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Nonlinear scattering in photonic crystals having dislocations with fractional topological character
and multiple dislocations
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The spectrum of the second harmonic signal generated in quadratic nonlinear photonic crystals, having
different types of edge dislocations, was studied theoretically and experimentally. In the case of a dislocation
with a fractional topological charge, we observed an asymmetric spectral conversion efficiency response, where
the degree of asymmetry depends on the value of the fractional charge. Moreover, we have found that the
conversion efficiency spectrum exhibits a periodic dependence on the topological charge value. In addition,
nonlinear photonic crystals with multiple edge dislocations were studied. We show that for any number of
dislocations characterized by even topological charge, the nonlinear spectral response will be identical to the
response of the ideal, dislocation-free structure. This is a generalization of a previous observation that was
made for crystals with a single even charge dislocation. Furthermore, for any number of dislocations with odd
topological charge, two new peaks of maximal efficiency are observed in the second harmonic spectrum, in
addition to a series of local efficiency peaks that are governed by the total number of dislocations. This is also a
generalization of a previous observation that was made for a single dislocation case having an odd topological
charge.
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I. INTRODUCTION

Dislocations have an enormous importance in the study
of material properties as well as in studying the propagation
dynamics of waves in matter. First, the presence of dislocations
in a solid-state material can influence its mechanical, electrical,
thermal or optical properties, as compared to its perfect,
dislocation-free counterpart. Specifically, dislocations play
a significant role in the understanding of the microscopic
nature of mechanical deformations that a material can perform
through the arrangement of dislocations [1,2]. In addition,
dislocations are used in the study of the electrical conductivity
in conductive materials through the transport of electrons via
dislocation cores, or through the movements of the dislocations
[3–5]. Furthermore, dislocations are also used in the study of
the thermal conductivity of materials through the interaction
between acoustic phonons and dislocations [6–9]. Therefore,
extensive studies on the scattering of electron, phonon, and
electromagnetic waves from dislocations were carried in order
to understand the influence of dislocations on the material’s
properties.

Secondly, in addition to structural dislocations in crystals,
dislocation lines and dislocation effects can also be present in
the wave fronts of different types of waves [10–12]. Such wave
dislocations are often created when the wave scatters from a
structural dislocation of a crystal. Therefore, the interaction
between dislocations and waves in matter raises great interest
and as a result different types of physical systems that
contain topological dislocations were studied. For instance,
one may refer to the naturally formed topological dislocations
in self-assembled soft-matter quasicrystals [13], which provide
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a platform for the fundamental study of quasicrystals and
their applications in the field of photonics. In addition,
topological dislocations were produced in photonic structures.
As an example, the transport of matter-wave solitons was
studied in optical lattices that contain topological dislocations
[14] and the scattering of light from dislocation sites in
photorefractive nonlinear photonic quasicrystals was observed
[15–17]. Scattering of waves from dislocations is often used
to generate vortex beams, carrying orbital angular momentum
[18–20].

Dislocations were also studied in quadratic nonlinear
photonic crystals. These are crystals in which the sign of
the quadratic nonlinear susceptibility is modulated in an
ordered fashion, while the linear susceptibility, and thereby
the refractive index, remains constant and uniform throughout
the entire crystal [21]. In this case, the effect of the dislocation
is observed at the second harmonic of the input beam.
Two different types of dislocations were studied until now:
continuous dislocations which are present along the entire
nonlinear photonic crystal [22,23] and local defects [24,25].
Nonlinear scattering from quadratic nonlinear crystals with
dislocations was recently used to generate [26] and manipulate
[27] the orbital angular momentum of the scattered second
harmonic light. In this paper we shall concentrate on a specific
local defect—the edge dislocation. It is manifested by a
cumulative addition of modulation periods that appear only
on one side of the dislocation’s core, and therefore do not
extend through the entire crystal length. In our case, the
designed structures in the crystals contain local topological
edge dislocations with a fork-shape (or a Y-shape) form. The
degree of deviation from the ordered periodical state, by the
edge dislocation, is characterized by a topological property
of the dislocation—the topological charge. This topological
charge can be determined for a given dislocation by enclosing
a loop around its position, count the number of modulation
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periods when moving on one side of the dislocation’s core,
and subtract the number of modulation periods when moving
on the other side of the core. This practical method allows
one to determine the value of the topological charge if it is an
integer number. However, we can also consider defects with
a fractional charge by simply using a noninteger value of the
topological charge.

Recently, the nonlinear scattering from quadratic nonlinear
photonic crystals having edge dislocations was examined. It
was found that the spectral response of the nonlinear conver-
sion efficiency is governed by the parity of the dislocation’s
topological charge value [28]. We note that the dislocation-free
reference case is of a nonlinear crystal with a periodic (or
a quasiperiodic) modulation of its second-order nonlinear
coefficient, which is widely used for quasi-phase-matched
frequency conversion processes. Adding a dislocation with
an odd topological charge in the middle of the structure
nulls the conversion efficiency of the otherwise optimally
phase-matched wavelength. Nevertheless, high conversion
efficiency is now achieved at new wavelengths that ex-
hibited low efficiency without the dislocation. In contrast
to that, a dislocation with an even topological charge has
a negligible effect on the spectral conversion efficiency
curve.

So far, only nonlinear photonic crystals having a single
dislocation with an integer topological charge were studied.
This raises new questions that were not addressed up until
now—what happens for dislocations with a fractional charge?
What is the effect on the scattered nonlinear signal? What
will happen if there are multiple dislocations and not only
one? Here we report for the first time the theoretical and
experimental study of these effects. For dislocations having a
fractional charge, an asymmetric spectral conversion efficiency
response is observed, where the degree of asymmetry depends
on the value of the fractional topological charge. The efficiency
spectrum (as a function of the phase mismatch) exhibits
periodic dependence on the topological charge. In the case
of multiple dislocations, we show that the nonlinear spectral
response for any number of dislocations, characterized by an
even topological charge, is identical to the response of the
ideal, dislocation-free structure. Furthermore, for any number
of dislocations with an odd charge, two new global peaks
of maximal efficiency are observed in the second harmonic
spectrum. Additional local peaks are observed in the efficiency
spectrum between the two global peaks. The number of these
local peaks is determined by the number of dislocations in
the patterned structure. These results represent generalization
of phenomena that were previously observed with a single,
integer charge dislocation [28].

The paper is organized as follows. In Sec. II, we present
the main aspects of the model which was used in order to
realize the nonlinear interaction in the studied configurations.
In Sec. III, we describe the fabricated nonlinear photonic
crystal structures. In Sec. IV, we study the effects of a fractional
charge dislocation on the spectral nonlinear second harmonic
conversion efficiency, whereas in Sec. V, we study the effects
of multiple dislocations on the nonlinear spectral response.
Finally, in Sec. VI, we conclude and suggest directions
for future work in the field of nonlinear scattering from
dislocations.

II. THE THEORETICAL MODEL

Efficient frequency doubling of a pump beam at the
fundamental frequency (FF) in a quadratic nonlinear crystal to
its second harmonic (SH) frequency requires phase matching
between the two interacting waves. This can be achieved by
quasi-phase-matching, i.e., periodic modulation of the sign of
the second-order nonlinear susceptibility at a spatial frequency
which is identical to the phase mismatch �k, between the
interacting waves [21,29]. In this case, the nonlinear crystal
can be considered an ideal one-dimensional nonlinear photonic
crystal. Only one particular pump wavelength will be quasi-
phase-matched with the maximal conversion efficiency at the
output of the crystal. Hence there is a single global peak of
maximum efficiency in the spectral efficiency curve, which
indicates that a maximum amount of energy was converted
from the FF wave to the SH wave. We can now consider what
happens if dislocations are introduced in this structure. As
mentioned above, the case of a single edge dislocation having
an integer topological charge was studied recently [28].

Here we examine a more general case in which the
second-order nonlinear susceptibility expression of a periodic
structure contains any number and any type of topological edge
dislocations. In this case, the two-dimensional pattern can be
written as

χ (2)(X,Y ) = 2dij sgn

[
cos

(
2π

Λ
X +

N∑
m=1

lmΦm(X,Y )

)]
,

(1)

where dij is a proper element of the second-order nonlinear
susceptibility tensor, which contribute the most to the nonlin-
ear coupling between the two waves. The left term inside the
cosine function provides a periodic structure with a profile of a
carrier wave. Its wave number enables to overcome the phase
mismatch between the FF and the SH waves. Λ is the period
length of the alternation of the sign of the nonlinear coefficient,
required for quasi-phase-matching. The right term inside the
cosine function is responsible for embedding dislocations
inside the periodic structure. lm represents the topological
charge of the mth dislocation (which can be either an integer
or a fractional number), Φm = arctan (Xm/Y ) is the azimuthal
angle between the beam’s propagation direction in the crystal
(the X axis) and one of its perpendicular directions in the
crystal (the Y axis), and N is the total number of dislocations
that are embedded in the structure. In our designs, we placed
the dislocations in equally spaced distances from each other
and with respect to the crystal’s longitudinal limits through
the definition of Xm = X − [1/2 − m/(N + 1)] L, where L

is the length of the crystal along the X axis. It should
be noted that if all the values of lm are equal to zero,
then one gets a structure with an ideal periodic modulation
without any dislocations. The case of structures that contain
a single dislocation, characterized by a fractional charge, is
demonstrated at the bottom part of Fig. 1. In these structures,
N = 1, and the difference between each dislocation is reflected
in a different fractional value of the topological charge, where
in (a) l = 1/2, in (b) l = 3/4, and in (c) l = 3/2. The case of
dislocations characterized by integer charges is demonstrated
at the bottom part of Fig. 2. In this structure, N = 2, and
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FIG. 1. (Color online) Microscope pictures of the different topo-
logical edge dislocations that were implemented in crystals where
each one of them contained one dislocation positioned in the middle of
the periodic structure relative to the crystal’s edges. The bottom part of
each figure presents, as an illustration of the designs, a magnification
of the area where a dislocation was positioned in the structure.
(a)–(c) Comparisons between the fabricated and the designed
structures.

the difference between each dislocation is reflected in a
different integer value of the topological charge. Therefore,
the multiplication lm · Φm generates a different cumulative
addition of modulation periods on one side of the dislocation’s
core, that eventually leads to a particular shape of an edge
dislocation. For instance, in the right illustrated dislocation
in Fig. 2, the difference between the number of modulation
periods when moving on one side of the core, and this number
on its other side, is equal to 2. On the other hand, in a fractional
charge dislocation, this difference is not considered as an
integer number.

The spectral response of the nonlinear conversion efficiency
due to the propagation of a fundamental pump beam in a
nonlinear medium was calculated using the Split-Step Fourier
method [30]. The nonlinear interaction inside the crystal
between the incident FF pump beam, with angular frequency
ω1, and the generated SH beam, with angular frequency
ω2 ≡ 2ω1, is governed by two coupled-amplitude equations.
Under the approximation of slowly varying amplitudes for the
FF wave, A1(X,Y,Z), and for the SH wave, A2(X,Y,Z), these
equations in Fourier space for monochromatic beams are given
by
dÃ1

dX
+ i

(
K2

Y + K2
Z

)
Ã1

2k1
=κ1

∫ ∞

−∞

∫ ∞

−∞
dYdZA2A

∗
1χ

(2)e−i �G1·�r,

(2a)

dÃ2

dX
+ i

(
K2

Y + K2
Z

)
Ã2

2k2
= κ2

∫ ∞

−∞

∫ ∞

−∞
dYdZA2

1χ
(2)e−i �G2·�r ,

(2b)

where Ã1 = Ã1(X,KY ,KZ) and Ã2 = Ã2(X,KY ,KZ) are the
two-dimensional Fourier transforms of A1 and A2, respec-
tively, and KY ,KZ are the spatial frequencies in the transverse
plane. The coupling constants are κ1 ≡ iω2

1/k1c
2 and κ2 ≡

iω2
2/2k2c

2, where k1 and k2 are the magnitudes of the wave
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FIG. 2. (Color online) Microscope pictures of the different topo-
logical edge dislocations that were implemented in crystals that
contained a pair of dislocations. An illustration of the designed
structure is presented schematically at the bottom of the figure for
one of the crystals which consists of a periodic structure, and the
two dislocations in the structure are magnified. The left dislocation
is located after one-third of the crystal’s edge relative to the total
length of the crystal and has a topological charge of l = 1. The right
dislocation is located after two-thirds of the edge and has a topological
charge of l = 2. (a)–(c) The three topological charge configurations
that were examined experimentally. The fabricated dislocations in (c)
can be compared with the illustration of the design (connected with
the red dashed line).

vectors of the FF and SH beams in the direction of propagation
of the waves. In addition, we defined �G1 ≡ (�k,KY ,KZ)
and �G2 ≡ (−�k,KY ,KZ) where �k ≡ 2k1 − k2 is the phase
mismatch for a colinear interaction between the two waves.
The right term on the left-hand side of each of these
equations governs the diffraction of the beams inside the
crystal under the paraxial approximation. The terms on the
right-hand side of each of the equations govern the nonlinear
interaction. If the nonlinear coupling is weak such that the
pump intensity is nearly unchanged during the propagation
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in the crystal, Eq. (2b) can be solved by integrating over
the crystal’s length also in the longitudinal direction. In this
case, the spectrum of the SH amplitude, Ã2(�k,KY ,KZ),
is proportional to the Fourier transform of the modulation
structure, χ̃

(2)
2 (�k,KY ,KZ).

III. FABRICATED CONFIGURATIONS AND
EXPERIMENTAL SETUP

In order to test experimentally the effects of embedding
a topological edge dislocation with a fractional topological
charge or of multiple topological edge dislocations with integer
topological charges in nonlinear crystals, we designed and
fabricated crystals with several two-dimensional modulation
patterns of the second-order nonlinear susceptibility. The
designed patterns were implemented in stoichiometric lithium
tantalite (SLT) nonlinear crystals with length dimensions of
1 cm × 1 mm × 0.5 mm by using the technique of electric field
poling. In this fabrication process an electric field pulse was
applied on metallic patterned electrodes, that match to the
desired structures, after they were placed on the crystal’s
X-Y surfaces [21]. In total, six structures which included
topological edge dislocations were fabricated, all of them with
a central period length of Λ = 21 μm. Three of them included
a dislocation with a fractional topological charge of l = 1/2,
l = 3/4, and l = 3/2, respectively. The other three structures
were prepared in order to study the effects of multiple
dislocations with integer topological charges. Hence, each
structure contained a pair of dislocations: The first corresponds
to dislocations with topological charges of l1 = 1 and l2 = 1,
the second corresponds to topological charges of l1 = 2 and
l2 = 2, and the third corresponds to topological charges of
l1 = 1 and l2 = 2. These three pairs of topological charges
were chosen in order to cover all the possible combination
cases of parities in structures that contain two dislocations. For
the benefit of observing the modulation patterns of the second-
order nonlinear susceptibility, the surfaces of the crystals on
the X-Y plane were selectively etched. The etched surface was
then measured using a scanning confocal microscope. The six
fabricated patterns are presented in Figs. 1 and 2.

In the experiment, the FF pump beam was produced by
a tunable CW diode laser that was amplified by an erbium
doped fiber amplifier (EDFA). The wavelength of the pump
beam was set to values in the range of 1.54–1.56 μm in order
to obtain the nonlinear spectral response. To get a significant
nonlinear conversion efficiency we aimed to exploit the largest
element d33 of the second-order susceptibility tensor of an SLT
crystal. Therefore, an interaction of an e-ee SH generation
process was achieved by polarizing the pump beam linearly
along the Z axis of the crystal. The pump beam was focused
to the center of the crystal, with a waist radius of 60 μm. The
phase-matching temperature of 50 ◦C was reached by placing
the crystals in an oven connected to a temperature controller.
For every wavelength of the FF pump beam, the power of the
generated SH beam was measured after the output facet of
the crystal while the residual FF beam was blocked before the
detector by a spectral filter. Sensitive detection was achieved
by chopping the FF beam at 1 kHz and demodulating the
SH signal using a lock-in amplifier. The spectral conversion
efficiency was deduced by measuring the incident power of
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FIG. 3. (Color online) The experimental setup. The red (dark
gray) and green (light gray) colors of the beams illustrate the pump
and SH beams, respectively.

the FF pump for each wavelength. The experimental setup is
shown in Fig. 3.

IV. FRACTIONAL CHARGE EGDE DISLOCATION
EFFECTS

Let’s consider first the effect of a single dislocation with a
fractional topological charge. We present in Fig. 4 numerical
calculation results of the spectral response curves for the
nonlinear SH conversion efficiency as a function of the pump
wavelength, for structures that contain a single topological
edge dislocation, with different values of the topological
charge. The nonlinear conversion efficiency curves that are
shown in the leftmost column [Figs. 4(a), 4(e), and 4(i)] appear
when propagating along a crystal with a modulation structure
that includes a topological dislocation with an integer, even or
odd, topological charge. The case of a single dislocation having
an integer charge was recently reported [28]. Here we extend
the analysis to include a topological dislocation with a frac-
tional topological charge. Thus, we provide a more complete
picture for the behavior of the nonlinear response by looking
also at the cases that exist in between the configurations with an
even or an odd topological charge dislocation. As can be seen
from the simulation results, the nonlinear efficiency response
curves show that an asymmetry appears in the spectral response
and in particular in the peaks in which we get the maximum
SH conversion efficiency. Moreover, the nonlinear response
exhibits a periodic behavior where the symmetry, the asym-
metry, and the periodicity are determined by the topological
charge of the single edge dislocation. As for the nonlinear
spectral response, our reference is the simple periodic structure
without a dislocation [that is, the case with l = 0 in Fig. 4(a)],
which exhibits a single significant global peak of maximum
conversion efficiency at the wavelength of 1.55 μm. This is
the FF quasi-phase-matched wavelength of the dislocation-free
crystal. All the curves were normalized such that the maximum
conversion efficiency is considered to be 1 for the wavelength
that was originally designed to show the maximum conversion
efficiency without the dislocation. Progressing to the right in
the figure [Figs. 4(b)–4(d)], above l = 0, the global peak is
now shifted towards lower wavelengths during a decrease in
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FIG. 4. (Color online) SH conversion efficiency as a function of the input pump wavelength after the propagation through structures that
include a single dislocation with a different value of the topological charge.

the efficiency, while a new local peak of efficiency emerges
above the reference wavelength of 1.55 μm. Therefore, the
existence of a dislocation with a fractional topological charge
leads to the appearance of an asymmetry in the peaks of
the spectral response curves. This trend continues gradually
with increasing values of the fractional charge. When we
reach the odd integer value of l = 1 [in Fig. 4(e)] these
two peaks exhibit identical efficiency. In this case an optimal
conversion efficiency is achieved symmetrically at two new
FF pump wavelengths, which exhibit low efficiency without
the dislocation. In addition, the conversion efficiency of the
originally phase-matched wavelength drops to zero. This spec-
tral response is typical to structures that include a dislocation
with an odd topological charge [28]. Further increase of the
fractional charge beyond the l = 1 value [Figs. 4(f)–4(h)],
strengthens the right peak above the reference wavelength of
1.55 μm while its position is shifted to the left, towards lower
wavelengths. At the same time, the peak to the left of the
wavelength of 1.55 μm is getting lower. Thus, the asymmetry
in the spectral response appears again. When we get to the
case where l = 2 [Fig. 4(i)], it can be seen that one period
of the spectral response construction is completed where
again the spectral SH efficiency curve has one global peak of
maximum conversion efficiency at the wavelength of 1.55 μm.
This symmetric spectral response is typical to structures that
include a dislocation with an even topological charge [28].
By moving forward to cases with higher topological charges
[Figs. 4(j)–4(l)], above the case where l = 2, one can see that
the spectral response curves maintain their shapes repeatedly
relative to the topological charge cases between l = 0 and
l = 1 [Figs. 4(b)–4(d)]. Thus, we can predict the nonlinear
spectral response after propagating through structures that
include a dislocation characterized by any topological charge.
Moreover, these results show what are the relations between

relative peak values of maximum conversion efficiencies for
different cases of the topological charge.

Experimental results for the spectral nonlinear SH con-
version efficiency are shown in Fig. 5 for the crystals with
the structures shown in Fig. 1, having fractional charges of
l = 1/2, l = 3/4, and l = 3/2. These structures represent the
cases that were numerically simulated and shown in Figs. 4(c),
4(d), and 4(g). We measured these three structures in order
to experimentally study the effects of a dislocation with a
fractional topological charge on the nonlinear process. For
each one of these three structures, every nonlinear response
curve that was obtained by measurements or by simulations,
as is presented in Fig. 5, was separately normalized ac-
cording to its maximum. In order to compare between the
measured nonlinear response curves and the curves obtained
by numerical simulations we had to shift up the simulation
curves by approximately 0.5 nm. This spectral offset may
be caused by inaccuracies in the assumed Sellmeier equation
[31] as well as by experimental inaccuracies in determining the
pump’s wavelength or the crystal’s temperature. The measured
nonlinear response curves show good correspondence with the
curves obtained by numerical simulations. One may notice
that the two spectral response curves for the dislocations with
l = 1/2 and l = 3/2 [Figs. 5(a) and 5(c)] exhibit a mirror
symmetry, which demonstrates a difference of half a cycle
between the curves of these two cases when a full cycle is
completed for the case with l = 5/2. In addition, we examined
the relative conversion efficiencies at the peaks for each of the
two structures that included a dislocation with a topological
charge of l = 3/4 and l = 3/2 with reference to the case of
a dislocation with l = 1/2. For the structure that included
a dislocation with l = 3/4, the measured relative conversion
efficiency at the peak was ηmax(l = 3/4)/ηmax(l = 1/2) =
0.87, while the one obtained in simulation was ηmax(l =
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FIG. 5. (Color online) Comparison between the measured and
the simulated spectral SH conversion efficiency curves for structures
that contained a dislocation with a fractional topological charge of
(a) l = 1/2, (b) l = 3/4, and (c) l = 3/2.

3/4)/ηmax(l = 1/2) = 0.82. For the structure that included a
dislocation with l = 3/2, the measured relative conversion
efficiency at the peak was ηmax(l = 3/2)/ηmax(l = 1/2) =
1.07, while the one obtained in simulation was ηmax(l =
3/2)/ηmax(l = 1/2) = 0.99. These results also show good
agreement between the experimental measurements and the
numerical simulations. The insets in Fig. 5(a) show simulations
of the evolution of the generated SH intensity inside the
structure with l = 1/2 as a result of an energy exchange
between the propagated FF pump beam and the SH beam,
for selected wavelengths of the pump. For pump wavelength
of 1549.5 nm, a cumulative construction of the SH leads to the
left global peak in the spectral conversion efficiency curve. For
pump wavelength of 1550.8 nm, destruction of the generated
SH starts at the center of the structure, thereby completely
nulling the SH output power. This occurs as a result of a
full back-conversion phenomenon, in which the generated SH

energy is fully converted back to the original FF energy, when
the beam reaches to the dislocation and propagates through
the remaining half of the crystal. For pump wavelength of
1551.8 nm, a recovery of the generated SH intensity occurs
after passing the dislocation, which leads to a buildup of the
SH intensity and to the right local peak in the phase-matching
spectrum.

V. MULTIPLE EDGE DISLOCATIONS EFFECTS

So far, we have considered a single edge dislocation.
Now we shall examine the effects of multiple dislocations.
In Fig. 6 we present the experimental measurements of
the SH spectrum in crystals that contained two dislocations
with integer topological charges, as is described in Fig. 2.

FIG. 6. (Color online) Comparison between the measured and
the simulated spectral SH conversion efficiency curves for structures
that contained two dislocations with integer topological charges of
(a) l1 = 2 and l2 = 2, (b) l1 = 1 and l2 = 2, and (c) l1 = 1 and l2 = 1.
The insets in (a), (b), and (c) show simulations of the formation
process of the SH intensity inside the crystals, during the propagation
of a pump beam for selected wavelengths. The cases of cumulative
construction, destruction, and recovery of the SH intensity inside the
structures that include different dislocations are demonstrated.
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These crystals were fabricated and measured for testing the
effects of multiple dislocations on the nonlinear conversion
spectrum. The nonlinear response curves that were obtained
by measurements or by simulations, as is presented in Fig. 6,
were separately normalized according to their maximum.
The same spectral offset of approximately 0.5 nm was taken
into account for the comparisons between the measured and
the simulated nonlinear conversion efficiency curves. Good
correspondence was obtained between the measured curves
and the ones that were expected according to simulations.
From the measured phase-matching spectrum of the structure
that contained two dislocations with even topological charges
of l1 = 2 and l2 = 2 [Fig. 6(a)], one can see that one central
significant peak of maximum conversion efficiency appeared
at the wavelength that was originally intended to quasi-phase-
match the SH process in a periodical structure without the
dislocations. This shape of spectral response was also obtained
in the past after the propagation of the FF beam through a
structure that contained only one dislocation with an even
topological charge. We wanted to examine these results in
order to deduce a general conclusion. Therefore, we verified
by numerical simulations and came to the conclusion that this
kind of nonlinear spectral response is obtained with all other
structures that contain any number of dislocations which are
characterized by any even value of the topological charge.
This is a generalization of a previous observation that was
made for crystals with a single dislocation. The inset in
Fig. 6(a) shows a simulation of the cumulative construction
of the SH intensity, during the propagation of a 1.55 μm
FF pump beam, which results in a maximum of conversion
efficiency at the output of the crystal. The highest measured
SH power was obtained for this structure, where for the
wavelength of 1550.4 nm at the peak, we obtained for a pump
power of 10.6 mW a power of 11.2 nW at the SH. Based on
measurements of the SH power values for different FF pump
power inputs, the experimental nonlinear conversion efficiency
at this structure was 1.02 × 10−2%/W , while according to a
simulation, a value of 2.34 × 10−2%/W was obtained for the
corresponding parameters to the experiment. We explain this
difference between the results by the existence of deviations in
the duty cycle of the actual created periodically poled domains
compared to the designed modulation pattern in the crystal,
where one-half of the length period was designed to be +dij

and the other half −dij . In order to test the effect of the duty
cycle of the quasi-phase-matching modulation, we simulated
for this structure the SH spectral efficiency curves for two
additional modulation duty cycle values of 60% and 70%. We
assumed that in each case, the duty cycle is constant throughout
the crystal. The conversion efficiency, at the wavelength which
provides phase matching, was reduced by 10% and 35% for
the 60% and 70% duty cycles, respectively, relative to the
optimal 50% duty cycle. This shows that the deviations in the
poling pattern can explain the reduction in the measured SH
signal. However, in all three simulations, the spectral shape was
identical. These fixed deviations from the designed duty cycle
do not explain the small wavelength shifts at the side peaks that
were observed experimentally. According to the simulations,
a spectral shift of the side peaks is not observed for different
duty cycles, but only a decrease in the SH signal. Nonetheless,
other deviations from the designed patterned structure, such

as local deviations in the modulation duty cycle at different
regions in the structure, as well as local variations in the
quasi-phase-matching period may affect the measurement.

The spectral response for the structure that contained two
dislocations, one with odd topological charge of l1 = 1 and
the second with even topological charge of l2 = 2 [Fig. 6(b)],
shows a different phase-matching spectrum. Two new pump
wavelengths provided symmetric peaks of maximum con-
version efficiency where between them a dip with a local
minimum of conversion efficiency occurred at the wavelength
of 1.55 μm that was originally meant to phase match the
nonlinear process. The insets in Fig. 6(b) show simulations
of the evolution of the SH intensity inside this crystal for
two selected wavelengths of the pump beam. During the
propagation of a 1.549-μm FF pump beam, a recovery of
the SH intensity right after passing the first odd topological
charge dislocation was noticed. In other words, despite the
low back-conversion right after a propagation distance of
one-third of the crystal’s length, the propagation through the
remaining two-thirds of the crystal’s length, that includes the
passing through the second even charge dislocation, leads to
the left peak in the spectral efficiency curve. Unlike the top
inset, for a pump wavelength of 1.55 μm, the SH intensity
is being constructed until one-third of the crystal’s length. A
destruction of the generated SH beam starts from that point
because of the odd topological charge dislocation. After a
full back-conversion, the rebuilding of the SH intensity starts
again only after a propagation distance of two-thirds of the
crystal’s length while passing through the even topological
charge dislocation. This leads only to the dip that appears in
the spectral efficiency curve. We also checked that the order of
the two dislocations does not affect the efficiency spectrum.

The spectral efficiency curve for the structure that contained
two dislocations with odd topological charges of l1 = 1 and
l2 = 1 [Fig. 6(c)] shows that in this case two other pump
wavelengths provide symmetrical global maxima. As opposed
to the former structure or to a structure that contains only one
odd topological charge dislocation at its center, between the
two global peaks, a local maximum occurred at the wavelength
of 1.55 μm of a lower conversion efficiency. The top inset in
Fig. 6(c) shows a simulation of the recovery of the SH intensity
during the propagation of a 1.548-μm pump beam after it
passes the first odd topological charge dislocation. This creates
the left global maximum in the efficiency spectrum. The
bottom inset shows the total destruction and the recovery of
the SH beam during the propagation of a 1.55-μm pump beam
through the crystal. This leads to the local maximum in the
efficiency spectrum. Also for these structures, we examined the
relative conversion efficiencies according to the peaks for each
of the two structures from Figs. 1(a) and 1(c) with reference
to the case from Fig. 1(b). For the structure that included
dislocations with l1 = l2 = 1, the measured relative conversion
efficiency at the peak was ηmax(l1 = l2 = 1)/ηmax(l1 = l2 =
2) = 0.57, while the one obtained from a simulation was
ηmax(l1 = l2 = 1)/ηmax(l1 = l2 = 2) = 0.49. For the structure
that included dislocations with l1 = 1,l2 = 2, the measured
relative conversion efficiency at the peak was ηmax(l1 =
1,l2 = 2)/ηmax(l1 = l2 = 2) = 0.63, while the one obtained
in simulation was ηmax(l1 = 1,l2 = 2)/ηmax(l1 = l2 = 2) =
0.47. These results show that slightly higher efficiencies were
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FIG. 7. (Color online) Spectral SH conversion efficiency for
structures that contain multiple dislocations with odd topological
charges. The simulations were performed for different structures
with a growing amount of dislocations, where the designed patterns
contained dislocations with topological charges of l = 1 and l = 3
arranged alternately.

measured in these two structures, relative to the structure
with even topological charges, compared to the expected
according to simulations. We think that the differences are
caused by the deviations in the duty cycle in the fabricated
structure with even topological charges, where also in the
numerical conversion efficiency measurement we noticed that
the expected value should have been higher. Nevertheless,
we think that the relative efficiencies also present good
correspondence between the experimental measurements and
the theoretical expectations. By simulating the conversion
efficiency spectrum of other structures that included a pair of
edge dislocations, having higher odd charge values, we deduce
that the same nonlinear spectral response as in Fig. 6(c) will
characterize these type of structures.

When an FF pump with different wavelengths passes
through a structure that contains a different number of dislo-
cations with any odd topological charges, the phase-matching
spectrum shows a completely different behavior in comparison
to the case of multiple dislocations characterized by any
even charges. The calculated nonlinear spectral response with
additional odd topological charge dislocations to the structure
is shown in Fig. 7. Therefore, we can deduce that for a
growing number of odd topological charge dislocations we get
a spectral response that is characterized by two symmetrical
global maxima of conversion efficiency. Furthermore, the
spectral distance between these two global peaks increases
while more dislocations are added to the structure. In addition,
new local peaks of maximum conversion efficiency emerge
between the two global peaks. The number of these new local
peaks is correlated with the number of the odd topological
dislocations, where we get N − 1 local peaks for a total number
of N dislocations in the structure. It should be noted that an
FF pump with wavelength of 1.55 μm, which as one can see
results in a global maximum of conversion efficiency in the
dislocation-free structure, also results in a local maximum for
structures with an even amount of odd dislocations, while
a minimal SH power is obtained for structures with an
odd amount of odd dislocations. The conversion efficiency
decreases as the number of the dislocations increases because
we simulated the beam propagation through crystals that

have the same length. For that reason, the SH intensity
cannot be constructed at the same rate because of smaller
propagation distances before the first dislocation, in between
the dislocations, and after the last dislocation. This is a
generalization of a previous observation that was made for
a single dislocation having an odd topological charge [28].

VI. CONCLUSION

We have studied the effects on the nonlinear scattering
of electromagnetic waves, caused by embedded topological
edge dislocations with different topological characters, in
nonlinear photonic crystals. Specifically, we studied the
changes in the spectrum of the SH signal generated in quadratic
nonlinear photonic crystals as a result of dislocations in
the nonlinear structures. The one-dimensional dislocation-free
nonlinear photonic structure exhibits the familiar squared
Sinc spectrum of the SH conversion efficiency. We examined
nonlinear photonic crystals with a single edge dislocation,
characterized by a fractional or an integer topological charge.
In the case of a dislocation with a fractional topological charge,
an asymmetry in the spectral nonlinear conversion efficiency
response was observed. For various fractional topological
charges we observed that the degree of asymmetry had been
determined by the value of the fractional charge. Following
this observation, we were able to realize and show that not
only do these structures present such a clear dependence on
parity, even more than that, the nonlinear conversion efficiency
exhibits a periodic dependence on the topological charge value.

In addition, we examined nonlinear photonic crystals with
multiple edge dislocations that had integer topological charges.
We concluded that in the case of multiple dislocations,
characterized by even topological charges, the nonlinear
spectral response is identical to the response of the ideal,
dislocation-free structure. This general result indicates that
these added dislocations were almost invisible to the FF
beam as they do not affect the nonlinear spectral response.
Furthermore, we show that for structures with multiple edge
dislocations, characterized by odd topological charges, the
added dislocations stamp their fingerprints in the SH spectrum.
These fingerprints are manifested by the rise of two new peaks
of maximal efficiency, in addition to a series of local efficiency
peaks that are governed by the total number of dislocations.
By this result, one can use this method of investigating the
signatures of dislocations on the nonlinear spectral response
in order to deduce the number of dislocations that are present
in a given structure.

Nonlinear photonic crystals pave the way to the study of
the effects of dislocations on nonlinear scattering. As we
presented, dislocations affect the familiar SH efficiency spec-
trum of a one-dimensional χ (2) photonic crystal. It would be
interesting to examine the effects of dislocations on photonic
crystals that possess higher-order nonlinearities [32], as well
as on two-dimensional quadratic photonic structures [33,34].
Furthermore, nonlinear scattering can occur in other media that
exhibit different types of nonlinearities and with other types
of waves such as fluid waves [35], acoustic waves [36], matter
waves, or optical waves in other spectral ranges. Therefore,
nonlinear scattering provides a new tool to study dislocations
in materials by probing the material with one frequency and
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observing the effect of the dislocation on its harmonics. In
addition to its scientific merit, this characterization scheme
can be attractive in cases in which the fundamental beam is
absorbed or scattered in the material.

ACKNOWLEDGMENTS

This work was supported by the Israel Science Foundation,
Grant No. 1310/13.

[1] G. I. Taylor, The mechanism of plastic deformation of crystals,
Proc. R. Soc. A 145, 362 (1934).

[2] N. F. Mott, Dislocations and the theory of solids, Nature
(London) 171, 234 (1953).

[3] R. Landauer, Spatial variation of currents and fields due to
localized scatterers in metallic conduction, IBM J. 1, 223
(1957).

[4] T. Ishida, K. Kakushima, T. Mizoguchi, and H. Fujita, Role
of dislocation movement in the electrical conductance of
nanocontacts, Sci. Rep. 2, 623 (2012).

[5] Y. Oyama, Role of dislocation scattering on electron mobility
in coalescent epitaxial lateral overgrowth layers of InP, J. Appl.
Phys. 115, 043722 (2014).

[6] R. L. Sproull, M. Moss, and H. Weinstock, Effect of dislocations
on the thermal conductivity of lithium fluoride, J. Appl. Phys.
30, 334 (1959).

[7] D. Kotchetkov, J. Zou, A. A. Balandin, D. I. Florescu, and F. H.
Pollak, Effect of dislocations on thermal conductivity of GaN
layers, Appl. Phys. Lett. 79, 4316 (2001).

[8] D. Shilo and E. Zolotoyabko, Visualization of surface acous-
tic wave scattering by dislocations, Ultrasonics 40, 921
(2002).

[9] A. Maurel, J.-F. Mercier, and F. Lund, Elastic wave propagation
through a random array of dislocations, Phys. Rev. B 70, 024303
(2004).

[10] J. F. Nye and M. V. Berry, Dislocations in wave trains, Proc. R.
Soc. A 336, 165 (1974).

[11] M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and
N. R. Heckenberg, Topological charge and angular momentum
of light beams carrying optical vortices, Phys. Rev. A 56, 4064
(1997).

[12] A. Lopez Ariste, M. Collados, and E. Khomenko, Dislocations
in magnetohydrodynamic waves in a stellar atmosphere, Phys.
Rev. Lett. 111, 081103 (2013).

[13] L. Korkidi, K. Barkan, and R. Lifshitz, in Aperiodic Crystals:
Analysis of Dislocations in Quasicrystals Composed of Self-
assembled Nanoparticles, edited by S. Schmid, R. L. Withers,
and R. Lifshitz (Springer, Dordrecht, 2013), pp. 117–124.

[14] Y. V. Kartashov and L. Torner, Matter-wave soliton control in
optical lattices with topological dislocations, Phys. Rev. A 74,
043617 (2006).

[15] B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N.
Christodoulides, and J. W. Fleischer, Wave and defect dynamics
in nonlinear photonic quasicrystals, Nature (London) 440, 1166
(2006).

[16] B. Freedman, R. Lifshitz, J. W. Fleischer, and M. Segev, Phason
dynamics in nonlinear photonic quasicrystals, Nat. Mater. 6, 776
(2007).

[17] K. J. H. Law, A. Saxena, P. G. Kevrekidis, and A. R. Bishop,
Stable structures with high topological charge in nonlinear
photonic quasicrystals, Phys. Rev. A 82, 035802 (2010).

[18] M. Padgett, J. Courtial, and L. Allen, Light’s orbital angular
momentum, Phys. Today 57, 35 (2004).

[19] M. Uchida and A. Tonomura, Generation of electron beams
carrying orbital angular momentum, Nature (London) 464, 737
(2010).

[20] J. Verbeeck, H. Tian, and P. Schattschneider, Production and
application of electron vortex beams, Nature (London) 467, 301
(2010).

[21] A. Arie and N. Voloch, Periodic, quasi-periodic, and random
quadratic nonlinear photonic crystals, Laser Photon. Rev. 4, 355
(2010).

[22] C. B. Clausen and L. Torner, Spatial switching of quadratic
solitons in engineered quasi-phase-matched structures, Opt.
Lett. 24, 7 (1999).

[23] J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, Quasi-
phase-matching engineering for spatial control of entangled two-
photon states, Opt. Lett. 29, 376 (2004).

[24] C. B. Clausen and L. Torner, Self-bouncing of quadratic solitons,
Phys. Rev. Lett. 81, 790 (1998).

[25] X.-S. Song, F. Xu, and Y.-Q. Lu, Electromagnetically induced
transparency-like transmission in periodically poled lithium
niobate with a defect, Opt. Lett. 36, 4434 (2011).

[26] N. Voloch-Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler,
and A. Arie, Twisting light by nonlinear photonic crystals, Phys.
Rev. Lett. 108, 233902 (2012).

[27] K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler,
and A. Arie, Azimuthal and radial shaping of vortex beams
generated in twisted nonlinear photonic crystals, Opt. Lett. 38,
5470 (2013).

[28] S. Sharabi, N. Voloch-Bloch, I. Juwiler, and A. Arie, Dislocation
parity effects in crystals with quadratic nonlinear response, Phys.
Rev. Lett. 112, 053901 (2014).

[29] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan,
Interactions between light waves in a nonlinear dielectric, Phys.
Rev. 127, 1918 (1962).

[30] J. M. Jarem and P. P. Banerjee, Computational Methods
for Electromagnetic and Optical Systems (Marcel Dekker,
New York, 2000).

[31] I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin,
and G. Gadret, Linear and nonlinear optical properties of
MgO:LiTaO3, Appl. Phys. B 96, 423 (2009).

[32] J. L. Bredas, C. Adant, P. Tackx, A. Persoons, and B. M. Pierce,
Third-order nonlinear optical response in organic materials:
Theoretical and experimental aspects, Chem. Rev. 94, 243
(1994).

[33] V. Berger, Nonlinear photonic crystals, Phys. Rev. Lett. 81, 4136
(1998).

[34] N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J.
Richardson, and D. C. Hanna, Hexagonally poled Lithium
Niobate: A two-dimensional nonlinear photonic crystal, Phys.
Rev. Lett. 84, 4345 (2000).

[35] O. M. Phillips, On the dynamics of unsteady gravity waves of
finite amplitude, J. Fluid Mech. 9, 193 (1960).

[36] A. P. Mayer, Surface acoustic waves in nonlinear elastic media,
Phys. Rep. 256, 237 (1995).

053841-9

http://dx.doi.org/10.1098/rspa.1934.0106
http://dx.doi.org/10.1098/rspa.1934.0106
http://dx.doi.org/10.1098/rspa.1934.0106
http://dx.doi.org/10.1098/rspa.1934.0106
http://dx.doi.org/10.1038/171234a0
http://dx.doi.org/10.1038/171234a0
http://dx.doi.org/10.1038/171234a0
http://dx.doi.org/10.1038/171234a0
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1038/srep00623
http://dx.doi.org/10.1038/srep00623
http://dx.doi.org/10.1038/srep00623
http://dx.doi.org/10.1038/srep00623
http://dx.doi.org/10.1063/1.4864016
http://dx.doi.org/10.1063/1.4864016
http://dx.doi.org/10.1063/1.4864016
http://dx.doi.org/10.1063/1.4864016
http://dx.doi.org/10.1063/1.1735163
http://dx.doi.org/10.1063/1.1735163
http://dx.doi.org/10.1063/1.1735163
http://dx.doi.org/10.1063/1.1735163
http://dx.doi.org/10.1063/1.1427153
http://dx.doi.org/10.1063/1.1427153
http://dx.doi.org/10.1063/1.1427153
http://dx.doi.org/10.1063/1.1427153
http://dx.doi.org/10.1016/S0041-624X(02)00232-9
http://dx.doi.org/10.1016/S0041-624X(02)00232-9
http://dx.doi.org/10.1016/S0041-624X(02)00232-9
http://dx.doi.org/10.1016/S0041-624X(02)00232-9
http://dx.doi.org/10.1103/PhysRevB.70.024303
http://dx.doi.org/10.1103/PhysRevB.70.024303
http://dx.doi.org/10.1103/PhysRevB.70.024303
http://dx.doi.org/10.1103/PhysRevB.70.024303
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1098/rspa.1974.0012
http://dx.doi.org/10.1103/PhysRevA.56.4064
http://dx.doi.org/10.1103/PhysRevA.56.4064
http://dx.doi.org/10.1103/PhysRevA.56.4064
http://dx.doi.org/10.1103/PhysRevA.56.4064
http://dx.doi.org/10.1103/PhysRevLett.111.081103
http://dx.doi.org/10.1103/PhysRevLett.111.081103
http://dx.doi.org/10.1103/PhysRevLett.111.081103
http://dx.doi.org/10.1103/PhysRevLett.111.081103
http://dx.doi.org/10.1103/PhysRevA.74.043617
http://dx.doi.org/10.1103/PhysRevA.74.043617
http://dx.doi.org/10.1103/PhysRevA.74.043617
http://dx.doi.org/10.1103/PhysRevA.74.043617
http://dx.doi.org/10.1038/nature04722
http://dx.doi.org/10.1038/nature04722
http://dx.doi.org/10.1038/nature04722
http://dx.doi.org/10.1038/nmat1981
http://dx.doi.org/10.1038/nmat1981
http://dx.doi.org/10.1038/nmat1981
http://dx.doi.org/10.1038/nmat1981
http://dx.doi.org/10.1103/PhysRevA.82.035802
http://dx.doi.org/10.1103/PhysRevA.82.035802
http://dx.doi.org/10.1103/PhysRevA.82.035802
http://dx.doi.org/10.1103/PhysRevA.82.035802
http://dx.doi.org/10.1063/1.1768672
http://dx.doi.org/10.1063/1.1768672
http://dx.doi.org/10.1063/1.1768672
http://dx.doi.org/10.1063/1.1768672
http://dx.doi.org/10.1038/nature08904
http://dx.doi.org/10.1038/nature08904
http://dx.doi.org/10.1038/nature08904
http://dx.doi.org/10.1038/nature08904
http://dx.doi.org/10.1038/nature09366
http://dx.doi.org/10.1038/nature09366
http://dx.doi.org/10.1038/nature09366
http://dx.doi.org/10.1038/nature09366
http://dx.doi.org/10.1002/lpor.200910006
http://dx.doi.org/10.1002/lpor.200910006
http://dx.doi.org/10.1002/lpor.200910006
http://dx.doi.org/10.1002/lpor.200910006
http://dx.doi.org/10.1364/OL.24.000007
http://dx.doi.org/10.1364/OL.24.000007
http://dx.doi.org/10.1364/OL.24.000007
http://dx.doi.org/10.1364/OL.24.000007
http://dx.doi.org/10.1364/OL.29.000376
http://dx.doi.org/10.1364/OL.29.000376
http://dx.doi.org/10.1364/OL.29.000376
http://dx.doi.org/10.1364/OL.29.000376
http://dx.doi.org/10.1103/PhysRevLett.81.790
http://dx.doi.org/10.1103/PhysRevLett.81.790
http://dx.doi.org/10.1103/PhysRevLett.81.790
http://dx.doi.org/10.1103/PhysRevLett.81.790
http://dx.doi.org/10.1364/OL.36.004434
http://dx.doi.org/10.1364/OL.36.004434
http://dx.doi.org/10.1364/OL.36.004434
http://dx.doi.org/10.1364/OL.36.004434
http://dx.doi.org/10.1103/PhysRevLett.108.233902
http://dx.doi.org/10.1103/PhysRevLett.108.233902
http://dx.doi.org/10.1103/PhysRevLett.108.233902
http://dx.doi.org/10.1103/PhysRevLett.108.233902
http://dx.doi.org/10.1364/OL.38.005470
http://dx.doi.org/10.1364/OL.38.005470
http://dx.doi.org/10.1364/OL.38.005470
http://dx.doi.org/10.1364/OL.38.005470
http://dx.doi.org/10.1103/PhysRevLett.112.053901
http://dx.doi.org/10.1103/PhysRevLett.112.053901
http://dx.doi.org/10.1103/PhysRevLett.112.053901
http://dx.doi.org/10.1103/PhysRevLett.112.053901
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1103/PhysRev.127.1918
http://dx.doi.org/10.1007/s00340-009-3502-3
http://dx.doi.org/10.1007/s00340-009-3502-3
http://dx.doi.org/10.1007/s00340-009-3502-3
http://dx.doi.org/10.1007/s00340-009-3502-3
http://dx.doi.org/10.1021/cr00025a008
http://dx.doi.org/10.1021/cr00025a008
http://dx.doi.org/10.1021/cr00025a008
http://dx.doi.org/10.1021/cr00025a008
http://dx.doi.org/10.1103/PhysRevLett.81.4136
http://dx.doi.org/10.1103/PhysRevLett.81.4136
http://dx.doi.org/10.1103/PhysRevLett.81.4136
http://dx.doi.org/10.1103/PhysRevLett.81.4136
http://dx.doi.org/10.1103/PhysRevLett.84.4345
http://dx.doi.org/10.1103/PhysRevLett.84.4345
http://dx.doi.org/10.1103/PhysRevLett.84.4345
http://dx.doi.org/10.1103/PhysRevLett.84.4345
http://dx.doi.org/10.1017/S0022112060001043
http://dx.doi.org/10.1017/S0022112060001043
http://dx.doi.org/10.1017/S0022112060001043
http://dx.doi.org/10.1017/S0022112060001043
http://dx.doi.org/10.1016/0370-1573(94)00088-K
http://dx.doi.org/10.1016/0370-1573(94)00088-K
http://dx.doi.org/10.1016/0370-1573(94)00088-K
http://dx.doi.org/10.1016/0370-1573(94)00088-K



