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Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers
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We use theoretical analysis and numerical simulation to investigate the operation of a laser oscillating from gain
supplied by stimulated Brillouin scattering (SBS) in a microresonator. The interaction of the forward, backward,
and density waves within the microresonator results in a set of coupled-mode equations describing both the laser’s
phase and amplitude evolution over time. Using this coupled-mode formalism, we investigate the performance
of the SBS laser under noise perturbation and identify the fundamental parameters and their optimization to
enable low-noise SBS operation. The intrinsic laser linewidth, which is primarily limited by incoherent thermal
occupation of the density wave, can be of order hertz or below. Our analysis also determines the SBS laser’s
relaxation oscillation, which results from the coupling between the optical and density waves, and appears as a
resonance in both the phase and amplitude quadratures. We further explore contributions of the pump noise to
the SBS laser’s performance, which we find under most circumstances to increase the SBS laser noise beyond its
fundamental limits. By tightly stabilizing the pump laser onto the microcavity resonance, the transfer of pump
noise is significantly reduced. Our analysis is both supported and extended through numerical simulations of the
SBS laser.
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I. INTRODUCTION

Narrow linewidth lasers serve as the essential enabler for
a variety of applications in high-precision spectroscopy [1],
remote sensing [2], low-noise microwave signal generation
[3], and coherent optical communications [4]. One common
technique used to produce narrow linewidths is through
stabilization of a seed laser to a high-Q cavity. This technique
is capable of reducing the laser linewidth below 1 Hz but
comes at the added cost of system complexity. Furthermore,
the locking bandwidth that is typically achievable is <1 MHz
and thus prevents stabilization of the laser noise beyond this
range. For many applications, an intrinsically low-noise laser
source is often desirable.

Lasers with intrinsically narrow linewidth are commonly
achieved through an external cavity configuration [5–12].
The additional passive cavity length increases the density of
resonant modes within the laser’s gain bandwidth and thus
reduces the amount of noise power coupled into each mode
[13,14]. By taking advantage of this property, semiconductor
external cavity lasers operating at 1550 nm wavelength
typically achieve linewidths in the range of 10–100 kHz
[9,15–17]. Although fiber lasers exhibit linewidths below that
of their semiconductor counterparts [18], their larger footprint
makes them incompatible with a full chip-integrated solution.

While an external cavity configuration is beneficial for
reducing laser noise, the cavity length cannot be extended
indefinitely due to the eventual appearance of sidemodes
that cannot be rejected by an intracavity filter. Another
possible route towards producing narrow linewidth lasers
is to reduce the intracavity losses, thereby clamping the
noise at a lower lasing threshold, while still maintaining a
high-power oscillation signal. This strategy generally applies
to all lasers but is especially effective in lasers which rely on
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the nonlinear stimulated-Brillouin-scattering (SBS) process
[19] for generating the gain necessary for self-oscillation
[20–22]. The SBS gain is unique as its gain bandwidth is only
∼10–100 MHz for typical dielectric materials used in
confining light, which can be many orders of magnitude
narrower than conventional intracavity grating filters. This
narrow gain bandwidth enables single-mode operation for
cavity lengths on the order of 10 m. Since the cavity
mode spacing is ideally designed to be larger than the gain
bandwidth, approximately all of the noise within the 10–100
MHz span couples into the oscillating cavity mode [13,23,24].

Recently, the potential for low-noise SBS oscillation was
predicted and demonstrated in high-Q CaF2 [25] and silica
microresonators [26–29] and also in highly nonlinear chalco-
genide waveguides [30]. Unlike conventional SBS lasers
requiring ∼10 m of cavity length to yield enough SBS
gain to compensate for losses [22], oscillation was made
possible in [25–29] due to the low intrinsic losses (high Q)
of the microresonator cavity. These low losses reduce the
requirements for the SBS gain at threshold, further clamping
the level of injected SBS noise. To generate significant SBS
gain, the Stokes wave must be precisely matched to fall within
the gain bandwidth of the nonlinear interaction. This condition
is readily achieved in microresonators through the ability to
accurately control cavity dimensions. These properties make
the SBS microresonator laser an ideal choice for a compact,
narrow linewidth laser source.

The goal of this work is to formulate a description of the
SBS laser through a set of coupled-mode equations for the
forward, backward, and density waves. To our knowledge, no
comprehensive investigation of the SBS laser exists for either
bulk or microcavity operation. Although our analysis will be
specifically directed to the case of a microresonator SBS laser,
our obtained results can be extended to any laser operating
via SBS gain. We use the developed coupled-mode equations
to analyze the steady-state operation of the SBS laser and
to determine the response of the laser to small-signal noise
perturbations.
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Conventionally, the SBS laser noise is treated either by
deriving an equivalent Schawlow-Townes linewidth relation
to account for SBS lasing [25,28] or by analyzing the SBS
laser from the perspective of a filter that acts to reduce pump
fluctuations [22,31]. Building on the previous work, we solve
the noise of the SBS laser by treating the laser’s response to
perturbations of the density wave. In contrast to traditional
lasers, the frequencies of the pump, SBS, and density waves
are all correlated with one another, which results in feedback
when one of the waves is perturbed. This feedback modifies
the fundamental noise limit of the laser and also induces the
transfer of pump noise into the SBS wave [25,32], an effect
that gives the pump the appearance of being filtered. In this
regard, we view the SBS laser to be similar to the erbium fiber
laser in which the intrinsic noise limits of the SBS laser can
be reached only if the transfer of pump noise to the oscillation
signal can be made small.

In the second half of our work, we develop our noise model
of the SBS laser investigating the laser’s intrinsic noise limits
and also the conversion of pump noise into SBS noise. We
find that the combination of a high-Q cavity along with a
nonlinear noise process that preferentially favors high optical
powers allows the SBS laser’s intrinsic noise to be significantly
lower than that of typical lasers. Furthermore, we show that
the coupling between waves results in a relaxation oscillation
resonance in both amplitude and phase that acts to dampen
noise fluctuations at high frequencies. We conclude with
numerical simulations of the SBS laser, which serve to both
support our analysis and to highlight the fundamental noise
performance of the system. In particular, we show that the ratio
of noise to signal in SBS lasers allows for oscillation linewidths
in the range of hertz or below. Our results are supported by
experimental demonstrations of SBS microresonator lasers
found in the literature [27–29] and by recent measurements
of the SBS laser’s noise properties [33].

II. SBS RESULTS SUMMARY

In Secs. III–VI, we present a detailed analysis of both
the SBS laser’s operation in steady state and also the laser’s
response to noise. Since the main results of our analysis can
often be lost within our derivations, we use this section to
highlight the central equations of our work.

In Sec. IV, Eqs. (14) and (15) summarize the coupled-mode
equations governing the (noiseless) interaction of the forward
propagating, SBS, and density waves. To the level of the
physics captured, the entirety of the SBS laser’s operation can
be solved using either Eq. (14) or (15). Thus these equations
serve as a useful starting point for numerical simulations or
detailed analysis.

Equations (20) and (23) describe the steady-state operation
of the SBS laser. In particular, Eq. (20) quantifies the ampli-
tudes of the forward and SBS waves as a function of the laser’s
bias point. Under steady-state conditions, the forward wave
becomes clamped, and the excess pump power is used to fuel
the SBS oscillation. Equation (23) solves for the fundamental
input-output relation that governs the behavior of every
oscillator system. The SBS output power varies linearly with
the power coupled into the microresonator with a characteristic
slope and threshold that can be determined from Eq. (23).

In Sec. V, we investigate the amplitude noise induced on the
SBS laser through (1) noise fluctuations of the pump and (2)
thermally excited fluctuations of the density wave. The pump
noise case allows us to analyze the transfer of pump noise into
the SBS wave, while our treatment of phonon perturbations
allows us to quantify the SBS laser’s fundamental noise limit.
To make our analysis tractable, we assume ideal (zero pump
and SBS gain detuning) operating conditions. Equations (30)
and (32) describe the spectral density of amplitude fluctuations
for pump and phonon perturbations, respectively. The example
in Sec. VIII shows how to relate these spectral densities to laser
relative intensity noise (RIN). Equation (28) approximates the
relaxation oscillation frequency of the SBS laser (valid for
high-Q cavities), which occurs due to the laser’s inherent
amplitude feedback. Equation (29) approximates the damping
of this relaxation oscillation.

Section VI analyzes the fundamental limit of the SBS
laser’s frequency noise under zero detuning conditions. If
necessary, frequency noise can be readily converted to phase
noise or power spectral density using conventional methods
[34]. The spectral density governing frequency fluctuations
is solved in Eq. (36), while the corresponding white-noise
floor is identified in Eq. (37). Equation (39) presents an
approximation to the white frequency-noise level for the case
of a high-Q cavity. To reduce noise, the lasing threshold should
be minimized thereby clamping the level of injected noise,
while the SBS power should be simultaneously maximized.
The SBS laser’s low intracavity losses and high circulating
optical powers are well suited to the purpose of maximizing
the ratio of signal to noise. Finally, Eqs. (40) and (41) quantify
the SBS laser’s resonance frequency and damping due to phase
feedback.

III. SBS COUPLED-MODE EQUATIONS

In this section, we use the coupled-mode formalism to de-
scribe the SBS interaction between the forward, backward, and
density waves for a microresonator oscillator. The derivation of
the coupled-mode equations is based on standard treatments
of the nonlinear SBS process, but modified to account for
the physics of the microresonator cavity. We consider here a
general spherical microresonator configuration with radius R;
however, this analysis can be readily extended to other cavity
geometries. A schematic of our system is shown in Fig. 1
consisting of a microresonator pumped by a continuous wave
(cw) laser and generating a counterpropagating SBS wave.
We begin our analysis of this system using the traditional

FIG. 1. (Color online) Schematic of setup for SBS generation via
a microresonator oscillator. The cw laser pumps the microresonator
to generate SBS oscillation in the reverse direction.
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electromagnetic wave equation [35](
∇2 − n2

c2

∂2

∂t2

)
ẼB,F = 1

ε0c2

∂2P̃B,F

∂t2
(1)

with [36,37]

ẼF = 1
2AF (t)ei(ω�F

t−�F φ)FF (r,θ ) + c.c.,

ẼB = 1
2AB(t)ei(ω�B

t+�Bφ)FB(r,θ) + c.c.
(2)

denoting the individual forward (F ) and backward (B)
propagating electric fields and their complex conjugates (c.c.).
In Eq. (1), n is the refractive index of the medium, c is the speed
of light, and ε0 is the permittivity of free space. AF ,ω�F

,�F ,FF

(AB,ω�B
,�B,FB) represent the amplitude, frequency, angular

mode number, and optical mode profile of the forward
(backward) propagating field. The coordinates r,θ,φ denote
the radial distance, zenith angle, and azimuthal angle of the
microresonator system.

Because of loss in the microresonator, the refractive index of
Eq. (1) is composed of both real and imaginary contributions.
We may thus represent this index as n = n0 − inloss where n0

is the real component of the index and nloss is the imaginary
component accounting for both intrinsic material losses and
external coupling loss [38]. Although strictly speaking the
external coupling loss is defined only along discrete points of
the cavity where the field is coupled to an external wave, we
may define an effective nloss which averages the total coupling
loss over the period of one round-trip. If we further assume
the microresonator losses to be small (high-Q cavity), we may
treat the imaginary index as a perturbation to the overall index
with the result that

n2 ≈ n2
0 − 2in0nloss. (3)

In Eq. (1), the nonlinear polarization P̃ generated through
the interaction of the electric field with a propagating density
wave ρ̃ can be described through [35]

P̃ = ε0ρ
−1
0 γeρ̃Ẽ, (4)

where ρ0 is the equilibrium density of the material and γe is the
electrostrictive constant. For the SBS process, this polarization
describes the scattering of the forward wave off of the density
wave, which provides amplification for the backward wave.
The density wave can be expressed as

ρ̃ = ρ0 + 1
2ρ (t) ei(
t−�ρφ)Fρ (r,θ) + c.c. (5)

where ρ(t),
,�ρ,Fρ denote the amplitude, frequency, angular
mode number, and mode profile of the density wave. For
extension beyond microresonators, the form of the forward,
backward, and density waves in Eqs. (2) and (5) can be
readily modified to account for other resonator geometries.
Substitution of Eqs. (2) and (5) into Eq. (4) yields

P̃F = 1
4ε0ρ

−1
0 γeρABei(ω�F

t−�F φ)Fρ (r,θ ) FB (r,θ) + c.c.,
(6)

P̃B = 1
4ε0ρ

−1
0 γeρ

∗AF ei(ω�B
t+�Bφ)F ∗

ρ (r,θ) FF (r,θ) + c.c.

Note that we have used �F + �B = �ρ and ω�F
= ω�B

+ 


in Eq. (6), which together govern the phase-matching require-
ments for the angular momentum and frequency of the forward,
backward, and density waves. However, there is no guarantee
that the resulting optical and acoustic modes, formed by the

periodic boundary conditions inherent in the microresonator,
simultaneously satisfy both conditions for phase match. For
these cases, we assume the acoustic wave acquires the
necessary �ρ,
 to satisfy phase match. The incurred phase
rotation is then accounted for in the density wave equation.

Finally, using Eqs. (2), (3), and (6) in Eq. (1) and grouping
together phase-matched terms, we find a coupled set of
equations for the forward and backward wave. These coupled-
mode equations can be expressed as

∂AF

∂t
= − 1

2τF

AF − i
γeω�F

4n2
0ρ0

ρAB�F +
√

1

τext
Sei(ωS−ω�F

)t ,

(7)
∂AB

∂t
= − 1

2τB

AB − i
γeω�B

4n2
0ρ0

ρ∗AF �B

with [36]

�F =
∫
A

Fρ (r,θ) FB (r,θ ) F ∗
F (r,θ ) dA∫

A
FF (r,θ ) F ∗

F (r,θ ) dA
,

�B =
∫
A

F ∗
ρ (r,θ ) FF (r,θ ) F ∗

B (r,θ ) dA∫
A

FB (r,θ ) F ∗
B (r,θ ) dA

.

(8)

In the derivation of Eq. (7), we have used the
defining equation for the optical mode in the cavity
(∇2 + n2

0ω
2
�B,F

/c2)[FB,F e−i�B,F φ] = 0 along with the slowly
varying approximation for the optical fields. Equation (8)
expresses the mode overlaps of the forward, backward, and
density waves and thus quantifies their coupling strength. For
most microresonators, the forward and backward waves are
sufficiently close in angular mode number that their mode
profiles do not differ significantly.

In Eq. (8), τF and τB represent the lifetimes for the forward
and backward waves. Their inverses physically correspond to
the linewidths of the associated optical modes. They are related
to nloss through

1

τB,F

= 2ω�B,F

∫
A

nlossB,F
FB,F (r,θ ) F ∗

B,F (r,θ) dA

n0
∫
A

FB,F (r,θ ) F ∗
B,F (r,θ) dA

. (9)

The integral in Eq. (9) represents the confinement factor of
the optical mode to the region of loss. Note that in Eqs. (7) and
(9), we have allowed these loss rates to be different between
the two modes. We have also added a phenomenological pump
parameter [39] to Eq. (7) (last term on the right-hand side) with
S,ωS denoting the amplitude and frequency of the pump field
and 1/τext denoting the external coupling rate of the pump field
into the microresonator. The detuning of the pump from the
cavity resonance is quantified by ωS − ω�F

. Note that in the
notation of Eq. (7), |AB,F |2 is proportional to energy, while
|S|2 is proportional to power. The detailed analysis of this
pump parameter can be found in Ref. [39].

Equation (7) shows that the evolution of the forward (back-
ward) wave is governed by the interaction of the backward
(forward) wave and the density wave. As we will see later,
the phase of the interaction is such that the forward wave
experiences attenuation supplying power for the growth of
the backward wave. To complete the description of Eq. (5),
we also need to specify the interaction of the optical waves,
which reinforces the generation of the density wave via
the electrostriction process. We assume the material density
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satisfies the acoustic wave equation [35]

∂2ρ̃

∂t2
− ′∇2 ∂ρ̃

∂t
− v2∇2ρ̃ = −1

2
ε0γe∇2〈Ẽ2〉, (10)

where ′ is a parameter specifying the damping of the density
wave and v is the velocity of the wave. Next, we introduce
Eqs. (2) and (5) into Eq. (10) and assume slowly varying field
amplitudes while grouping together phase-matched terms.
From this procedure, we determine the evolution of the density
wave to obey

∂ρ

∂t
= i


2
b − 
2

2

ρ − b

2
ρ − i

ε0γe

4


�2
ρ

R2
AF A∗

B�ρ (11)

with

�ρ =
∫
A

FF (r,θ ) F ∗
B (r,θ ) F ∗

ρ (r,θ ) dA∫
A

Fρ (r,θ ) F ∗
ρ (r,θ) dA

(12)

representing the overlap of the forward, backward, and density
waves. In Eq. (11), R denotes the radius of the microresonator
cavity, b = ′
2

b/v
2 denotes the loss rate of the density wave,

and 
b denotes the acoustic frequency where the SBS gain is
maximum as determined from the definition of the acoustic
mode (∇2 + 
2

b/v
2)[Fρe

−i�ρφ] = 0. Note that in defining b,
we have assumed ′ to be approximately constant over the
mode area of the density wave. If necessary, one can readily
define an effective confinement factor as was done for the
optical losses in Eq. (9).

In Eq. (11), we have also assumed that the mode profile
of the forward and backward fields to be that of the funda-
mental transverse mode and that its spatial derivatives are
predominantly in the azimuthal direction. The cavity mode
is located near the boundaries of the resonator centered on
the equator, and thus we approximate (r ≈ R,θ ≈ π/2) [38].
These approximations can be relaxed given knowledge of
the exact mode distribution. Note that the first term on the
right-hand side of Eq. (11) accounts for the phase rotation
induced by mismatch between 
 and the frequency of the
acoustic mode (
b).

IV. SBS LASER STEADY-STATE OPERATION

Together, Eqs. (7) and (11) provide the set of coupled-
mode equations describing the SBS generation process in
a microresonator oscillator. The forward wave supplies the
power necessary for amplification of the backward wave and
is replenished by the external pump to maintain steady state.
If the gain of the backward and density waves exceed their
respective losses, a large-signal oscillation can develop. To
proceed further with our analysis, we first note that Eq. (7)
in its current form does not yield a steady-state solution for
AF if we assume AF ,AB,ρ to be stationary with time. This
can readily be seen if we set ∂AF /∂t = 0 in Eq. (7) and then
attempt to solve the resulting equation. The problem results
from the frequency detuning of the pump from the cavity
resonance and can be remedied if we define

A′
F = AF e−iσF t ,

A′
B = ABe−iσB t , (13)

ρ ′ = ρe−iσρ t ,

FIG. 2. (Color online) Illustration of forward, backward, and
density wave translations due to pump detuning. 
 = 
b in this
example. Note that although the shifts are in general different for
each of the waves, the combined shift must satisfy σF = σB + σρ .

where σF = ωS − ω�F
,σB = ωB − ω�B

, and σρ = 
ρ − 
.
Here, ωB (
ρ) is the final frequency of the backward wave
(density wave) translated from its original frequency at ω�B

(
). The frequency translations are such that sum of the
backward and density wave translations is equal to the
translation of the forward wave (or σF = σB + σρ), thereby
maintaining the phase-matching condition between all three
waves. Note that unlike the case of a continuous waveguide, the
boundary conditions of the resonator necessitate the existence
of discrete modes. Thus, the detuning of the pump forces a
shift in both the SBS and density waves to preserve phase
match. These frequency translations can be visualized through
Fig. 2 [40]. Note that since both optical and acoustic modes
are plotted in Fig. 2, the vertical axis of the figure does not
strictly correspond to any physical quantity. Nevertheless,
the horizontal axis depicts the frequency translations of the
forward, backward, and density waves that must occur to
compensate for the pump detuning.

The redefinition of Eq. (13) transforms Eqs. (7) and (11)
into

∂A′
F

∂t
= −A′

F

2τF

− i
γeω�F

4n2
0ρ0

ρ ′A′
B�F − iσF A′

F +
√

1

τext
S,

∂A′
B

∂t
= −A′

B

2τB

− i
γeω�B

4n2
0ρ0

ρ ′∗A′
F �B − iσBA′

B, (14)

∂ρ ′

∂t
= i


2
b − 
2

2

ρ ′− b

2
ρ ′−i

ε0γe

4


�2
ρ

R2
A′

F A′∗
B�ρ −iσρρ ′.

It is clear that the time dependence of Eq. (7) has been
effectively removed in Eq. (14). The steady-state solutions
of the coupled-mode equations are thus shifted versions of
the cavity modes with the forward wave translated to the
frequency of the pump and with the backward and density
waves translated to some intermediate frequency. We now
determine these frequency shifts by attempting to find the
steady-state solution of Eq. (14). In order to simplify our
analysis, we assume ω� = ω�F

≈ ω�B
since 
 	 ω�F

,ω�B
.

We begin by using A′
F = |A′

F |eiφF , A′
B = |A′

B |eiφB , ρ ′ =
|ρ ′|eiφρ , S = |S|eiφS to separate Eq. (14) into its individual
coupled-mode equations for amplitude and phase:

∂|A′
F |

∂t
= −|A′

F |
2τF

+ γeω�

4n2
0ρ0

|ρ ′||A′
B |�F sin(φρ +φB −φF )

+
√

1

τext
|S| cos(φS −φF ),
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∂φF

∂t
= −σF − γeω�

4n2
0ρ0

|ρ ′||A′
B |

|A′
F | �F cos(φρ + φB − φF )

+
√

1

τext

|S|
|A′

F | sin(φS − φF ),

∂|A′
B |

∂t
= −|A′

B |
2τB

+ γeω�

4n2
0ρ0

|ρ ′||A′
F |�B sin(φF − φB − φρ),

∂φB

∂t
= −σB − γeω�

4n2
0ρ0

|ρ ′||A′
F |

|A′
B | �B cos(φF − φB − φρ),

∂|ρ ′|
∂t

= −b

2
|ρ ′|+ ε0γe�

2
ρ

4
R2
|A′

F ||A′
B |�ρ sin(φF −φB −φρ),

∂φρ

∂t
= −σρ + 
2

b − 
2

2


− ε0γe�
2
ρ

4
R2

|A′
F ||A′

B |
|ρ ′| �ρ cos(φF − φB − φρ). (15)

Here, φF ,φB,φρ,φS denote the phases of the forward,
backward, density, and pump fields. It is important to note
that Eq. (15) assumes �F ,�B,�ρ to have zero phase, which
is generally true only if the mode overlaps and thus FF ,FB,Fρ

of Eqs. (8) and (12) have zero phase. Since the forward,
backward, and density waves are all represented by a complex
amplitude multiplied by an eigenmode [see Eqs. (2) and (5)],
one can in most cases reassign the eigenmode phase to the
phase of the field amplitude.

In the steady state, all time derivatives of Eq. (15) must
independently yield zero. The simultaneous solution of the
∂|A′

B |/∂t and ∂|ρ ′|/∂t amplitude equations yields a relation
between |A′

B |2 and |ρ ′|2. The simultaneous solution of the
∂φB/∂t and ∂φρ/∂t phase equations yields a second relation
between |A′

B |2 and |ρ ′|2. The joint solution of these relations
along with σF = σB + σρ yields

σB = σF − [(

2

b − 
2
)/

2

]

1 + bτB

,

(16)

σρ = σF bτB + [(

2

b − 
2
)/

2

]

1 + bτB

.

Note that the frequency shifts are asymmetric for the
backward and density waves. For high-Q cavities, the SBS
loss is much lower than the density wave loss (ρτB 
 1)
and thus the frequency translation is larger for the density
wave. Equation (16) has the interpretation that because of the
pump detuning, the forward wave must shift from its natural
cavity resonance to the pump frequency by the amount σF .
If the frequency of the SBS wave remains unaltered in this
process, then the density wave must absorb the entirety of
the frequency shift to preserve phase match. This is a valid
steady-state solution (σB = 0) as long as the frequency of
the density wave shifts so that it exactly falls on the frequency
where the SBS gain is maximum [σρ = σF = (
2

b − 
2)/2
].
If the density wave does not end up at the peak of the SBS gain,
then a residual phase shift exists for ∂ϕρ/∂t in Eq. (15) that
prevents ∂ϕB/∂t from simultaneously reaching steady state.
Thus, in the general case, both the steady-state backward and
density waves experience a translation in frequency due to
the pump detuning. Note that the residual phase rotation of

the SBS gain exists in ∂ϕρ/∂t even without a pump detuning.
In these cases, the backward and density waves are “pulled”
towards the gain maximum.

The nature of the SBS gain can be made apparent if we
solve for |ρ ′| in Eq. (15) using ∂|ρ ′|/∂t = 0. This analysis
yields

|ρ ′| = ε0γe�
2
ρ

2
bR2
|A′

F ||A′
B |�ρ sin(φF − φB − φρ). (17)

Substitution of Eq. (17) into the forward and backward
wave amplitude equations yields

∂|A′
F |

∂t
= −|A′

F |
2τF

− ε0γ
2
e ω��

2
ρ |A′

F ||A′
B |2

8n2
0ρ0b
R2

×�F �ρsin2(φF − φB − φρ)

+
√

1

τext
|S| cos(φS − φF ),

∂|A′
B |

∂t
= −|A′

B |
2τB

+ ε0γ
2
e ω��

2
ρ |A′

F |2|A′
B |

8n2
0ρ0b
R2

×�B�ρsin2(φF − φB − φρ). (18)

In Eq. (18), the first term of each equation corresponds to the
loss of the field amplitude over time due to intrinsic material
losses or external coupling loss. The second term corresponds
to attenuation for the forward wave and to SBS gain for the
backward wave. Note that the term sin2(φF − φB − φρ) is
always non-negative, and therefore the phases of the fields
in the SBS process are such that the forward wave always
supplies power for the amplification of the backward wave.
If we further assume that the pump detuning exactly cancels
the SBS gain detuning [σF = (
2

b − 
2)/2
] such that the
backward wave is operated at the SBS gain maximum, we find
from Eq. (16) that σB = 0 and σρ = σF . This then implies
φF − φB − φρ = π/2 to satisfy the steady state of Eq. (15).
Thus, these conditions yield the phase arrangement required of
the individual waves for the largest SBS gain. However, since
the SBS gain is also proportional to |A′

F |2, the maximum
gain is achieved only when the pump detuning is also zero
(σF = 0).

It is clear that the behavior of the system is dependent on the
phase difference φF − φB − φρ , which is bounded between 0
and π in order to ensure that |ρ ′| is non-negative in Eq. (17).
This phase difference can be directly quantified by substitution
of |ρ ′| in Eq. (17) into the expression for ∂φρ/∂t in Eq. (15).
With the use of Eq. (16), this calculation yields

tan(φF − φB − φρ) = − 1 + bτB

2τB

(
σF − [(


2
b − 
2

)
/.2


]) ,

(19)
which shows that φF − φB − φρ depends only on the system
loss and detuning of the laser. For the case where the pump
detuning compensates the SBS gain detuning, the value of the
phase difference approaches π/2.

The steady-state solution of Eq. (18) yields the ampli-
tudes of the forward and backward waves depending on
the operating parameters of the microresonator laser. With
∂|A′

B |/∂t=0,∂|A′
F |/∂t=0 and assuming �F ≈ �B , we find
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that

|A′
F |2 = 4n2

0ρ0b
R2

τBε0γ 2
e ω��2

ρ�B�ρ

1

sin2(φF − φB − φρ)
(20)

|A′
B |2 = 2τB√

τext
|S||A′

F | cos(φS − φF ) − τB

τF

|A′
F |2

Equation (20) shows that the amplitude of the forward
wave is constant once the phase relationship of the forward,
backward, and density waves is known. As before, this phase
relationship is dependent on the pump detuning and SBS
gain detuning of the microresonator. The pump power clamps
once the SBS threshold is reached since the SBS gain must
saturate to the level of the total cavity loss. This gain saturation
necessitates the saturation of |A′

F |2, since it is the forward
wave power that drives the SBS gain of the microresonator.
The dependence of |A′

F |2 on sin2(φF − φB − φρ) is a result of
the dependence of the SBS gain on this phase relationship [see
Eq. (18)]. The SBS gain is optimally phase matched when
φF − φB − φρ = π/2, and thus less forward wave power is
required to compensate for system loss.

In Eq. (20), the expression for |A′
B |2 can be understood

through a rearrangement by first dividing by τB . Next, we
separate |A′

F |2/τF into its two components |A′
F |2/τ0,F and

|A′
F |2/τext, which describe the intrinsic material losses (τ0,F )

and coupling losses (τext) of the forward wave. Moving
|A′

F |2/τ0,F to the left-hand side, we find

|A′
B |2

τB

+ |A′
F |2

τ0,F

= 2√
τext

|S||A′
F | cos(φS − φF ) − |A′

F |2
τext

.

(21)

The left side of Eq. (21) describes the flow rate of energy out
of the microresonator, whereas the right-hand side describes
the net rate of energy flow into the system [39]. Thus
Eq. (21) is a statement of power conservation. The form
of the right-hand side of Eq. (21) is deceiving as it would
appear that |A′

B |2 is related to a cross term between the pump
and forward waves. This is remedied if we use the identity
2|S||A′

F | cos(φS − φF ) = SA′∗
F + S∗A′

F in Eq. (21) and set
A′

F = (T + S)
√

τext with T representing the transmitted wave
past the microresonator. The detailed derivation for this form
of A′

F can be found in Refs. [39,41]. However, we note
that through division by

√
τext and rearrangement of S onto

the left-hand side, we find the condition necessary for the
cancellation of the transmitted pump field via the field leaking
out of the cavity. Upon substitution of A′

F into Eq. (21), we
find

|A′
B |2

τB

+ |A′
F |2

τ0,F

= |S|2 − |T |2. (22)

Therefore, we see that the energy and thus the power of the
backward wave is proportional to the net power that is coupled
into the cavity minus that which is dissipated in the forward
wave. Note that Eq. (22) can be rewritten as

|A′
B |2

τext
= τB

τext

[
(|S|2 − |T |2) − |A′

F |2
τ0,F

]
, (23)

which shows that the SBS power coupled out has the traditional
form of a laser’s input-output relation with |A′

F |2/τ0,F serving
as the threshold optical power and τB/τext serving as the slope
efficiency. This threshold power can be further expressed in
terms of the system parameters using the value of |A′

F |2 as
determined by Eq. (20). This calculation yields

(|S|2−|T |2)th = 4n2
0ρ0b
R2

τ0,F τBε0γ 2
e ω��2

ρ�B�ρ

1

sin2(φF −φB −φρ)
.

(24)

It is clear from Eq. (24) that the threshold power is
minimized when the system losses are minimized and the mode
overlaps and coefficients that govern the SBS gain [compare
to Eq. (18)] are simultaneously maximized.

V. SBS LASER AMPLITUDE SMALL-SIGNAL ANALYSIS

Here, we use the coupled-mode equations of Eq. (15)
to analyze the response of the SBS oscillator to small-
signal perturbations. Without any assumptions on operating
parameters, this task is difficult as it requires the simultaneous
solution of six coupled equations. For example, as can be seen
from Eq. (15), if one were to vary the detuning of the pump
from the cavity resonance (σF ), the condition ∂φF /∂t = 0
forces the phases of the individual waves to rotate in order to
satisfy steady state. This phase rotation affects the steady-state
amplitude and phase balance of every single wave, and thus
all six equations become coupled in a microresonator system.
We note that the variation of the field amplitudes through a
variation in the pump detuning characterizes the frequency to
amplitude (FM-to-AM) conversion of the system. This FM-
to-AM conversion is a property present in all microresonator
systems because a pump frequency fluctuation changes the
position of the pump relative to the resonance and thus affects
the amount of power coupled in. In addition, as a result of
the delicate amplitude and phase balance in Eq. (15), the
AM-to-FM process also exists in SBS oscillators as we will
see in Sect. IX.

In order to simplify our analysis, we assume the pump
detuning to be zero (σF = 0) and also assume operation at
the SBS gain peak (
 = 
b) so that σF ,σB,σρ = 0 from
Eq. (16). Under these conditions, the steady state of Eq. (15)
requires that φF − φB − φρ = π/2 and φS = φF . With this set
of assumptions, the amplitude and phase equations become
effectively decoupled. For example, a frequency fluctuation
of the pump still causes the phases of the individual waves
to rotate. However, since φF − φB − φρ is stabilized around
the value of π/2, sin(φF − φB − φρ) is stabilized at the
peak of sinusoid and is thus only affected to second order
by phase fluctuations. Physically, this demonstrates that the
FM-AM conversion is minimized at the peak of the resonator’s
Lorentzian transfer function, as one would expect.

We can further show that these assumptions also effectively
decouple the phase equations from amplitude fluctuations.
For example, if we introduce a fluctuation of the pump
amplitude in ∂φF /∂t , we find that ∂φF /∂t is affected only
to second order through perturbations of amplitude×phase.
This occurs because φS = φF in steady state for our operating
conditions specified earlier, and thus only pump amplitude
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fluctuations which occur concurrently with phase fluctuations
affect ∂φF /∂t . Similar arguments can be made for fluctuations
in the amplitude of the forward, backward, and density waves,
which apply generally to the rest of the phase equations in
Eq. (15).

Assuming σF = 0, 
 = 
b, we now proceed to perturb
Eq. (15) in order to determine a set of linearized coupled-mode
equations for small-signal perturbations of the SBS oscillator.
We first analyze the case of amplitude fluctuations introduc-
ing |A′

B,F | → |A′
B,F | + δ|A′

B,F |, |ρ ′| → |ρ ′| + δ|ρ ′|, and
|S ′| → |S ′| + δ|S ′| into Eq. (15) and cancelling out the steady-
state response. Here δ|A′

B,F |,δ|ρ ′|,δ|S ′| denote amplitude
fluctuations of the backward or forward, density, and pump
waves. Introducing these perturbations into Eq. (15) yields

∂δ|A′
F |

∂t
= −δ|A′

F |
2τF

− γeω�

4n2
0ρ0

�F (|ρ ′|δ|A′
B | + |A′

B |δ|ρ ′|)

+
√

1

τext
δ|S|,

∂δ|A′
B |

∂t
= −δ|A′

B |
2τB

+ γeω�

4n2
0ρ0

�B(|ρ ′|δ|A′
F | + |A′

F |δ|ρ ′|),

∂δ|ρ ′|
∂t

= −b

2
δ|ρ ′| + ε0γe�

2
ρ

4
R2

×�ρ(|A′
F |δ|A′

B | + |A′
B |δ|A′

F |) + fr,

(25)

where we have introduced fr as a Langevin white Gaussian
noise source describing the real component of fluctuations
in the density wave [42]. This noise is thermally driven
and serves as the force which first initiates the spontaneous
Brillouin-scattering process. However, once a coherent field
is developed, the incoherence of the spontaneous process
introduces fluctuations in both the phase and amplitude of the
oscillation signal. Assuming this noise is equipartitioned into
the real and imaginary quadratures, 〈fr (t)f ∗

r (t ′)〉 = Cδ(t − t ′)
[42] where C = kT ρ0b/v

2V is the autocorrelation strength
of fr (t), k is Boltzmann’s constant, and V is the acoustic mode
volume. Note that we have ignored the effects of shot noise in
Eq. (25).

Because we have assumed the presence of only one mode
within the SBS gain bandwidth in our derivation [see Eqs. (1),
(2), and (6)], all of the generated gain and noise couples into
the lone oscillating SBS wave. To account for multiple modes,
one can represent ẼB in Eq. (2) as a superposition of all
backward waves in the system and appropriately partition the
nonlinear polarization generated by the forward and density
waves [Eq. (6)] between the backward waves. Should the need
arise, a similar technique can also be applied to account for
multiple acoustic modes.

Our goal now is to solve Eq. (25) separately for a
perturbation of the supplied pump and for a thermally driven
perturbation of the density wave [34]. In our calculations,
we assume �F ≈ �B since the backward and forward waves
are close in mode number. We analyze the case of a pump
amplitude fluctuation first by converting to the frequency
domain and applying Cramer’s rule to Eq. (25). This analysis

yields

δ
∣∣A′

F

∣∣ (ω) = δ|S|√
τext

(jω/2)(1/τB + b) − ω2

�A

,

δ|A′
B |(ω) = δ|S|√

τext

(|A′
B |/|A′

F |)(1/2τB )(jω + b)

�A

,

δ|ρ ′|(ω) = δ|S|√
τext

(|ρ ′|/|A′
F |)(b/2)(jω + 1/τB)

�A

(26)

with the determinant

�A = −jω3 − ω2

(
1

2τF

+ 1

2τB

+ b

2

)

+ jω

(
|A′

B |2
|A′

F |2
1

2τB

+ 1

2τF

) (
1

2τB

+ b

2

)

+ b

2τ 2
B

|A′
B |2

|A′
F |2 . (27)

Here ω denotes the frequency at which the system response
is evaluated. This response is third order due to the interaction
of the forward, backward, and density waves. We note that the
forward wave response has a zero in the numerator at ω = 0,
with no equivalent pole in the denominator to cancel this zero.
This zero nulls the response of the forward wave at dc, as one
would expect, because the forward wave amplitude becomes
clamped by the steady-state operation of the SBS oscillator.

The denominator of Eq. (26) in principle provides infor-
mation on the response of the system at resonance. However,
analysis of Eq. (27) becomes difficult as the system behavior
is third order. To proceed further, we assume that for our
frequencies of interest, the term −jω3 is negligible compared
to the remaining imaginary component of Eq. (27). We will
check the validity of this assumption at the end of our analysis.
Ignoring the −jω3 term, the system is now effectively second
order with a resonance frequency of

ω2
RA

= 1

τB

|A′
B |2

|A′
F |2 × b

2τB

(
1

2τF

+ 1

2τB

+ b

2

)−1

. (28)

In Eq. (28), we have explicitly separated the system
resonance into the product of two components. The first
component [|A′

B |2/(|A′
F |2τB)] is the inverse of the forward

wave stimulated lifetime and characterizes the decay time
of the forward wave as it supplies gain for the stimulated
Brillouin-scattering process. This can be seen by attempting to
write the second term on the right-hand side of the first equation
in Eq. (18) as −|A′

F |/(2τstim). Assuming �F ≈ �B , substitu-
tion of the second equation in Eq. (18) at steady state into the
first yields the desired expression for the stimulated lifetime
(τstim). The second component of Eq. (28) is effectively the
lifetime of the slower wave (between the backward wave and
the density wave). For example, if 1/τB 
 1/τF ,b the second
component yields b. However, if b 
 1/τB,F , the second
component in this case yields 1/τB . If the lifetime of the
forward wave is fastest, the second component then becomes a
mixture of the lifetimes of all three waves. Therefore, similar
to the case of a semiconductor laser [34], ω2

RA
of Eq. (28) is

053843-7



WILLIAM LOH, SCOTT B. PAPP, AND SCOTT A. DIDDAMS PHYSICAL REVIEW A 91, 053843 (2015)

inversely proportional to the product of the stimulated emission
lifetime and the photon or phonon lifetime.

From Eqs. (27) and (28), the damping ratio of this
system can also be determined. To simplify our analysis, we
assume that b 
 1/τB,F . This assumption generally holds
true for high-Q microresonators at 1550 nm wavelength where
b/2π ∼ 10 − 100 MHz and 1/2πτB,F < 1 MHz. With these
assumptions, we find the system damping ratio to be

ζA =
(

1

2τB

|A′
B |2

|A′
F |2 + 1

2τF

)/(
2

τB

|A′
B |

|A′
F |

)
. (29)

The numerator of Eq. (29) is inversely proportional to the
total lifetime of the forward wave (1/τstim + 1/τF ), whereas
the denominator is proportional to the resonance frequency.

Our previous analysis can be interpreted by imagining the
system consisting of the forward, backward, and density waves
in their equilibrium state. At a given instance of time, the pump
wave experiences a sinusoidal modulation of its amplitude
perturbing the system from its steady-state operation. If the
modulation is slow compared to the response time of the
system, the forward wave remains approximately clamped at
its steady-state value, while the backward and density waves
experience a sinusoidal modulation in response to the pump
[Eq. (26)].

If we increase the modulation frequency slowly, we find
that at some frequency ωRA

, the response of the system is at
resonance with the forward wave exchanging energy with the
backward and density waves. That is, as the pump amplitude
increases, the forward wave initially increases in response to
the pump as according to Eq. (18). The increase of the forward
wave increases the SBS gain, which then prompts the growth of
the backward and density waves. As the backward and density
waves increase further, the gain becomes depleted and begins
to decrease. This causes the backward and density waves to
decrease and restarts the cycle until the oscillations settle
to steady state. If the system is perturbed at this resonance
frequency, these oscillations are reinforced leading to the
buildup of a resonance response. Furthermore, if we assume
the density wave lifetime to be fast, then this process primarily
involves the interplay of the forward and backward waves [the
slower wave in Eq. (28)], as the density wave will respond as
needed to the current state of the system.

Assuming the density wave response to be fast, we expect
the damping of these oscillations to increase as the response
times of the SBS gain and backward wave become further
separated. For example, the resonance becomes weaker if the
SBS gain can quickly respond to changes of the backward
wave such that a prolonged ringing of the two waves does
not occur. This can be seen from Eq. (29). If we assume the
gain response (τstim) to be fast, then we can neglect the second
term in the first set of parentheses of Eq. (29). For this case,
the damping ratio takes the form ζA = (τB |A′

F |)/(4τstim|A′
B |).

Thus, to achieve the largest damping, one should reduce the
system losses so that τB is maximized while driving the system
with sufficient strength so that the stimulated SBS lifetimes are
kept to a minimum.

Our previous analysis was based on the assumption that
Eq. (27) could be modeled as a second-order system by
ignoring the −jω3 term. We now verify the validity of this

FIG. 3. (Color online) Illustration of a density wave amplitude
and phase perturbation due to a single noise event.

assumption. We assume b 
 1/τB,F and substitute Eq. (28)
into Eq. (27) comparing the strength of the imaginary terms.
Since bτB 
 1, we find that the −jω3 term can be effectively
ignored for a high-Q resonator. For resonators where the
forward, backward, and density waves have similar lifetimes,
the full system response of Eq. (27) must be used.

It is useful at this point to calculate the spectral den-
sities of the fluctuating variables in Eq. (26) as spectral
densities are ultimately what are determined through ex-
perimental measurement. These spectral densities can be
found through multiplying δ|A′

F |(ω),δ|A′
B |(ω),δ|ρ ′|(ω) by

δ|A′
F |(ω′)∗,δ|A′

B |(ω′)∗,δ|ρ ′|(ω′)∗, taking the ensemble aver-
age, and integrating over ω′ [34]. This operation yields

SP
δ|A′

F | = SP
δ|S|

τext|�A|2
[
ω4 + ω2

4

(
1

τB

+ b

)2
]

,

SP
δ|A′

B | = SP
δ|S|

τext|�A|2
|A′

B |2
4|A′

F |2τ 2
B

(
ω2 + 2

b

)
, (30)

SP
δ|ρ ′ | = SP

δ|S|
τext|�A|2

|ρ ′|2
|A′

F |2
2

b

4

(
ω2 + 1

τ 2
B

)
,

where SP
δ|A′

F |,S
P
δ|A′

B |,S
P
δ|ρ ′ |,S

P
δ|S| denote the spectral densities

of fluctuations for the forward, backward, density, and pump
waves, respectively.

We now return to Eq. (25) and analyze the system response
to a thermal excitation of the density wave. The effect of the
thermal excitation is shown in Fig. 3 for a single occurrence
of a noise event [13,34]. Note that fr in Eq. (25) describes a
continuous stream of noise perturbations in amplitude along
with their associated rate of occurrence. In Fig. 3, a noise event
with amplitude |ρN | and relative phase θN results in a small-
signal amplitude (�|ρ ′|) and phase (�φρ) perturbation of the
density wave. Since the phase of the noise event is random
with respect to the coherent density wave, θN is uniformly
distributed between 0 and 2π . An amplitude perturbation of
the density wave changes the amount of coupling between
the forward and backward waves [see ∂|A′

B |/∂t in Eq. (15)]
and thus causes a perturbation of the SBS amplitude. We
quantify the cumulative effects of amplitude noise by solving
for δ|A′

B,F |,δ|ρ ′| in Eq. (25).
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To do so, we convert Eq. (25) to the frequency domain and
apply Cramer’s rule [34] to find

δ|A′
F |(ω) = −fr (ω)

�A

|A′
F |

2τstim|ρ ′|
(

jω + 1

τB

)
,

δ|A′
B |(ω) = fr (ω)

�A

|A′
B |

2τB |ρ ′|
(

jω + 1

2τF

− 1

2τstim

)
,

δ|ρ ′|(ω) = fr (ω)

�A

[
−ω2 + jω

(
1

2τF

+ 1

2τB

)

+ 1

2τB

(
1

2τF

+ 1

2τstim

) ]
, (31)

where 1/τstim = [|A′
B |2/(|A′

F |2τB)] as before. Setting ω = 0
in Eq. (31), one can verify that the resulting perturbations
satisfy the steady state of Eq. (25). Through a similar procedure
to that of Eq. (30), we find the spectral densities of the
perturbations to be

SP
δ|A′

F | = SP
fr

|�A|2
∣∣A′

F

∣∣2

4τ 2
stim|ρ ′|2

(
ω2 + 1

τ 2
B

)
,

SP
δ|A′

B | = SP
fr

|�A|2
|A′

B |2
4τ 2

B |ρ ′|2
[
ω2 +

(
1

2τF

− 1

2τstim

)2
]

,

SP
δ|ρ ′ | = SP

fr

|�A|2
{
ω2

(
1

2τF

+ 1

2τB

)2

+
[
−ω2 + 1

2τB

(
1

2τF

+ 1

2τstim

)]2}
, (32)

where SP
fr

is the spectral density for thermally excited in-
phase fluctuations of the density wave. Since the noise process
considered here is white (memoryless), SP

fr
(ω) = C over all

frequencies where C is the autocorrelation strength of fr (t)
defined earlier. Note that Eqs. (30) and (32) differ by the noise
source which initiates perturbations of the forward, backward,
and density waves.

Comparing Eqs. (26) and (31), we find that unlike the case
of a pump fluctuation in Eq. (26), the forward wave in the
case of a density fluctuation is no longer completely clamped
at ω = 0. This occurs because the total increase in forward,
backward, and density wave amplitude must individually
balance their respective losses in the steady state. For the
case of a density fluctuation, we observe from Eq. (25) that
this additive fluctuation adds to or reduces the supplied gain
provided by the forward wave depending on the sign of fr .
Thus for perturbations of the density wave, the forward wave
amplitude must continuously take on different values so that
the total increase in the density wave due to SBS amplification
and noise compensates for the losses of the density wave.

Comparing Eqs. (30) and (32), we observe that the
resonance response of the system governed by |�A|2 is similar
for fluctuations of the pump and density wave. However,
accounting for the total response, we find the overall system
behavior to be dissimilar. For example, at high frequencies
faster than the characteristic lifetimes of the system, we expect
the forward wave to fall as 1/ω2 for a pump perturbation and as
1/ω4 for a thermal fluctuation of the density wave. On the other

hand, the roll-off of the backward wave at high frequencies is
1/ω4 for both cases.

VI. SBS LASER FREQUENCY NOISE

We now return to Eq. (15) analyzing the SBS oscillator’s
phase response to noise. Careful attention should be paid to
the distinction between phase and frequency in this analysis.
The phase need not settle to a single value at steady state since
a constant rotation in phase yields a frequency shift. We can
develop intuition on the fundamental noise limit of the SBS
laser by considering the process by which noise propagates to
the generated SBS signal.

We begin by considering a thermally induced white
Gaussian Langevin noise source (f ) that drives fluctuations
of the density wave in Eq. (14). f has autocorrelation
strength 〈f (t)f ∗(t ′)〉 = 2〈fr (t)f ∗

r (t ′)〉, which accounts for the
equipartition of noise energy between the real and imaginary
quadratures. Its strength is determined by imparting kT /2
of noise energy to each degree of freedom of the acoustic
mode under thermal equilibrium conditions [42]. As before,
Fig. 3 shows the perturbation of the density wave amplitude
and phase induced by a single noise event. The density wave
interacts with the forward wave to generate a reflected wave
that becomes added to the SBS signal (shown in-phase in
Fig. 4). An amplitude fluctuation of the density wave directly
results in an amplitude fluctuation of the SBS signal, as was
found in Sec. V. A phase fluctuation of the density wave
changes the relative phase of the superimposed waves, and
thus affects the resulting phase of the backward wave.

With this intuition, we are now interested in determining
the fundamental limits to the SBS laser noise. As before,
we assume σF = 0, 
 = 
b so that σF ,σB,σρ = 0, φF −
φB − φρ = π/2, and φS = φF . These operating conditions
also effectively decouple the evolution of phase from that

FIG. 4. (Color online) Illustration of noise propagating into a
perturbation of the total SBS wave.
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of amplitude in Eq. (15). With these assumptions, the phase
response of the system to small-signal density perturbations is
given by

∂δφF

∂t
= − γeω�

4n2
0ρ0

|ρ ′||A′
B |

|A′
F | �F (δφρ + δφB − δφF )

−
√

1

τext

|S|
|A′

F |δφF ,

∂δφB

∂t
= γeω�

4n2
0ρ0

|ρ ′||A′
F |

|A′
B | �B(δφF − δφB − δφρ),

∂δφρ

∂t
= ε0γe�

2
ρ

4
R2

|A′
F ||A′

B |
|ρ ′| �ρ(δφF − δφB − δφρ) + fim

|ρ ′| .
(33)

In Eq. (33), we have introduced the Langevin noise source
fim which governs out-of-phase perturbations of the density
wave. Its autocorrelation strength is equal to that of fr , i.e.,
〈fim(t)f ∗

im(t ′)〉 = Cδ(t − t ′), since the thermal noise excitation
is equipartitioned between the real and imaginary quadratures.
δφB,ρ,F represent small-signal phase perturbations of the
backward, density, and forward waves.

Converting Eq. (33) to the frequency domain and assuming
�F ≈ �B , we find

δφF (ω) = −fim(ω)

|ρ ′|�φ

jω

2τstim
,

δφB(ω) = −fim(ω)

|ρ ′|�φ

1

2τB

(
jω + 1

2τF

+ 1

2τstim

)
,

δφρ(ω) = fim(ω)

|ρ ′|�φ

[
−ω2 + jω

(
1

2τB

+ 1

2τF

)

+
(

1

2τF

+ 1

2τstim

)
1

2τB

]
, (34)

where

�φ = −jω3 − ω2

(
1

2τB

+ b

2
+ 1

2τF

)

+ jω

(
1

2τF

+ 1

2τstim

) (
1

2τB

+ b

2

)
. (35)

Note that we have simplified Eqs. (34) and (35) using
|S|/(|A′

F |√τext) = 1/2τF + 1/2τstim, which can be derived
from Eq. (20). Examining Eq. (34), we find that δφB,ρ diverges
in the steady state (ω = 0). This can be seen from Eq. (33)
where no general solution exists when the time derivatives
are set to zero. If we account for the Langevin noise source
fim in ∂φρ/∂t of Eq. (15), we see that fim takes the role
of an additional force driving phase rotations of the density
wave. Similar to the case of the SBS gain-peak detuning, the
frequencies of the backward and density waves must shift
[see Eq. (16)] in order to provide the necessary counter phase
rotation to satisfy steady state. This phase rotation makes it so
that no steady-state value of phase exists when fim = 0, thus
yielding the observed divergence in Eq. (34).

Multiplying Eq. (34) by jω/2π , we see that the left-hand
side becomes a description of the frequency fluctuations
driven by thermal perturbations of the density wave. The

corresponding frequency-noise spectra are given by

SP
δνF

= 1

16π2

SP
fim

|ρ ′|2|�φ|2
ω4

τ 2
stim

,

SP
δνB

= 1

16π2

SP
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1

τ 2
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[
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,

SP
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= 1

4π2

SP
fim
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1

2τB

+ 1

2τF

)2

−ω4

(
1

2τstim
+ 1

2τF

)
1
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+ω2

(
1

2τstim
+ 1

2τF

)2 1

4τ 2
B

]
.

(36)

In Eq. (36), SP
δνB,ρ,F

represent the frequency-noise spectral
densities associated with the backward, density, and forward
waves, while SP

fim
denotes the spectral density of out-of-

phase fluctuations due to thermal excitation of the density
wave. Since the thermal noise process is white (memoryless),
SP

fim
(ω) = C over all frequencies.

We are interested in determining the fundamental noise
level achievable by the SBS laser. The SBS frequency-noise
spectrum of Eq. (36) is white at lower Fourier frequencies
and decays upon reaching larger Fourier frequencies. Setting
ω = 0 for SP

δνB
, we find

SP
δνB

(ω = 0) = 1

4π2

SP
fim

|ρ ′|2(bτB + 1)2 . (37)

The SBS white frequency-noise level can be understood if
we first assume bτB 
 1 (high-Q microresonator) and then
substitute |ρ ′| = |A′

B |/2τBg|A′
F | into Eq. (37). Here,

g = γeω�

4n2
0ρ0

�B (38)

is the SBS gain coefficient which when multiplied by
|ρ ′||A′

F |/|A′
B | describes the transfer of phase fluctuations

of the density wave to rotations of the SBS wave [see
Eq. (33)]. The equality |ρ ′| = |A′

B |/2τBg|A′
F | is derived

from the steady-state condition of ∂|A′
B |/∂t in Eq. (15) with

φF − φB − φρ = π/2. With these substitutions in Eq. (37), we
find

SP
δνB

(ω = 0) ≈ 1

π2

1

|A′
B |2 g2

∣∣A′
F

∣∣2 SP
fim

2
b

. (39)

Since SP
fim

(ω) = C = b〈ρN (t)ρ∗
N (t)〉/2 [42] and because

the integration over the noise spectrum of the density wave
(SP

ρN
) yields its total power (SP

ρN
b ≈ 〈ρN (t)ρ∗

N (t)〉), the
term SP

fim
/2

b = SP
ρN

/2 represents the spectrum of out-of-phase
fluctuations exhibited by the density wave induced by thermal
noise. These density fluctuations interact with the forward
wave (g|A′

F |) to couple noise into the generated SBS wave.
Since the noise power is constant for a given forward wave
amplitude (which is clamped at threshold), the resulting
perturbation of the SBS wave decreases with increasing
backward wave energy (|A′

B |2). To minimize the white-noise
floor of the SBS signal, one should reduce the lasing threshold
|A′

F |2 thereby minimizing the noise coupled into the SBS
wave. It is similarly important to also maximize the power

053843-10



NOISE AND DYNAMICS OF STIMULATED-BRILLOUIN- . . . PHYSICAL REVIEW A 91, 053843 (2015)

of the backward wave so that the perturbations introduced
by the noise are comparatively small relative to the total
signal level. We note that Eqs. (37) and (39) can be further
modified to account for additional noise contributions be-
yond the fundamental SBS limit (e.g., thermorefractive noise
[43,44]).

As in the amplitude noise case of Sec. V, the coupling
between the forward, backward, and density waves creates a
resonance in the system response before the spectrum of the
noise decays. For fluctuations in phase [Eq. (34)], this response
consists of a pole at ω = 0. However, since we multiply by
jω/2π to determine the frequency-noise response, this pole
becomes canceled revealing a white frequency-noise floor. For
frequency-noise fluctuations, the system resonance occurs at

ω2
Rν

=
(

1

2τF

+ 1

2τstim

) (
1

2τB

+ b

2

)
(40)

with a damping ratio of

ζν =
1

2τB
+ b

2 + 1
2τF

2
√(

1
2τF

+ 1
2τstim

)(
1

2τB
+ b

2

) . (41)

For high-Q cavities with b/2 
 1/2τB,F , the damping
ratio simplifies to

ζν ≈ 1

2

√
b

/(
1

τF

+ 1

τstim

)
. (42)

Therefore, for high-Q resonators, the system is typically
damped except for cases when the system is driven with
sufficient strength such that 1/τstim approaches b.

VII. SBS LASER STEADY-STATE SIMULATIONS

In the following sections, we use numerical techniques to
simulate the complex behavior of the SBS laser. Our simulation
is carried out iteratively using Eq. (14) with an additional
Langevin noise source f driving perturbations of the density
wave. f is thermally induced and has autocorrelation strength

〈f (t)f ∗(t ′)〉 = 2Cδ(t − t ′) with C = kT ρ0b/v
2V . Starting

from noise, the evolution of the forward, backward, and density
waves is tracked over time which allows for the determination
of the laser’s steady-state and dynamic behavior. A listing of
the parameters used in our simulation was provided earlier in
Table I. For simplicity, we have taken the modal overlaps to
be approximately 0.5 and have assumed operation at 1550 nm
wavelength. The acoustic (V ) and optical (Vph) mode volume
is similarly assumed to be approximately equal corresponding
to a modal area of 25 μm2 and a resonator radius of 2.8 mm.
The values of b and 
b for the acoustic wave are derived from
Ref. [35] for a silica resonator operated at 1550 nm. Finally,
the values of S and Vph in Table I correspond to a laser pump
power of 1 mW.

Using the parameters of Table I, we first determine the
steady-state operation of the SBS laser as a function of
the pump detuning. Typically the experimental operation of
the microcavity SBS laser requires tuning the pump into the
cavity resonance, and thus this simulation serves as a useful aid
for analyzing the SBS laser’s behavior as the pump frequency
is swept. Figure 5(a) shows the normalized transmission past
the microresonator for several values of pump power. The
horizontal axis depicts the detuning of the pump from the
cavity resonance in units of the resonator linewidth. At a
pump power of 0.01 mW, the supplied power is below the
SBS lasing threshold at every value of detuning, and thus the
transmission traces out the cavity’s characteristic Lorentzian
interference pattern. Note that effects of self- and cross-phase
modulation as well as thermal drift were not accounted for in
our simulation, which would otherwise lead to asymmetry in
the transmission profile.

Increasing the pump power to 0.25 mW, the SBS laser
reaches threshold near a detuning of 1.1×the resonator
linewidth. Once the SBS reaches threshold, the forward wave
power begins to clamp but can still change depending on the
phase of the SBS gain [see Eq. (20)]. In addition, the phase
variation of the forward wave with detuning also diverges
from that of a conventional resonator in order to satisfy

TABLE I. SBS laser parameters and their definitions.

Parameter Definition Simulation value

τF Forward wave lifetime 1/(2π × 2 × 106)s
τB Backward wave lifetime 1/(2π × 2 × 106)s
τext Pump-resonator coupling time constant 1/(2π × 1.33 × 106)s
�F Forward wave mode overlap 0.5
�B Backward wave mode overlap 0.5
�ρ Density wave mode overlap 0.5
γe Electrostrictive constant 1.5 [35,45]
ω� Angular frequency of the optical field 1.22 × 1015rad/s
n0 Real component of the resonator refractive index 1.5
ρ0 Equilibrium density of the resonator material 2200kg/m3

S Amplitude of the pump field 1.52 × 1010
√

W/m2F
b Density wave decay rate 2π × 15.64 × 106rad/s [35]

b Angular frequency of the acoustic mode 2π × 11.55 × 109rad/s [35]

 Angular frequency of the density wave 2π × 11.55 × 109rad/s
�ρ/R Acoustic wave number 1.22 × 1071/m
V Acoustic mode volume 4.33 × 10−131/m3

Vph Optical mode volume 4.33 × 10−131/m3
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(a) (b)

(c) (d)

FIG. 5. (Color online) Simulated SBS laser (a) normalized transmission past the cavity, (b) outcoupled power, (c) normalized intracavity
forward wave power, and (d) gain phase as a function of pump detuning (in units of cavity linewidths). The simulations of (b), (c), and (d)
correspond to a pump power of 1 mW.

steady state with the backward and density waves. Since
T = A′

F /
√

τext − S, these properties alter the transmission
past the microresonator so that the profile is no longer a pure
Lorentzian. In particular, the clamping of the forward wave
power results in incomplete cancellation of the pump with the
outcoupled forward wave causing the normalized transmission
of Fig. 5(a) to flatten. This effect can be clearly observed at
higher pump powers where the SBS lasing is seen to turn on at
larger cavity detunings with the consequence of a diminished
dip in transmission.

Figure 5(b) illustrates the outcoupled SBS power for a
pump power of 1 mW. The SBS reaches threshold at a pump
detuning of 2.1 linewidths offset from its resonance peak, as
can also be inferred from Fig. 5(a). The outcoupled SBS power
reaches a maximum of 0.285 mW when operated with zero
detuning. The corresponding normalized intracavity forward
wave power can be observed in Fig. 5(c). The forward wave
power initially builds up as the pump detuning approaches
zero. However, once the SBS oscillation reaches threshold,
the forward wave power begins to clamp with slow variations
depending on the phase of the SBS gain. For our parameters in
Table I, the SBS gain is maximum at zero pump detuning, and
thus the required forward wave power for lasing is minimized
at this point [see Fig. 5(c)]. Figure 5(d) illustrates the SBS gain
phase (φF − φB − φρ) as a function of the pump detuning for

a pump power of 1 mW. Since the SBS and density waves are
incoherent until oscillation is reached, we have restricted the
range of pump detuning in Fig. 5(d) from −2 to 2 cavity
linewidths, corresponding to the points where SBS lasing
occurs. As predicted from our analysis, the phase of the SBS
gain is π/2 at zero detuning and slowly rotates from this value
when operated off of the SBS gain peak.

The previous simulations characterize the SBS laser opera-
tion as a function of cavity detuning for a fixed pump power of
1 mW. We now set the detuning to be zero and investigate the
laser’s performance when the pump power is varied. We are
primarily interested in the amount of SBS power obtainable
for a given supply of power into the microresonator cavity.
Figure 6 shows the outcoupled SBS power versus the total
amount of power coupled into the cavity and thus depicts the
input-output relationship of the laser [Eq. (23)]. The simulated
lasing threshold occurs at 0.032 mW with a corresponding
slope efficiency of 66.7%, which agrees with the analytical
expression of Eq. (23) using the values provided in Table I.
However, we note that although the slope efficiency of the
coupled-in power is 66.7%, there is an additional efficiency
loss from the supplied pump power that does not couple into
the cavity [see Fig. 5(a)]. For example, a total pump power of
4.1 mW was required to couple 1 mW of power into the cavity
thus yielding a coupling efficiency of 24.4%.
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FIG. 6. (Color online) SBS laser outcoupled power as a function
of the total input power supplied into the cavity.

VIII. SIMULATIONS OF FUNDAMENTAL NOISE LIMIT

We are now interested in analyzing the fundamental
limits of noise achievable by the SBS laser. As before, the
simulation is seeded with white Gaussian noise of random
phase, which provides the initial kick for self-oscillation.
By continuously seeding the microresonator with noise, the
phase and amplitude of the forward, backward, and density
waves become perturbed from their steady-state values. Since
∂φB,ρ,F /∂t = 0 at steady state, the frequency noise of these
corresponding waves is directly found from simulating their
phase evolution in Eq. (15) with noise introduced into the
system. Figure 7(a) illustrates the simulated and analytical SBS
frequency-noise spectrum for zero pump detuning and a pump
power of 1 mW. The corresponding outcoupled SBS power
is 0.29 mW. Note that since measured values of frequency
noise are often defined through a single-sided spectrum, we
have doubled our calculated SBS frequency noise, which
effectively maps the negative frequencies onto the positive
frequencies. The SBS frequency noise is white at lower offset
frequencies and exhibits a resonance at ∼6 MHz. Beyond
∼10 MHz, the frequency-noise response rolls off at −20
dB/decade. Note that since the effects of shot noise have not
been accounted for, the simulated roll-off continues on for
higher offset frequencies.

From Fig. 7(a), the simulated white frequency-noise floor
is 0.47 Hz2/Hz at lower offset frequencies, which matches
the analytical value for the SBS laser’s white frequency
noise of 0.51 Hz2/Hz [Eq. (37)]. These values also agree
well with experimental measurements of the SBS laser’s
white frequency-noise floor [27,33]. Since the Lorentzian
linewidth and frequency noise of a laser are closely related
(by a factor of π for a single-sided frequency-noise spectrum
[34]), we achieve an estimate of the SBS laser’s linewidth
using Fig. 7(a). If we approximate the entire frequency-noise
spectrum to be white, the corresponding power spectral
density exhibits a Lorentzian line shape with a full-width half
maximum linewidth of 1.5 Hz. The simulated linewidth is
three to six orders of magnitude narrower than conventional
semiconductor or fiber lasers and thus highlights the excellent
noise properties exhibited by the SBS gain medium.

The SBS laser’s amplitude noise can also be simulated
by analyzing the system’s response to noise. The relevant
figure of merit here is the laser’s RIN, which provides a
measure of the laser’s amplitude fluctuations normalized to
its signal level. The laser RIN can be related to the amplitude
noise spectral density [Eq. (32)] by noting that (PO + δPO) ∝
(|A′

B | + δ|A′
B |)2 and thus δPO ∝ 2|A′

B |δ|A′
B |. The first

expression is a statement that the SBS intracavity optical
power (PO) and its associated noise fluctuation (δPO) are
proportional to the square of the total intracavity SBS field
amplitude (signal+noise). The second expression identifies
the dominant contribution to the power fluctuation, which
consists of a heterodyne between the signal amplitude and
noise amplitude fluctuation. Since a laser’s RIN is measured
as a ratio of noise power to signal power in the electrical
domain after photodetection, we convert δPO ∝ 2|A′

B |δ|A′
B |

into its corresponding power spectral density and normalize
with respect to P 2

O ∝ |A′
B |4. The factors of proportionality all

cancel, and we thus find

RIN = 8SP
δ|A′

B |
|A′

B |2 . (43)

Note that since laser RIN is defined as single sided, we
have introduced an additional factor of 2 in Eq. (43) which
maps the negative frequencies onto the positive frequencies.
Depending on the noise source (pump fluctuation or thermally
induced density wave fluctuation), either Eq. (30) or Eq. (32)
may be used for calculating RIN. Our analytical calculations
of the intrinsic SBS laser amplitude noise here are performed
using Eq. (32) in Eq. (43).

Figure 7(b) shows the simulated and analytical SBS RIN
for a pump power of 1 mW and a pump detuning of 0 Hz. The
relaxation oscillation resonance occurs near ∼4 MHz, which
matches the approximate resonance frequency of 3.5 MHz
[Eq. (28)]. The SBS RIN is white at a level of −130.4 dBc/Hz
at lower offset frequencies and decays at −40 dB/decade past
the relaxation resonance.

From Fig. 7, we observe that although the SBS laser
exhibits excellent performance in frequency noise, its RIN
characteristics appear worse compared to lasers of semicon-
ductor technology. One reason for this degradation in laser
RIN is due to the lower optical powers exhibited by the SBS
laser. From Eq. (32), we see that SP

δ|A′
B | scales inversely with

|A′
B |4 (∝ P 2

O) when the stimulated lifetimes are slower than
the intrinsic cavity decay rate. Note that the density wave
scales proportionally to the backward wave [see Eq. (17)] as
the two waves mutually promote each other’s growth. The
normalization of Eq. (43) introduces an additional factor of
|A′

B |2 which yields a combined cubic inverse dependence of
RIN on SBS power. If τstim 	 τF , the total RIN scaling instead
becomes first order inversely with SBS power. With an increase
of outcoupled SBS power from 0.29 to 29 mW, the SBS laser
RIN can be reduced by at least 20 dB. However, these larger
optical powers cannot usually be achieved experimentally in
SBS microresonator lasers since the SBS wave eventually
becomes the pump for the next Stokes order [not modeled
in Eq. (14)].

In addition to the limitations due to optical power, the effects
of oscillator feedback also have a relatively minor impact on
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(a) (b)

FIG. 7. (Color online) Simulated (blue solid line) and analytical (black dashed line) SBS laser (a) frequency noise and (b) RIN for a pump
power of 1 mW and pump detuning of 0 Hz.

the SBS laser’s amplitude fluctuations. In any oscillator, the
gain is stabilized to the value that compensates the total system
loss, thereby reducing the oscillator’s exhibited amplitude
noise. For example, in a laser, an increase of the intracavity
power causes saturation of the gain below the intracavity loss,
which then results in attenuation of the power until steady
state is reached. A similar self-stabilization is observed in
Eq. (25) for the SBS laser. We see that if the density wave
is instantaneously increased by means of a noise fluctuation
(δ|ρ ′| > 0), the system develops a driving force to increase
the SBS wave due to the SBS interaction of the forward
wave with the density wave. However, this process acts to
deplete the power in the forward wave (δ|A′

F | < 0), which
then reduces the available SBS gain. These two processes
can, in principle, balance one another resulting in complete
cancellation of the SBS wave’s amplitude noise. This effect can
be more concretely observed in Eq. (31) where for simplicity
we consider the laser’s operation at zero frequency. As per
Eq. (25), we multiply δ|A′

F | by |ρ ′| and δ|ρ ′| by |A′
F |

and subsequently sum them together. It is clear from this
operation that the fluctuations of the forward and density
waves can exactly compensate one another when τF = τstim.
This can also be verified by setting ω = 0 for δ|A′

B | in
Eq. (31) along with setting τF = τstim. However, since τstim

is dependent on the operating point, the typical operation of
the SBS laser results in the fluctuations of the forward wave
under- or overcompensating the fluctuations of the density
wave.

IX. SIMULATIONS OF PUMP NOISE TRANSFER

In this section, we simulate the transfer of noise from the
pump laser to the SBS wave. This noise increases the SBS laser
noise above the intrinsic limits found in the previous section.
To simulate the pump noise transfer, we apply a coherent
small-signal modulation to either the amplitude or phase of
the pump wave. We then divide the resulting frequency noise
or RIN imprinted onto the SBS wave by the frequency noise or
RIN of the pump. For performing these simulations, the ther-
mally induced fluctuations of the density wave are switched
off.

Figure 8(a) shows the transfer of pump frequency fluctua-
tions to the SBS laser’s frequency noise for a pump power
of 1 mW and a pump detuning of 0 Hz. At lower offset
frequencies, 1.3% of the pump noise converts to fluctuations
of the SBS wave. At higher frequencies, the noise reaches
a damped resonance at ∼5 MHz and then rolls off at
−40 dB/decade when the cavity can no longer respond. Note

(a) (b)

FIG. 8. Simulated pump to SBS laser (a) frequency noise and (b) RIN transfer for a pump power of 1 mW and zero pump detuning.
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(a) (b)

(c) (d)

FIG. 9. Simulated (a) pump frequency noise to SBS RIN, (b) pump RIN to SBS frequency noise, (c) pump frequency noise to SBS
frequency noise, and (d) pump RIN to SBS RIN transfer for a pump power of 2 mW, a pump detuning of 1/τB (1 cavity linewidth), and a SBS
gain detuning of b (one SBS gain linewidth).

that although only a small fraction of the pump frequency
noise transfers over to the SBS laser, the transfer of pump
noise to the density wave is nearly 100%. The amount of
noise transfer is governed by the response rate for each of the
individual waves (1/2τB for the SBS wave and b/2 for the
density wave) to phase perturbations. These phase response
rates can be understood by substituting the steady state of the
amplitude evolution equations [Eq. (15)] into Eq. (33). When
the phase of the pump undergoes an instantaneous change, the
phases of both the backward and density waves rotate to reach
steady state. Although there is only one value of combined
phase shift that satisfies steady state, no restrictions apply to
the individual values of φB,φρ . Thus, one desires the density
wave response to be fast so that it absorbs the entirety of the
phase rotation. To estimate the noise transfer into the SBS
wave, we take the ratio of 1/2τB to b/2 and square the result
for conversion to spectral density. This operation yields 0.016,
which agrees well with our simulated value of 0.013 at lower
offset frequencies.

Figure 8(b) shows the corresponding conversion of pump
RIN into SBS laser RIN. The RIN transfer is 39.1% at
lower offset frequencies, which agrees with the analytically
calculated value of 39.1%. At ∼4 MHz, the RIN transfer
exhibits a resonance and then afterwards decays at even higher
offset frequencies. Since the pump RIN is typically low,
the RIN of the SBS laser is usually limited by its intrinsic
amplitude fluctuations [see Fig. 7(b)].

Because of the delicate balance between phase and ampli-
tude in a microresonator cavity, there will also be effects of
noise conversion from amplitude to phase and from phase
to amplitude. However, these processes are approximately
zero when the microresonator is operated with zero pump
detuning. Our simulations of these noise processes appear
to vary depending on the simulation parameters. However,
we consistently find the conversion of pump RIN to SBS
frequency noise (pump frequency noise to SBS RIN) to be
below the level of 10−25 Hz2 (10−23 1/Hz2) at a 10 kHz offset
frequency.

In order to accurately assess the conversion of pump
noise into the opposite quadrature, we increase the amount
of detuning used in our simulations. Figure 9(a) shows the
transfer of pump frequency noise into SBS RIN for a pump
detuning of 1/τB (one cavity linewidth) and a SBS gain
detuning of b (one SBS gain linewidth). To achieve enough
SBS gain to self-oscillate, we increase the pump power to
2 mW. At this operating point, the outcoupled SBS power
corresponds to 0.21 mW. From Fig. 9(a), the conversion of
pump frequency noise into SBS RIN is 2.2 × 10−13 1/Hz2 at
lower offset frequencies. This number is intrinsically small as
the level of RIN is much smaller than that of frequency noise
for a typical laser. However, we see that the noise transfer
at 10 kHz is much larger than that found with zero pump
detuning (<10−23 1/Hz2). Beyond the system resonance near
3.5 MHz, the conversion of pump frequency noise to SBS
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RIN rolls off when the laser can no longer respond to pump
fluctuations.

Figure 9(b) shows the conversion of pump RIN into SBS
frequency noise again for the same operating conditions. The
transfer response exhibits a steady increase of 20 dB/decade
at lower offset frequencies thus indicating the presence of a
low-frequency zero. Since frequency and phase are related by
a derivative, the corresponding phase noise spectrum would
be constant at low frequencies. A constant phase noise is
intuitive as a fixed shift of the pump amplitude would result in
the SBS laser settling into a different fixed steady-state phase
arrangement. Since a shift in pump amplitude results in a
constant shift in SBS phase at dc, the corresponding frequency
fluctuation is zero, as can also be extrapolated from Fig. 9(b).
For an offset frequency of 10 kHz, the noise transfer is 5.1 ×
107 Hz2, which is again significantly larger than the conversion
noise under zero detuning (<10−25 Hz2). Beyond the system
resonance near 3.5 MHz, the system response initially rolls off
at −60 dB/decade before changing slopes to −40 dB/decade
past 16 MHz (approximately inverse of the phonon lifetime).

For completeness, Fig. 9(c) shows the transfer of pump
frequency noise to the SBS laser’s frequency noise when the
pump detuning is 1/τB and the SBS gain detuning is b.
Similar to the zero detuning case [Fig. 8(a)], 1.4% of the pump
frequency noise transfers over to the SBS wave at lower offset
frequencies. The system response exhibits a sharp resonance
near 3.5 MHz due to the strong coupling between amplitude
and phase when the detuning is no longer zero. Beyond the
system resonance, the roll-off is initially −60 dB/decade but
changes to −40 dB/decade past 16 MHz.

Finally, Fig. 9(d) shows the transfer of pump RIN to the
SBS laser’s RIN for a pump detuning of 1/τB and a SBS gain
detuning of b. At low offset frequencies, the RIN transfer is

1.44× the RIN of the pump, which is 3.7× larger than that
found with zero detuning [Fig. 8(b)]. At higher frequencies,
the noise transfer reaches a resonance near 3.5 MHz before
finally stabilizing to a roll-off of −40 dB/decade beyond
16 MHz. The properties of the SBS noise in Fig. 7 and of
the SBS noise transfer in Figs. 8 and 9 all closely match those
found in experimental measurements [33].

X. CONCLUSIONS

We have developed a set of coupled-mode equations
that accurately describe the steady-state behavior and noise
dynamics of the SBS laser. The coupling between the forward,
backward, and density waves results in a complex noise
response to amplitude or phase perturbation. Nevertheless,
our analytical calculations and simulations show the potential
for oscillation with hertz-class linewidths or below, enabled
by the noise properties of the SBS gain. The intrinsic limits
of SBS laser noise become degraded by a noisy pump due
to the transfer of pump noise into the SBS wave. However,
these effects are mitigated with the use of microcavities with
higher Q. Our model can be readily extended to account for
multiple oscillating modes, self- and cross-phase modulation
nonlinearity, thermorefractive noise, or thermal bistability.
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