E/2) because delta-normalized plane waves are used, and the
latter is zero in the absence of the two-photon bound state and
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FIG. 2. (Color online) Normalized power spectra (resonance flu-
orescence) of multiple qubits (from top to bottom: N = 1,2,3,5,10)
coupled to the infinite waveguide with k0L = π/2 (separation L =
λ0/4). For the first column, the incoming photons are on resonance,
E/2 = ω0 = 100�; for the second column, the frequency is chosen
such that the single-photon transmission is 50% in each case. The total
fluorescence (black solid line) is broken down into the reflected (blue
dashed) and transmitted (red dotted) components. The vertical lines
indicate the real part of the poles. For N = 10 in the off-resonant
case, the height of the central peak goes up to ∼60, which is not
shown for better visibility. The frequencies used in the second column
are E/2� = {99.5,99.29,99.34,99.43,99.48} (from top to bottom)
[105].
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remains finite (for more discussion, see Appendix D). Since
the total incoherent (inelastic) power spectrum is the sum of
rightgoing and leftgoing incoherent power spectra

S incoherent(ω) = S incoherent
R (ω) + S incoherent

L (ω), (7)

one can normalize S incoherent
α (ω) in terms of the incoherently

scattered photon “flux”

F incoherent =
∫

dω S incoherent(ω). (8)

In this paper, we omit the superscript “incoherent” for
simplicity and focus on the inelastic power spectra normalized
by F so that shapes and features can be readily compared.
Furthermore, both on- and off-resonance cases are studied.
In the off-resonant case, for a fair comparison of systems
in which the number of qubits is different, we choose the
incident frequency such that (i) the single-photon transmission
probability T is 50% in each case and (ii) it is the closest
such frequency to the bare qubit frequency ω0 (see discussion
in Ref. [80]). Because we mostly focus on cases with small
separation k0L � π/2 (so L � λ0/4 with the wavelength λ0 =
2πc/ω0), this choice leads to red-detuned incident frequencies,
as will become clear in the following discussion.

In interpreting the results, it will be useful to refer to the
poles of the system, by which we mean the zeros of the
denominator of the single-photon transmission or reflection
amplitudes t(k) or r(k).1 Denote the poles by z̃i = ω̃i − i�̃i/2
with i = 1,2, . . . ,N (the factor of 1/2 is in accordance with
the definition of the decay rate �); then, the denominator of
t(k) and r(k) can be written as a polynomial of degree N ,
(k − z̃1)(k − z̃2) . . . (k − z̃N ). We will see that this indeed gives
us the effective qubit frequency and decay rate, as implied by
the notation. In special cases, the poles may be symmetrically
arranged with respect to the ω = ω0 line. This happens when
k0L = π/2 because a wave function that is even about the
middle of the interval between two adjacent qubits has the
same magnitude at the site of those qubits as a wave function
that is odd. For other values of k0L, the amplitude in these
two cases is different, leading to an asymmetrical situation in
which there are superradiant and subradiant modes.

1In contrast to Ref. [99], we find that it is not always true that the
denominator of ei(k) gives N poles for all i = 1, . . . ,N . For instance,
with N = 5 the wave function of the central qubit e3(k) has only three
poles. Therefore, it is safer to look at the transmission or reflection
amplitudes t(k) or r(k).
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FIG. 3. (Color online) Time delay τ (top), single-photon transmission spectrum T = |t(k)|2 (middle), and poles of the transmission
amplitude t(k) (bottom) as a function of frequency. The system consists of 10 qubits coupled to an infinite waveguide with k0L = π/4 (left
column) and k0L = π/2 (right column). For the sake of clarity, we show only the red-detuned side; for k0L = π/2, the poles are symmetric
with respect to the qubit frequency ω0 = 100�, while for k0L = π/4 five poles are not shown. The vertical lines indicate the real parts of the
poles. In panel (d), the black squares give the incident frequencies used in Fig. 8, the red dots give those used in Fig. 9, and the dashed line
labels T = 50%. The dashed-dotted lines in panels (e) and (f) label the origin (�̃ = 0).
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The power spectra with qubit-qubit separation k0L = π/2
are presented in Fig. 2. The result for the N = 1 case can be
derived exactly and is given in Appendix A [Eq. (A9)]. In
general, when the system is driven resonantly (E/2 = ω0)
and the pole distribution is symmetric with respect to ω0

(see Fig. 3 for a representative plot), both the transmitted and
reflected power spectra are symmetric. In contrast, when the
system is driven off-resonantly, neither the transmission nor
the reflection fluorescence is symmetric. However, the total
fluorescence (transmission + reflection) is still symmetric with
respect to the incident frequency, indicating the conservation
of energy and serving as a validity check on our calculation. In
addition, thanks to the symmetric pole distribution for k0L =
π/2, the fluorescence when the incident photons are blue
detuned can be simply obtained by mirroring the red-detuned
fluorescence with respect to ω0 (data not shown).

With regard to the dependence on the number of qubits,
the main feature of the power spectra with resonant driving is
that the photonic band gap develops, resulting in the decrease
(increase) of transmission (reflection) fluorescence within the
photonic band gap. In addition, many sharp side peaks appear
around the photonic band gap, whose positions are roughly
labeled by the real parts of the poles {ω̃i}. Since in general
for large N the poles closer to ω0 have smaller decay rates,
we find that both the peak position and peak width could
be explained by inspecting the poles’ real parts {ω̃i} and
imaginary parts {�̃i}, respectively. Finally, our two-qubit S(ω)
agrees with the result obtained from input-output theory with
weak coherent driving,2 revealing the fact that two-photon
scattering is the dominant process for weak driving. Further
discussion is deferred to Appendix C.

Furthermore, with slightly off-resonant driving the power
spectra become sharply peaked. These sharp peaks reveal the
existence of subradiant poles (with �̃ < �). Taking the N = 10
case as example [Fig. 2(j)], since the driving frequency is
very close to the pole with the smallest �̃, that pole is highly
excited and gives rise to the central peak with a very small
width. The smaller peak on the right has the same �̃ as the
central peak and hence is visible too. Energy conservation then
requires the smaller peak on the left to pop up as well. Thus,
the fact that the poles largely determine the peak position and
width is more transparent in the off-resonant cases, at least for
those subradiant poles. We note that in any case transmission
fluorescence is suppressed within the photonic band gap as
expected.

Next, we consider a smaller separation between the qubits
k0L = π/4 (see Fig. 4). For the resonant cases, the main
difference from the previous geometry k0L = π/2 is that the
large reflection fluorescence around ω0 is reduced. Although
it is still true that the reflection fluorescence is higher than
the transmission fluorescence, the shape of the photonic
band gap is different (red-detuned side is sharper than the
blue-detuned side, connected to the asymmetric distribution of
poles) making distinct peaks around {ω̃i} more visible. Energy
conservation implies, as before, that the total power spectrum

2See Ref. [26]; in making a comparison, note that our definition
of total fluorescence is different from theirs (private communication
with K. Lalumière and A. Blais).
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FIG. 4. (Color online) Normalized power spectra (resonance flu-
orescence) of multiple qubits (from top to bottom: N = 2,3,5,10)
coupled to the infinite waveguide with separation k0L = π/4 (L =
λ0/8). The incoming photon frequency is E/2 = ω0 = 100� for
the first column (on resonance) and is chosen such that T = 50%
for the second column. The total fluorescence (black solid line) is
broken down into the reflected (blue dashed) and transmitted (red
dotted) components. The vertical lines indicate the real part of the
poles. The frequencies used in the second column are E/2� =
{99.66,99.73,99.77,99.78} (from top to bottom) [105].

is symmetric with respect to ω0. The off-resonant sequence
shows similar behavior to the k0L = π/2 case, with one minor
difference that the blue-detuned power spectra are different
from the red-detuned spectra. In general, the blue-detuned
ones are much smoother because poles on the blue-detuned
side (ω̃i > ω0) have larger decay rate �̃. Due to limited space,
we do not show them here.

III. MULTIPLE QUBITS IN AN INFINITE WAVEGUIDE:
PHOTON CORRELATIONS

We now use the two-photon wave function |ψ2〉 to calculate
the second-order photon correlation function g2(t) (second-
order coherence):

g2(t) ≡ 〈ψ2|a†
α(x0)a†

α(x0 + t)aα(x0 + t)aα(x0)|ψ2〉
|〈ψ2|a†

α(x0)aα(x0)|ψ2〉|2
. (9)
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FIG. 5. (Color online) Reflection g2 of multiple qubits (from left to right: N = 1,2,3,5,10) coupled to an infinite waveguide with separation
k0L = π/2 (first row) and π/4 (second row). The two incoming photons are on resonance (E/2 = ω0 = 100�). This comparison shows that
the limitation g2(0) = 0 for single 2LS is removed by adding more 2LS, and that a chain of few 2LS can cause long-time beating.

Since we are working in the two-photon sector, the numerator
implies that g2 is proportional to |〈x0,x0 + t |ψ2〉|2 [80]. We
first show the cases with resonant driving and k0L = π/2 or
π/4 in Fig. 5. Although the emergence of the two-photon
bound state increases the probability for two photons to be
transmitted [12], the LS formalism in which an incoming
plane-wave state is used gives an infinitesimally small cor-
rection from the two-photon transmission (see Appendix D
for details). Therefore, for simplicity we can ignore the
transmission g2 and focus on reflection g2 for the resonant
cases.

It is well known that a single 2LS cannot emit two photons
at once because it can absorb only one photon at a time, so
g2(0) = 0 in the reflection channel for N = 1 [7,9,102]. In
contrast, we can see from Fig. 5 that adding more 2LS removes
this limitation and allows g2(0) to be nonzero. The reason is
that when one photon is trapped within the first 2LS, the other
has a small chance to propagate to and be reflected by the
next 2LS, which in turn can cause the stimulated emission of
the first photon. Thus, the probability of two photons coming
out together is not fully suppressed, a scenario that is even
more dramatic for the semi-infinite waveguide treated in the
following.

Second, note how oscillations build up and persist for a
long time as N increases. We find that the frequency of long-
time oscillations matches the difference between the incoming
photon frequency E/2 = ω0 (the resonant frequency) and ω̃i ,
the real part of the pole with the smallest decay rate �̃i . Since
the pole with the smallest decay rate occurs near the edge
of the photonic band gap while the resonant frequency is near
the middle of the gap, this low-frequency scale should be
ω ∼ 0.5� which is indeed what we observe. This makes sense
since poles with larger decay rates have much less contribution
to g2 at long time. In other words, we see the beating between
the most subradiant pole and the driving frequency.

We next discuss g2 in the off-resonant cases. Because the
N = 2 and 3 cases have been discussed in Ref. [80], here we
only present results for N = 5 and 10. For k0L = π/2, they are

shown in Fig. 6. It is known that, for k0L = π/2 and N = 3, the
transmission g2 has a large initial bunching (g2 > 1), while the
reflection g2 oscillates around the uncorrelated value 1 [80].
It is striking that as N increases, the transmission correlations
show antibunching (g2 < 1) over a very long time, and the
initial bunching is even diminished in the N = 10 case. The
reflection g2 continues to show a great deal of oscillation but in
addition becomes highly bunched (g2 > 1). The oscillation can
be explained, as in the resonant case, by the beating between
the most subradiant poles and the driving.

We checked these results that use the Markovian approx-
imation against fully non-Markovian numerical results in a
few cases. One of them is shown in Fig. 6(d). The agreement
between the two calculations (compare dots and solid line)
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FIG. 6. (Color online) In the off-resonant case, g2 of multiple
qubits (left: N = 5; right: N = 10) coupled to an infinite waveguide
with separation k0L = π/2. The first row is for two transmitted
photons and the second for two reflected ones. The gray, dashed line is
the N = 1 result serving as a reference. The solid curve is calculated
using the Markovian approximation while the full non-Markovian
result is given by the dots. The frequency of the incoming photons is
chosen such that T = 50%, and the qubit frequency is ω0 = 100�.
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FIG. 7. (Color online) In the off-resonant case, g2 of multiple
qubits (left: N = 5; right: N = 10) coupled to an infinite waveguide
with separation k0L = π/4. The first row is for two transmitted
photons and the second for two reflected ones. The gray, dashed
line is the N = 1 result serving as a reference. The frequency of
the incoming photons is chosen such that T = 50%, and the qubit
frequency is ω0 = 100�.

is very good, showing that the Markovian approximation is
reasonable for a qubit chain of moderate size.

For k0L = π/4 and off-resonant photons, the g2 correlation
is shown in Fig. 7. As in the N = 3 case [80], there is
sharp initial bunching for both reflection and transmission.
At nonzero t , the reflection g2 shows bunching with irregular
oscillation while the transmission photons become strongly
antibunched for a long time with little oscillation visible. The
reason that g2 of k0L = π/4 is very different from k0L = π/2
can be attributed to the highly asymmetric pole distribution.
Take the N = 10 case as an example for which the poles are
shown in Fig. 3: there are two very close, subradiant poles
that can contribute to the beating, and the beating frequency
is small (one order of magnitude smaller than the π/2 case)
since we choose the incoming frequency to be red detuned.
The complicated interference effects result in highly nontrivial
oscillations. We note that the oscillation is gradually washed
out beyond �t = 100 (data not shown).

From the above results, g2 is clearly very sensitive to the
qubit-qubit separation L and the driving frequency (frequency
of incoming photons). One may notice, however, that the
resonant cases with π/2 and π/4 (Fig. 5) are somewhat more
similar to each other and distinct from the off-resonant cases.
Upon inspecting the polynomials giving rise to the poles for
various system configurations, we find empirically that there
is a general relation between the N poles

1

N

N∑
i=1

z̃i = ω0 − i�

2
, (10)

that is, the average or “center of mass” of the poles coincides
with the 2LS frequency and decay rate. This relation is
independent of L and therefore provides a hand-waving
explanation: upon resonant driving (E/2 = ω0), the incom-
ing photon frequency always matches the typical, average

frequency of the excitations, leading to considerable absorp-
tion and reemission and and hence correlation.

For the off-resonant case, we have chosen a particular value
of the frequency for which T , the transmission, is 50%. There
are, potentially, many such frequencies for a given system, and
so we turn to comparing the behavior at these different points.
As an example, we take the N = 10, k0L = π/2 case. The
chosen frequencies are labeled in Fig. 3(d); note that they are
progressively further away from the resonance ω0. The result is
shown in Fig. 8. It is clear that the behavior is indeed somewhat
different for the five chosen frequencies. We first note that they
all oscillate at roughly the same frequency due to the beating
with the most subradiant poles. Second, the long-time structure
of g2 increases as the detuning becomes smaller, meaning that
when driving very close to the frequency of the most subradiant
pole [about 99.48� in this case; see Fig. 3(f)], a large time scale
sets in, leading to the long-time structure in g2. As we shall
see in the following, this is attributed to the large time delay
associated with the most subradiant pole.

In fact, if one drives very close to the most subradiant pole,
the long-time structure is dramatic. We calculate three such
frequencies [labeled in Fig. 3(d)] giving rise to T = 20%,
50% (previously used), and 80%, respectively, and present the
result in Fig. 9. One can see that the long-time structure with
off-resonant driving persists for more than �t = 800 (much
larger than the time of flight from one end of the array to the
other without any obstacle, which is 9π/200�); in contrast,
the time scale of the beating is almost invisible. Moreover, as
one goes from T = 20% to 80% (approaching the subradiant
pole), this long time scale becomes larger, as if one “stretches”
the g2 curve. In the next section, we employ the concept of
time delay to explain this observation.

IV. TIME DELAY

The time delay (also known as the group delay) is a way
to measure the time a wave packet spends in passing through
a scattering potential [106]. For a symmetric potential, both
transmitted and reflected wave packets are characterized by a
single time delay given by τ (k) = dθk/dk in the general case
and by

τ (k) = d

dk
(θk|eikL→eik0L) (11)

in the Markovian regime, where θk is the phase of the
transmission amplitude t(k).

A typical plot of the frequency dependence of the time
delay is shown in Fig. 3 for N = 10 with k0L = π/2 and
π/4. It is clear that the position and width of the peaks in the
time delay are precisely captured by, respectively, the real part
{ω̃i} and imaginary part {�̃i} of the poles. This means that as
one approaches the subradiant poles, the time delay is greatly
increased. In particular, for the most subradiant pole we find
that the time delay τ scales as N3 (fitting not shown), consistent
with the finding by Tsoi and Law that the corresponding �̃

scales as N−3 [99]. Therefore, this feature explains the long-
time structure of g2 discussed in the previous section: the
“large time scale” is contributed by the effective decay rate of
the most subradiant pole.

053845-7



YAO-LUNG L. FANG AND HAROLD U. BARANGER PHYSICAL REVIEW A 91, 053845 (2015)

E 2 99.29a

0.0

0.5

1.0

1.5

2.0

g
2

t

E 2 99.32b E 2 99.41c E 2 99.47d transm
ission

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g
2

t

0 25 50 75

t

f

0 25 50 75

t

g

0 25 50 75

t

h reflection

0 25 50 75 100

t

FIG. 8. (Color online) g2 of 10 qubits coupled to an infinite waveguide with separation k0L = π/2. The first (second) row is for two
transmitted (reflected) photons. The driving frequencies are chosen such that T = 50% and are labeled as black squares on the single-photon
transmission spectrum in Fig. 3(d). The qubit frequency is ω0 = 100�.

The flat structure of the time delay around ω0 can also be
explained. Within the photonic band gap, single photons are
mostly reflected and hence spend much less time in the qubit
array. Remarkably, we find empirically that the time delay at
the resonant frequency is universal,

τ (k = ω0) = 2

�
, (12)

independent of N or L. This is consistent with the photon
simply being reflected by the first qubit encountered.

In short, the time delay is responsible for the long-time
envelope of g2 and it is directly connected to the simple poles
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FIG. 9. (Color online) Transmission g2 of 10 qubits in an infinite
waveguide with separation k0L = π/2. The driving frequencies are
chosen such that the single-particle transmission is (a) 20%, (b) 50%,
and (c) 80% [labeled by red dots in Fig. 3(d)], close to the most
subradiant pole. The qubit frequency is ω0 = 100�.

of the system. In fact, for the off-resonant behavior in previous
sections, our choosing to work at the frequency closest to ω0

that satisfies T = 50% allowed us to take advantage of the
associated long time delay to examine nontrivial g2 behavior.

V. MULTIPLE QUBITS IN A SEMI-INFINITE
WAVEGUIDE: POWER SPECTRA

We now turn to the case of a semi-infinite waveguide and
study how the presence of a mirror (the boundary) changes
the response of the system. As in the infinite waveguide case
above, we first focus on the power spectra (fluorescence). The
N = 1 case has been analyzed by Koshino and Nakamura
using the Heisenberg-Langevin equation (equivalent to the
input-output theory) at both weak and strong coherent driving
[90]. We find that our LS approach gives the same result as
theirs in the weak driving limit (see Appendix C), which hence
validates our calculation.

Two changes in the calculation must be made for the
semi-infinite case (see Appendix B for details). First, formally
the Hamiltonian (1) remains the same, but the integration range
is modified to be from negative infinity to zero. Accordingly,
when solving for the single-particle eigenstate |φ1(k)〉, a
boundary condition tN (k) + rN (k) = 0 has to be imposed.
We stress that in contrast to the approach by Koshino and
Nakamura [90], here the boundary condition is imposed at
the wave-function level rather than the Hamiltonian level,
but the results agree exactly. Second, as there is only one
incoming and outgoing channel, the summation over the
incident direction α = {R, L} must be dropped. As a result,
adding a mirror actually reduces the number of matrix elements
to be calculated. With the qubit-mirror separation defined to
be |xN | = a, the Markovian approximation can be employed
straightforwardly by replacing exp(ika) by exp(ik0a), as done
in the infinite waveguide case.

In light of the discussion of the infinite waveguide case,
we consider the case where the qubit-qubit separation is
fixed at k0L = π/2, allowing the distribution of poles to
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FIG. 10. (Color online) Normalized power spectra of one or
two qubits coupled to a semi-infinite waveguide with qubit-qubit
separation k0L = π/2 (for N = 2). The qubit-mirror separation is
k0a = π/2 in (a) and (c), and π/4 in (b). The qubit frequency is
ω0 = 100�.

be symmetric for certain values of a, and the qubit-mirror
separation is varied to see how the mirror modifies the
fluorescence. We focus mostly on the case of one and two
qubits, commenting on the N = 10 results only at the end
of this section. For one or two qubits and k0a = π/2 or
π/4, results are presented in Figs. 10 and 11. First, note that
since the reflection fluorescence is the total fluorescence, the
spectrum is always symmetric with respect to the incident
frequency E/2. Second, since the single-photon reflection
probability is always one, the way we chose the off-resonant
driving frequency for the infinite case is no longer possible;
instead, we have studied properties at fixed detunings.

For N = 1, the results are similar to those of the infinite
waveguide (cf. Figs. 2 and 4). Resonant driving gives a
Lorentzian-type fluorescence, and off-resonant driving splits
the Lorentzian peak into two. The condition for resonance is,
of course, controlled by the single pole in this N = 1 case. The
main difference here compared to the infinite waveguide case
is that the pole is modulated by the qubit-mirror separation a:

ω̃ = ω0 − �

2
sin(2k0a), �̃ = � [1 − cos(2k0a)] . (13)

Thus, the effective frequency and decay rate of the qubit can
be changed. These relations agree with those of Ref. [90] for

FIG. 11. (Color online) Normalized power spectra of two qubits
coupled to a semi-infinite waveguide with qubit-qubit separation
k0L = π/2 and qubit-mirror separation k0a = π/4. The driving
frequencies for each plot are E/2� = 96.5,99,100,101, and 103.5
(from bottom to top). The black ticks label the position of the two
poles (and the qubit frequency ω0 = 100� is at the center), and the
blue arrow indicates the incident frequency.

a hard-wall boundary condition (θb = π/2 therein), and are
responsible for the shift in the peak in the k0a = π/4 case
shown in Fig. 10(b).

The spectrum changes dramatically compared with the infi-
nite waveguide case when N � 2. For N = 2, the expressions
for the poles are much more complicated than in the infinite
waveguide case, and we do not reproduce them here. However,
for the special case k0L = π/2 we find that the poles can be
simplified to

z̃1,2(a) = ω0 − i�

2
± �

2

√
1 − 2e2ik0a. (14)

From this expression, one can see that the “center of mass”
is ω0 − i�/2; it is not affected by the mirror. The two poles
circulate this center in an elliptical trajectory on the complex
plane as a changes, in contrast to the infinite waveguide case
where the two poles circulate in a perfect circle as L changes
[24,99].

For the case k0a = π/2, the two poles have the same decay
rate and the spectra are symmetric between red and blue
detuning, so only the red-detuned case is shown in Fig. 10
c. When the driving frequency is far detuned, there are four
peaks, with the inner two higher and the outer two lower,
similar to that of the (total) power spectrum in the infinite case
(not shown). The main difference is that here there are nodes
(at which S = 0) between the inner and the outer peaks, one
of which is fixed at the bare qubit frequency ω0. As the driving
frequency approaches either of the poles, the two inner peaks
merge into one (a process similar to that seen in Fig. 2). Next,
when the driving frequency is tuned between the poles, both
nodes start to be shifted and lifted, and do not touch down to
zero again until the driving is on resonance (E/2 = ω0).
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On the other hand, for the k0a = π/4 case the decay rates
of the two poles are different, resulting in a sharper (flatter)
spectrum on the red- (blue-) detuned side. To illustrate the dras-
tically varying structure of the fluorescence, we show in Fig. 11
results for five incoming photon frequencies: substantially red
detuned, slightly red detuned, likewise for blue detuned, and
finally on resonance. Starting from substantially red-detuned
driving (E/2 = 96.5�), the four peaks and two nodes are
still visible, but the right node is red-shifted away from ω0,
presumably due to the asymmetric poles. As the frequency
of the incoming photons is increased, the merging process
happens but with one difference from the k0a = π/2 case: the
outer peaks disappear completely. For driving in-between the
poles, the main peak splits. In contrast to the k0a = π/2 case,
when the driving approaches the blue-detuned pole, instead
of merging the two peaks actually shrink, and a single larger
peak emerges between them. Finally, as the driving becomes
substantially blue detuned, the larger peak again splits into
two, with the outer peaks and the nodes appearing.

We note a special case in this progression: at E/2 = 99.5�,
the entire spectrum of inelastic scattering disappears and both
photons are reflected elastically. The reason is that in the steady
state the wave functions for the two qubits differ by a phase
π . Together with the phases picked up during propagation, it
results in a precise destructive interference killing the photon-
photon bound state.

In Fig. 12(a), we show the power spectrum for a represen-
tative N = 10 case. Compared to the infinite waveguide case
(cf. Fig. 2), note the better defined photonic band-gap behavior
around the 2LS resonant frequency and the sharper modulation
on the sides. This comes about because the mirror effectively
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FIG. 12. (Color online) A representative case of (a) S(ω) and (b)
g2 for 10 qubits coupled to the semi-infinite waveguide with k0L =
k0a = π/2. The system is driven resonantly (E/2 = ω0 = 100�).
The vertical lines indicate the real parts of the poles.

doubles the number of qubits that the photons see, leading to
finer and stronger interference effects.

In short, adding a mirror changes drastically the spectrum
of inelastic scattering by two qubits and brings in another
way to modulate the distribution of the poles. More generally,
this will be the case for changing the boundary condition
on the semi-infinite waveguide. For superconducting qubits
coupled to a microwave transmission line, while physically
moving the qubit in situ is normally not feasible, changing
the boundary condition continuously with a magnetic field is
readily accomplished by adding a SQUID to the end of the
waveguide [90,107].

VI. MULTIPLE QUBITS IN A SEMI-INFINITE
WAVEGUIDE: PHOTON CORRELATIONS

Finally, let us turn to results for photon correlations in a
semi-infinite waveguide. We first concentrate on the single-
2LS case. Because properties are controlled by a single pole
[with frequency and decay rate given in Eq. (13)], g2 will be the
same for driving frequencies equally detuned (either blue or
red) from ω̃. The result is shown in Fig. 13 for both k0a = π/2
and π/4 (a = λ0/4 or λ0/8, respectively).

A striking difference from the infinite waveguide case is that
g2(0) is no longer zero; instead, it indicates bunching in all four
cases shown. This can be explained by stimulated emission:
since the first photon is captured by the 2LS, the second photon
passes through to the wall and is reflected back. Because of the
short distance (time of flight = 2a/c ∼ π/ω0 	 1/�), when
the second photon revisits the 2LS, the first photon has not
been released, and the former can stimulate the emission of
the latter, producing two photons coming out together.

An additional difference comes from the nodes present in
the wave function in the semi-infinite case. We find that �̃ = 0
when k0a = 0, π , 2π , . . ., and hence no bound state is present,
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FIG. 13. (Color online) g2 of a single qubit coupled to a semi-
infinite waveguide. The qubit-mirror separation is (a), (c) k0a = π/2
and (b), (d) π/4. The frequency of the incoming photons is (a), (b)
resonant with the 2LS (E/2 = ω0) and (c), (d) detuned by +1�. Due
to the modulated effective qubit frequency [Eq. (13)], for π/4 the g2

with detuning −1� is same as the resonant case; for π/2 the g2 with
detuning −1� is same as the +1� detuned case. The dots in panel
(d) are the results of the full non-Markovian numerical calculation,
and the solid curves are based on the Markovian approximation. The
qubit frequency is ω0 = 100�.
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FIG. 14. (Color online) g2 of a single qubit coupled to a semi-
infinite waveguide with resonant incoming photons. The solid (red)
curves are based on the Markovian approximation while the (blue)
dots result from the full non-Markovian numerical calculation. (a)
k0a = 41π/2. Note the breakdown of the Markovian approximation
for this large value of a. (b) k0a = 20π , thus the qubit is at a node
of the single-photon wave function (a = 10λ0). In the Markovian
approximation, the qubit is decoupled from the waveguide and
g2(t) = 1. Clearly, this is not the case in the full solution: there is
both bunching and antibunching. The qubit frequency is ω0 = 100�.

yielding g2 = 1. The qubit, being placed at a node of the
photonic field, is fully decoupled from the waveguide [49,90].

In comparing the k0a = π/2 results to those for π/4, it is
clear that the time scale for features in g2 is larger for the
smaller value of a. That this should be the case is evident from
the pole structure: they are symmetric in the π/2 case and
rotated from that symmetry point for π/4. Thus, the lifetime
for one of the poles in the π/4 case is longer than for the π/2
poles, causing the time scale for the structure to be larger.

To assess the quality of the Markovian approximation,
this is one of the cases we have chosen to investigate (for
other results, see Fig. 6 above). In Fig. 13(d), we compare
our analytical Markovian results with the full non-Markovian
numerical calculation (blue dots) when the 2LS is very near the
end of the waveguide k0a = π/4. The agreement between the
two calculations is excellent. However, as k0a becomes larger,
the Markovian approximation breaks down, as demonstrated in
Fig. 14 for k0a = 41π/2 and 20π corresponding to a = 10 1

4λ0

and 10λ0, respectively. This seems to happen when a is larger
than a few wavelengths, which for our choice of parameters
means that a is of order the time of flight of a photon during
the decay time of the 2LS, a ∼ c/2�. Figure 14(b) shows
a particularly dramatic example. If the distance between the
2LS and the mirror is small, placing the 2LS at a node of
the single-particle wave function (a = nλ0/2 for some n)
causes it to be completely decoupled from the waveguide: there
are no incoherently scattered photons, as has been discussed
theoretically [90] and seen experimentally [49], and g2(t) = 1
for all t . In contrast, for the large a used in Fig. 14(b) so that
non-Markovian effects are important, g2 shows strong bunch-
ing and antibunching. Clearly, the 2LS remains coupled to the
waveguide and causes nonlinear bound-state effects. Although
the parameters considered in Fig. 14 fit the discussion of
non-Markovianity in Ref. [93] in terms of the qubit excitation,
we leave the problem of a quantitative characterization of the
non-Markovianity in this system for further study.

Results for a two-qubit case are shown in Fig. 15. We again
use k0L = π/2, giving rise to a symmetric pole distribution in
an infinite waveguide, and focus on the effect of the mirror.
As expected, the oscillation when k0a = π/4 lasts longer than
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FIG. 15. (Color online) g2 of two qubits coupled to a semi-
infinite waveguide with qubit-qubit separation k0L = π/2. The qubit-
mirror separation in the first column is k0a = π/2 and in the second
π/4. The first row has resonant driving (E/2 = ω0 = 100�) and the
second is detuned by −1�.

that with π/2 due to the existence of the subradiant pole. This
result is consistent with the finding from the calculation of
power spectra (Figs. 10 and 11). As N increases, we find that
the behavior of g2 can be explained in much the same way
as in the infinite waveguide situation by examining the pole
distribution.

We show one representative example of g2 for 10 qubits and
resonant driving in Fig. 12(b). While qualitatively similar to
the result for an infinite waveguide (cf. Fig. 5), g2 here shows
a more complex interference pattern and stronger modulation,
as for the power spectrum.

VII. CONCLUSION

In this work, we have surveyed a wide variety of multiqubit
waveguide-QED structures, focusing on their two-photon
nonlinearities as manifested in the power spectrum [resonance
fluorescence S(ω)] and photon correlation function [second-
order coherence g2(t)]. It is clear that in the multiqubit case (we
studied from 1 to 10 qubits), these two functions show a great
deal of structure caused by the interference of the partial waves
scattering from different combinations of qubits. Given that
oscillations are ubiquitous in g2(t) here, the initial correlation
g2(t = 0) certainly cannot be used as an indication of whether
the system generally causes bunching or antibunching of
photons.

The structure in g2(t) and S(ω) generally becomes sharper
as the number qubits N increases, an effect particularly
noticeable in the resonance fluorescence (see Figs. 2 and
4). This is natural as the interference effects become more
complicated and the photonic band gap builds up. In g2(t) the
deviations from semiclassics (g2 = 1) persist for a much longer
time than one might initially expect, and this time increases
upon increasing the number of qubits. For N = 10 the decay
of correlation in time is very slow indeed (see Fig. 6).

Many of the features and trends in our results can be
roughly explained by referring to the poles of the transmission
amplitude. These poles (see Fig. 3 for an example) also appear
in the single-particle Green function used in calculating the
correlation or “bound-state” effects. We have seen that the

053845-11



YAO-LUNG L. FANG AND HAROLD U. BARANGER PHYSICAL REVIEW A 91, 053845 (2015)

most subradiant pole is especially important. The ubiquitous
oscillations seen come from beating between the frequency of
the incoming photons (driving frequency) and the real part of
the most subradiant pole. Other oscillations no doubt come
from beating among the different poles and between them and
the driving frequency. The long decay time, seen especially for
large N , comes from the small decay rate of the most subradi-
ant pole; we saw that this scale also appears as the time delay.

Some notable features in our results include the following:
The total power spectrum is symmetric about the driving
frequency, but note that the spectrum of only the transmitted
or reflected photons (in the infinite waveguide case) is not. We
have seen that there is often either bunching or antibunching
in both transmission and reflection; because the photons
can spend a significant amount of time traveling among the
different qubits, it is not the case that if one is bunched the other
should be antibunched. It is unfortunate that there are very few
trends as the number of qubits increases. One exception is the
interesting case in which there is strong antibunching in trans-
mission and bunching in reflection that lasts for a long time
(Fig. 7); this is enhanced as N increases due to the increasingly
subradiant pole produced by the multiple interference.

The infinite and semi-infinite waveguide cases show a
number of differences. Perhaps the most important is that a
single 2LS can cause bunching of two photons in the semi-
infinite case (Fig. 13), while in the infinite waveguide case
there must be complete antibunching [g2(0) = 0]. The mirror
in the semi-infinite case acts to effectively double the number
of qubits, and so there is more sharp structure in the presence
of a mirror for the same number of qubits.

The effects of loss and dephasing have been entirely
neglected in this study; what effect would they have? Let �′
denote the rate of decay of one of the qubits to modes other than
the waveguide. Then, one expects that any structure on a time
scale larger than (�′)−1 will be smoothed out. In particular,
phenomena related to the most subradiant pole will disappear
first, when �′ > �̃. Pure dephasing causes a similar smoothing
of interference effects without, of course, relaxing the excited-
state population. In addition to smoothing, dephasing can cause
the power spectrum to be asymmetric about the input frequency
[90]. One may think, then, that most of the structure in our
calculated curves would disappear. However, there has been
tremendous experimental progress recently toward making
systems whose loss rate is very low and whose dephasing
is even smaller. Purcell factors, defined by �/�′, greater than
10 have been demonstrated in more than one experimental
platform: for superconducting qubits coupled to a microwave
transmission line [43,45,46,49], for instance, as well as quan-
tum dots coupled to plasmonic nanostructures [68] and to a
photonic waveguide [69,70]. Given the rapid pace at which the
experimental systems are advancing, we think considering a
system in which P ∼ 100 is reasonable; for such a Purcell fac-
tor, the large majority of the effects presented here will survive.

We have considered the effect of weak disorder on our
results, using ±5% as a typical experimental variation in,
for instance, the qubit frequency among nominally identically
made qubits. Such a weak disorder does little to change the
results. Increasing the disorder would, of course, change the
interference effects such that the average or typical results
would show much less structure. However, a large variation

in the qubit and coupling properties seems unreasonable for
the experimental systems studied and, in addition, because
the system is 1D, localization of the wave functions appears
immediately, producing very sharp resonances.

The large majority of our results were obtained in the
Markovian approximation, as this is the case relevant to
most current experiments. We have compared to a full
non-Markovian calculation in a few cases [for example, see
Figs. 6(d), 13(d), and 14]. If the spacing of the qubits is small,
then the agreement between the two is very good. However,
for large separation, we see a substantial difference between
the two results. For instance, for one qubit coupling to a
semi-infinite waveguide, placing the qubit at a node of the
single-particle wave function does not lead to a decoupling of
the qubit (as it would in the Markovian regime). The criterion
for when these effects set in is that the separation L should
be larger than the distance a photon can travel in the decay
time of a qubit: if L > c/�, a non-Markovian calculation
is required. Experimentally, the non-Markovian regime may
be reached by connecting superconducting circuits using a
coaxial cable [108].

We end by simply noting the richness of the correlation
phenomena in these waveguide-QED systems and the bright
future for further investigations because of rapid experimental
progress. The methods that we use here to study small
ensembles of two-level systems could be extended in a
straightforward way to more complex systems, such as three-
or N -level systems and photons of different frequency.
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APPENDIX A: MATRIX ELEMENTS

In this appendix, we follow the procedure and notation of
our previous work [24,80] to calculate the matrix elements
needed for the (inelastic) power spectra. We focus on the
calculation for the infinite waveguide cases, and leave the
semi-infinite cases for the next appendix. Readers interested
in details of constructing the two-photon wave function |ψ2〉
should refer to these references.

As discussed in the main text, the goal is to compute the
matrix element α′ 〈φ1(k)|aα(x)|ψ2〉. Starting from the single-
particle eigenstate

|φ1(k)〉α =
{ ∫

dx
[
φα

R(k,x)a†
R(x) + φα

L(k,x)a†
L(x)

]

+
N∑

i=1

eα
i (k)d†

i

}
|0〉 (A1)
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with the incident photon of momentum k propagating in the
α direction, one can construct the two-photon direct-product
plane-wave state

|φ2(k1,k2)〉α1,α2 = 1√
2

[|φ1(k1)〉α1 ⊗ |φ1(k2)〉α2

]
(A2)

and the associated two-particle identity operator I2 =∑
α1,α2

∫
dk1dk2|φ2(k1,k2)〉α1,α2〈φ2(k1,k2)|. By inserting I2

into Eq. (4), one observes that the entire two-photon wave
function |ψ2〉 can be expressed using |φ2〉, so the problem is
reduced to calculating the matrix element α′ 〈φ1(k)|aα(x)|φ2〉;
the double-momentum integral mentioned in the main text is
introduced during this insertion of I2.

By employing the definition of |φ1〉, one observes that

aR(x)|φ2(k1,k2)〉α1,α2 =
[
φ

α1
R (k1,x)√

2
|φ1(k2)〉α2 + (2 ↔ 1)

]
,

(A3)

and hence

R〈φ1(k)|aR(x)|φ2(k1,k2)〉R,R = 1√
2

[
φR

R(k1,x)δ(k − k2) + φR
R(k2,x)δ(k − k1)

]
, (A4a)

R〈φ1(k)|aR(x)|φ2(k1,k2)〉L,R = 1√
2
φL

R(k1,x)δ(k − k2), (A4b)

R〈φ1(k)|aR(x)|φ2(k1,k2)〉R,L = 1√
2
φL

R(k2,x)δ(k − k1), (A4c)

R〈φ1(k)|aR(x)|φ2(k1,k2)〉L,L = 0, (A4d)

L〈φ1(k)|aR(x)|φ2(k1,k2)〉R,R = 0, (A4e)

L〈φ1(k)|aR(x)|φ2(k1,k2)〉L,R = 1√
2
φR

R(k2,x)δ(k − k1), (A4f)

L〈φ1(k)|aR(x)|φ2(k1,k2)〉R,L = 1√
2
φR

R(k1,x)δ(k − k2), (A4g)

L〈φ1(k)|aR(x)|φ2(k1,k2)〉L,L = 1√
2

[
φL

R(k1,x)δ(k − k2) + φL
R(k2,x)δ(k − k1)

]
. (A4h)

One can compute α〈φ1(k)|aL(x)|φ2〉α1,α2 in a similar way. Before giving the final result, we find that defining the following
four functions (RRi,RLi,LRi,LLi) is useful:

αβi(k,x) ≡
∑
α1,α2

∫
dk′

1dk′
2

α〈φ1(k)|aβ(x)|φ2(k′
1,k

′
2)〉α1,α2〈φ2(k′

1,k
′
2)|didi〉

E − (k′
1 + k′

2) + iε
, α,β = R,L. (A5)

Collecting all the pieces together, the target matrix element is given by

α〈φ1(k)|aβ(x)|ψ2(k1,k2)〉RR =α〈φ1(k)|aβ(x)|φ2(k1,k2)〉RR −
N∑

i,j=1

αβi(k,x)
(
G−1)

i,j
〈djdj |φ2(k1,k2)〉RR. (A6)

From Eqs. (A4) and (A6), it is clear that any term multiplying
the first term above will carry a Dirac delta function, and so
it will not contribute to the inelastic power spectrum. Only
the product appearing in the second term can contribute. In
evaluating that contribution, we find that the following triple
integrals (T RR,T LR,T RL,T LL) simplify the final result:

T αR
i,j (E,ω) =

∫ ∞

0
dt e−iωt

∫
dk αR∗

i (k,x0)αRj (k,x0 + t),

T αL
i,j (E,ω) =

∫ 0

−∞
dt eiωt

∫
dk αL∗

i (k,x0)αLj (k,x0 − t)

(A7)

for α = R,L. We note two things here: First, we call the
objects T

αβ

i,j triple integrals because there are three momentum
integrals to be done; the time integration can be evaluated

trivially. Second, although formally the function αβi carries
an x0 dependence, requiring the position x0 of the detector
to be away from the qubit array (x0 � 0 for transmission
and x0 	 0 for reflection), as discussed in the main text, will
remove this dependence, as expected.

Finally, substituting Eq. (A6) into (5) and removing all
terms proportional to delta functions after integration (they
represent coherent scattering as discussed in the main text),
we obtain the incoherent power spectrum

Sβ(ω) = 2
∑
i,j,k,l

Re[RR〈φ2(k1,k2)|didi〉(G−1)∗i,j (T Rβ + T Lβ)j,k

× (G−1)k,l〈dldl|φ2(k1,k2)〉RR], (A8)

where β = R is for the transmission fluorescence and β =
L for the reflection fluorescence. In the derivation we
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use the property that the transpose of the matrix G is
itself.

To wrap up, we emphasize two things: (a) k1 = k2 = E/2 is
used, and (b) the Markovian approximation can be introduced

at the stage of the evaluation of the matrices G and T . For
a single qubit coupled to an infinite waveguide, the double
and triple integrations can be done exactly, and the result
is

SR(ω) = SL(ω) = �4

4π2

1

[(E − ω0 − ω)2 + �2/4][(E/2 − ω0)2 + �2/4][(ω − ω0)2 + �2/4]
, (A9)

which gives the N = 1 plot in Fig. 2. For N � 2 the results are more complicated, and we do not reproduce them here. In
particular, for N � 5 it is well known that there is no explicit formula for the roots of a degree-N polynomial, so we use
Mathematica to symbolically keep track of all the poles and to calculate the measurables presented in this paper.

APPENDIX B: MODIFICATIONS FOR THE SEMI-INFINITE WAVEGUIDE

As mentioned in the main text, the calculation of the semi-infinite waveguide cases is actually simpler because all the incident
light can only propagate to the right, be reflected, and then collected at one end. As the first consequence, in contrast to Eq. (A1),
the single-particle eigenstate |φ1〉 no longer carries a directional index α:

|φ1(k)〉 =
{∫ 0

−∞
dx[φR(k,x)a†

R(x) + φL(k,x)a†
L(x)] +

N∑
i=1

ei(k)d†
i

}
|0〉. (B1)

Similar to the infinite waveguide cases, to solve for the photon and qubit wave functions φR(k,x),φL(k,x), and {ei(k)}, the
following ansatz is used:

φR(k,x) = eikx

√
2π

[
θ (x1 − x) +

N−1∑
i=1

ti(k)θ (x − xi)θ (xi+1 − x) + tN (k)θ (x − xN )

]
, (B2a)

φL(k,x) = e−ikx

√
2π

[
r(k)θ (x1 − x) +

N−1∑
i=1

ri(k)θ (x − xi)θ (xi+1 − x) + rN (k)θ (x − xN )

]
, (B2b)

where r(k) is the single-photon reflection amplitude and
|r(k)|2 = 1 could serve as a check of the calculation. Since
the number of equations given by the Schrödinger equation
does not match the number of unknowns, we need one more
equation to close the set, which is the boundary condition at
x = 0. In this work, we use hard-wall boundary conditions

φR(k,0) + φL(k,0) = 0 ⇒ tN (k) + rN (k) = 0, (B3)

where x = 0 is the mirror position. Following the standard
procedure (see, e.g., Ref. [99]), one is then able to compute
the wave functions.

For the two-photon wave function, the generalization is
straightforward. The only change, also stated in the main
text, is that the single- and double-particle identity opera-
tors I1 and I2 carry no directional indexes. In contrast to
Eq. (A4), in this case the only matrix element needed is
〈φ1(k)|aL(x)|φ2(k1,k2)〉. Therefore, actually one only needs
to calculate the T RL matrix for the power spectra. This again
shows the simplicity of the semi-infinite waveguide cases.

For a single qubit coupled to a semi-infinite waveguide,
unlike the infinite case, however, the Markovian approximation
is necessary if one wants to analytically evaluate the integrals,
and the result is the same as Eq. (A9) (up to an irrelevant
prefactor gone after normalization), except that the qubit
frequency and decay rate are replaced by Eq. (13). This result

agrees with Ref. [90] in the weak driving limit, as we discuss
next in Appendix C.

APPENDIX C: HEISENBERG-LANGEVIN EQUATIONS:
ONE AND TWO QUBITS

The Heisenberg-Langevin (HL) equation [102], used in
Ref. [90], is useful for studying a system under arbitrarily
large coherent driving. The Langevin (“noise”) term enters the
equation by integrating out the field degree of freedom and
carries the information of the driving strength via the initial
state. In this sense, the HL equation is formally equivalent
to input-output theory and gives the same set of differential
equations [102].

Specifically, to calculate the measurables using the HL
equation, the strategy is to write the equations of motion for
both atomic and photonic operators, and then to integrate out
the photonic degree of freedom, leaving a set of first-order
differential equations for qubits only. Then, one solves the
dynamics of the qubits so obtains the steady state of the system.
Substituting the solution back into the formal solution of the
field gives the photon dynamics. The calculation is explained
in detail in Ref. [90], so we just list the key changes to arrive at
the results. Here, we focus on one and two qubits coupled to an
infinite waveguide as examples; the generalization to multiple
qubits is straightforward [26,34] but cumbersome.
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The first step is to get the formal solutions of the photonic
operators in real space from the Hamiltonian (1):

aR(x,t) = aR(x − t,0) − iV

N∑
i=1

σi−(t − x + xi)

× �(xi < x < t + xi),
(C1)

aL(x,t) = aL(x + t,0) − iV

N∑
i=1

σi−(t + x − xi)

× �(−t + xi < x < xi),

where the generalized step function is defined by

�(a < x < b) =
⎧⎨
⎩

1, a < x < b

1/2, x = a or x = b

0, otherwise
(C2)

and we have chosen the initial time to be t = 0. Note that
during the derivation it is safe to define the Fourier transform
of aR/L(x) because of the RWA.

1. One qubit

Next, one substitutes these formal solutions into the qubits’
equations of motion. For a single qubit, the calculation is
straightforward, and the result is given by (cf. Ref. [90])

d

dt

⎛
⎝s1

s∗
1

s2

⎞
⎠ =

⎛
⎝−�/2 + iδω 0 i�

0 −�/2 − iδω −i�

i�/2 −i�/2 −�

⎞
⎠

⎛
⎝s1

s∗
1

s2

⎞
⎠

+
⎛
⎝−i�/2

i�/2
0

⎞
⎠, (C3)

where s1(t) = 〈σ−(t)〉 exp(ikt), s2(t) = 〈σ+(t)σ−(t)〉, δω =
k − ω0, 〈O(t)〉 represents the expectation value of the operator
O at time t , and � = √

2�A (note that we use k = E/2 and A

to represent the driving frequency ωp and driving strength E of
Ref. [90]). We emphasize that the equations above can be cast
into a compact form: ∂tS = DS + F with matrix D and vector
F being constant in time. This D matrix is of great importance
because it allows one to calculate all higher-order correlation
functions using the quantum regression theorem (making the
Markovian approximation) [102].

Assuming that the qubit is initially in the ground state,
one finds s1(0) = s2(0) = 0, and so the steady state given by
Eq. (C3) is

s1(∞) = − i

2

�(�/2 + iδω)�

�(�2/4 + δω2) + ��2/2
,

(C4)

s2(∞) = 1

2

��2

�(�2/4 + δω2) + ��2/2
.

Comparing this solution to Eqs. (30) and (31) of Ref. [90], one
can see that in general they possess the same form, but there
the decay rates and the qubit frequency are “renormalized” to
the values in Eq. (13) because of the mirror.

Given the qubit steady states, one can compute the transmis-
sion and reflection amplitudes for weak coherent driving. For
the transmitted part, we take the observation time T � x0 > 0

and use Eq. (C1) to look at the rightgoing photons:

〈aR(x0,T )〉
= 〈aR(x0 − T ,0)〉 − iV 〈σ−(T − x0)〉�(0 < x0 < T )

=
[

1 − 1

2

√
�

2

�(�/2 + iδω)2
√

�/2

�(�2/4 + δω2) + �2A2

]
Aeik(x0−T ).

(C5)

The transmission amplitude for weak coherent driving can be
defined as

t(k) ≡ 〈aR(x0,T )〉
Aeik(x0−T )

A→0−−→ k − ω0

k − ω0 + i�/2
. (C6)

Similarly, the reflection amplitude for weak coherent driving
is (x0 < 0,T � |x0|)

r(k) ≡ 〈aL(x0,T )〉
Ae−ik(x0+T )

A→0−−→ −i�/2

k − ω0 + i�/2
, (C7)

and the qubit steady state is

e(k) ≡ s1(∞)

A

A→0−−→
√

2π
√

�/4π

k − ω0 + i�/2
. (C8)

These results agree with previous studies [4,7,12] [the factor√
2π in e(k) comes from the different definition of input state

for two formalisms]. We emphasize that the definitions (C6)–
(C8) are valid only for weak coherent driving; for arbitrary
driving amplitude A, in general, |〈aR〉|2 + |〈aL〉|2 �= A2.

Let us now turn to calculating the power spectrum.
While for a single qubit this calculation is straightfor-
ward, we sketch how to employ the quantum regres-
sion theorem to simplify the calculation for more com-
plicated cases. Suppose we define s3(t ′) = 〈σ+(T )σ−(T +
t ′)〉eikt ′ , s4(t ′) = 〈σ+(T )σ+(T + t ′)〉e−ik(2T +t ′), and s5(t ′) =
〈σ+(T )σ+(T + t ′)σ−(T + t ′)〉e−ikT , then the quantum regres-
sion theorem states that the vectors

S(t ′) =
⎛
⎝s3

s4

s5

⎞
⎠, F =

⎛
⎝−i�s∗

1 (∞)/2
i�s∗

1 (∞)/2
0

⎞
⎠ (C9)

also satisfy ∂t ′S = DS + F. As a result, the matrix D is a
sort of the characteristic of the system: it gives a closed set
of first-order differential equations by properly defining the
vectors S and F.

Furthermore, in this compact notation we can separate the
vector S(t) into two parts: S(t) = δS(t) + S(∞), where the
former represents the transit dynamics that decays to zero and
the latter represents the steady state. One can immediately
see that the former instead satisfies a homogeneous first-order
differential equation: ∂tδS = DδS. If we define a new vector
I by

I(ω) =
∫ ∞

0
dt ′ ei(ω−k)t ′δS(t ′), (C10)

then, after integration by parts, the vector I is given by

I(ω) = − [D + i(ω − k)I]−1 δS(0), (C11)

where I is the identity matrix and δS(0) = S(0) − S(∞). This
shows that by computing the vector I one can obtain the Fourier
transform of the two time correlations.
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After some algebra we arrive at the transmission power
spectrum

SR(ω) =
{
A2 + 2A

√
�

2
Re[is∗

1 (∞)] + �

2
|s1(∞)|2

}
δ(ω − k)

+ �

2π
Re I3(ω), (C12)

where the first term proportional to the delta function repre-
sents the coherent scattering, and the second term represents
the incoherent scattering. Note that knowing I3(ω) (the
component of the vector I corresponding to s3) is enough to
determine the incoherent power spectra [see Ref. [90] for an
explicit expression for I3(ω)]. The reflection power spectrum
is simply given by

SL(ω) = �

2
|s1(∞)|2δ(ω − k) + �

2π
Re I3(ω). (C13)

Note that number conservation is indeed guaranteed:

〈a†
RaR〉 + 〈a†

LaL〉 =
∫

dω [SR(ω) + SL(ω)] = A2. (C14)

Here comes the key point: If one Taylor expands the
incoherent power spectrum in terms of the driving amplitude
A, the lowest-order term is O(A4), and it would be the one
calculated from Eq. (3) multiplying by A4 for dimensional
reasons; that is,

SHL(ω) = SLS(ω)A4 + O(A6). (C15)

Therefore, the two approaches, the HL equation and the LS
formalism, give a consistent result in the weak driving limit.
In other words, in the weak driving limit the power spectrum is
solely contributed by two-photon scattering processes [15,76].
Note that we have also confirmed this consistency for the
semi-infinite, single-qubit case considered by Ref. [90].

2. Two distant qubits

For two qubits, the Markovian approximation is needed for
an analytical solution, which is also introduced in Ref. [90].
Based on the single-qubit case, here we list the matrix D

derived using the same procedure:

D=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iδω − �
2 0 − �

2 eik0L 0 2iN 0 0 0 0 0 �eik0L 0 0 0 0

0 −iδω − �
2 0 − �

2 e−ik0L −2iN∗ 0 0 0 0 0 0 �e−ik0L 0 0 0

− �
2 eik0L 0 iδω − �

2 0 0 2iN∗ 0 0 0 0 0 0 �eik0L 0 0

0 − �
2 e−ik0L 0 −iδω − �

2 0 −2iN 0 0 0 0 0 0 0 �e−ik0L 0

iN∗ −iN 0 0 −� 0 − �
2 eik0L − �

2 e−ik0L 0 0 0 0 0 0 0

0 0 iN −iN∗ 0 −� − �
2 e−ik0L − �

2 eik0L 0 0 0 0 0 0 0

0 −iN∗ iN∗ 0 − �
2 eik0L − �

2 e−ik0L −� 0 0 0 −2iN∗ 0 0 2iN∗ 2� cos k0L

iN 0 0 −iN − �
2 e−ik0L − �

2 eik0L 0 −� 0 0 0 2iN −2iN 0 2� cos k0L

−iN∗ 0 −iN 0 0 0 0 0 2iδω − � 0 2iN 0 2iN∗ 0 0

0 iN 0 iN∗ 0 0 0 0 0 −2iδω − � 0 −2iN∗ 0 −2iN 0

0 0 0 0 −iN∗ 0 −iN 0 iN∗ 0 iδω − 3�
2 0 − �

2 e−ik0L 0 2iN∗

0 0 0 0 iN 0 0 iN∗ 0 −iN 0 −iδω − 3�
2 0 − �

2 eik0L −2iN

0 0 0 0 0 −iN 0 −iN∗ iN 0 − �
2 e−ik0L 0 iδω − 3�

2 0 2iN

0 0 0 0 0 iN∗ iN 0 0 −iN∗ 0 − �
2 eik0L 0 −iδω − 3�

2 −2iN∗

0 0 0 0 0 0 0 0 0 0 iN −iN∗ iN∗ −iN −2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C16)
where N = √

�/2Ae−ik0L/2. For equal-time correlations, the vectors S and F are given by

S(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1(t)
s1(t)∗
s2(t)
s2(t)∗
s3(t)
s4(t)
s5(t)
s5(t)∗
s6(t)
s6(t)∗
s7(t)
s7(t)∗
s8(t)
s8(t)∗
s9(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈σ1−(t)〉eikt

〈σ1+(t)〉e−ikt

〈σ2−(t)〉eikt

〈σ2+(t)〉e−ikt

〈σ1+(t)σ1−(t)〉
〈σ2+(t)σ2−(t)〉
〈σ1+(t)σ2−(t)〉
〈σ2+(t)σ1−(t)〉

〈σ1−(t)σ2−(t)〉e2ikt

〈σ1+(t)σ2+(t)〉e−2ikt

〈σ1+(t)σ1−(t)σ2−(t)〉eikt

〈σ1+(t)σ1−(t)σ2+(t)〉e−ikt

〈σ2+(t)σ2−(t)σ1−(t)〉eikt

〈σ2+(t)σ2−(t)σ1+(t)〉e−ikt

〈σ1+(t)σ1−(t)σ2+(t)σ2−(t)〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iN

iN∗
−iN∗
iN

0
0
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C17)

Following the same procedure, one can construct the two-
and multiple-time correlations using the same matrix D. We
checked that the results agree with those of Ref. [26], as well

as those obtained from the LS formalism presented in the
main text. Finally, we note that for N qubits in the Markovian
regime, the size of the matrix D grows as (4N − 1)2, where
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the factor of 4 arises because each qubit can be represented by
σx,y,z or 1 and subtracting one means not to consider the trivial
correlation 〈1N 〉.

APPENDIX D: TWO-PHOTON TRANSMISSION
PROBABILITY

In this appendix, we consider the transmission and
reflection probabilities using the LS formalism. Specifi-
cally, we calculate the expectation values 〈ψ2|a†

RaR|ψ2〉 and

〈ψ2|a†
LaL|ψ2〉. First of all, this calculation serves as a consis-

tency check, and it can also be compared with the HL approach.
Second, it justifies our argument that it is not necessary
to consider the transmission g2 when driving the system
resonantly. Here, we focus on two illustrative examples:
a single qubit coupled to both infinite and semi-infinite
waveguides.

We start from the transmission probability for the infinite
waveguide case. One first inserts the one-particle identity
operator I1 and employs Eq. (A6):

〈ψ2|a†
R(x0)aR(x0)|ψ2〉

=
∫

dk[|R〈φ1(k)|aR(x0)|ψ2(k1,k2)〉|2 + |L〈φ1(k)|aR(x0)|ψ2(k1,k2)〉|2]

=
∫

dk

∣∣∣∣
[
eik1x0

√
4π

t(k1)δ(k − k2) + k1 ↔ k2

]
− RR(k,x0)G−1e(k1)e(k2)

∣∣∣∣
2

+
∫

dk|LR(k,x0)G−1e(k1)e(k2)|2. (D1)

One can see that the above expression contains three parts: the plane waves, the bound state, and their interference. The integration
over the plane waves is∫

dk

∣∣∣∣eik1x0

√
4π

t(k1)δ(k − k2) + k1 ↔ k2

∣∣∣∣
2

=
[ |t(k1)|2

4π
δ(0) + t(k1)∗t(k2)

4π
δ(k1 − k2)

]
+ k1 ↔ k2, (D2)

and the interference term is

−
∫

dk

{[
eik1x0

√
4π

t(k1)δ(k − k2) + k1 ↔ k2

]∗
× RR(k,x0)G−1e(k1)e(k2)

}
− H.c. = 0. (D3)

Finally, the bound-state term is∫
dk[|RR(k,x0)G−1e(k1)e(k2)|2 + |LR(k,x0)G−1e(k1)e(k2)|2] = 2�3/π2

[(E − 2ω)2 + �2]2
, (D4)

which could also be derived by integrating Eq. (A9) over ω

and dividing by 2π . Combining the three pieces together and
taking k1 = k2 = E/2, we have

〈ψ2|a†
RaR|ψ2〉 = |t(E/2)|2 δ(0)

π
+ 2�3/π2

[(E − 2ω)2 + �2]2
,

(D5)
which is indeed independent of x0 as it should.

The presence of the infinity δ(k = 0), proportional to the
“volume” of the system, in Eq. (D5) seems rather awkward and
needs interpretation. Our one-photon input state, implicitly
defined in Eq. (B2), is

|k〉 =
∫

dx
eikx

√
2π

a
†
R(x)|0〉, (D6)

which gives 〈k|k′〉 = δ(k − k′) and 〈k|a†
RaR|k〉 = 1/2π . Using

this to construct the two-photon input state |k1,k2〉 = |k1〉 ⊗
|k2〉/

√
2, one obtains

〈k1,k2|a†
RaR|k1,k2〉 = 2 × δ(0)

2π
(D7)

for k1 = k2. This is dimensionally correct and tells us that
the “number of photons” injected into the system is δ(0)/π .
Therefore, dividing Eq. (D5) by δ(0)/π gives the two-photon

transmission probability

T2 = 〈ψ2|a†
RaR|ψ2〉

δ(0)/π

= |t(E/2)|2 + 4�3

[(E − 2ω)2 + �2]2

1

2πδ(0)
. (D8)

This dimensionless expression is transparent: the first term
is the single-photon transmission probability T = |t(k)|2, and
the second term is the two-photon correction. Compare this
expression with that calculated from the HL equation (cf.
Appendix C 1); in the weak driving limit, the results agree upon
requiring A2 = 1/2πδ(0). Therefore, if the driving is weak
enough (A2 	 �), the two-photon correction to the transmis-
sion probability is negligible and we do not have to consider
the transmission g2 when driving resonantly (so T = 0).

One could do the calculation of 〈ψ2|a†
LaL|ψ2〉 in a similar

way. The three pieces (plane wave, interference, bound state)
are

|r(E/2)|2 δ(0)

π
,

−4�3/π2

[(E − 2ω)2 + �2]2
,

2�3/π2

[(E − 2ω)2 + �2]2
,

(D9)

respectively. We note that in contrast to the transmission, the
interference term in reflection is not zero and that the last term
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(bound state) is the same as that for transmission. Therefore,
the two-photon reflection probability is given by

R2 = 〈ψ2|a†
LaL|ψ2〉

δ(0)/π

= |r(E/2)|2 − 4�3

[(E − 2ω)2 + �2]2

1

2πδ(0)
. (D10)

One can see that indeed T2 + R2 = T + R = 1 holds, which
relies on the precise interference between the plane-wave and
bound-state parts.

This precise interference can also be seen in the semi-
infinite waveguide case. Without transmission, one only needs
to compute 〈ψ2|a†

LaL|ψ2〉 and the three terms are given by (in
the Markovian regime)

|r(E/2)|2 δ(0)

π
,

−16�̃3/π2

[(E − 2ω̃)2 + �̃2]2
,

16�̃3/π2

[(E − 2ω̃)2 + �̃2]2
.

(D11)

As a result, the last two terms cancel exactly, leaving
R2 = 1. This completes the consistency check of our
theory.
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[43] Io-Chun Hoi, C M Wilson, Göran Johansson, Joel Lindkvist,
Borja Peropadre, Tauno Palomaki, and Per Delsing, Microwave

quantum optics with an artificial atom in one-dimensional open
space, New J. Phys. 15, 025011 (2013).

[44] Io-Chun Hoi, Anton F. Kockum, Tauno Palomaki, Thomas M.
Stace, Bixuan Fan, Lars Tornberg, Sankar R. Sathyamoorthy,
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