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Nondiffractive Bessel beams are well known to have infinite energy and infinite orbital angular momentum
(OAM). However, when normalized to unity of energy, their OAM is finite. In this work, we derive an analytical
relationship for calculating the normalized OAM of the superposition of off-axis Bessel beams characterized by
the same topological charge. We show that if the constituent beams of the superposition have real-valued weight
coefficients, the total OAM of the superposition of the Bessel beams equals that of an individual nonshifted Bessel
beam. This property enables generating nondiffractive beams with different intensity distributions but identical
OAM. The superposition of a set of identical Bessel beams centered on an arbitrary-radius circle is shown to be
equivalent to an individual constituent Bessel beam put in the circle center. As a result of a complex shift of the
Bessel beam, the transverse intensity distribution and OAM of the beam are also shown to change. We show that,
in the superposition of two or more complex-shifted Bessel beams, the OAM may remain unchanged, while the
intensity distribution is changed. Numerical simulation is in good agreement with theory.
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I. INTRODUCTION

Bessel beams, discovered in 1987 [1,2], possess a variety
of remarkable properties. They travel without diffraction over
a certain distance in free space [1] and generate optical tubes
or cavities on the optical axis [3,4], also featuring a property
of self-healing following a distortion caused by a minor
obstacle [5,6].

Bessel beams have an orbital angular momentum
(OAM) [7,8]. The superposition of Bessel beams can be axially
periodic (analog of the Talbot effect) [9,10] or experience
rotation about the optical axis upon propagation [11,12].

Bessel beams can be generated using digital holo-
grams [3,4,13], a conical refractive axicon [14,15], a diffractive
vortex axicon [16], diffractive optical elements [11,12], and
spatial light modulators [17]. It is interesting that astigmatic
Bessel beams can be generated by simply tilting the diffractive
element or illuminating the diffractive vortex axicon by a tilted
beam [18].

Bessel beams have found a variety of applications. One of
the uses is for micromanipulation intended for simultaneously
trapping several microparticles on the optical axis [19,20] or
rotating individual, or a number of, microparticles about the
optical axis [21]. Using Bessel beams, it is possible to trap and
accelerate individual cooled atoms [22,23]. Recently proposed
Hankel-Bessel beams [24] may find use in atmospheric
probing because they are immune to atmospheric turbulence
[25]. Theoretical analysis of vector Bessel beams was for the
first time conducted in Refs. [26,27] and analytical relations
for the OAM density were derived in Refs. [7,8,28]. It
should be noted that because the total energy of a Bessel
beam is infinite, total OAM is also infinite. Because of
this, prior to the present work, no study of OAM of the
entire Bessel beams has previously been conducted. As
well as defining eigenfunctions for circular billiards, Bessel
modes also represent resonant geometric modes that possess
OAM [29].

More recently, nonparaxial asymmetric Bessel modes [30]
and paraxial asymmetric Bessel-Gaussian beams [31] have
been proposed. These laser beams have been shown to produce
the transverse intensity pattern in the form of a semicrescent.
In Ref. [32], the asymmetric Bessel modes were studied
experimentally using a digital micromirror array. By analogy
with Ref. [30], asymmetric Chebyshev-Bessel beams have also
been proposed [33].

Previously, study of the superposition of axial Bessel
beams has only been reported [10–12,19,28]. The study of
the superposition of off-axis laser beams discussed in Ref.
[29] did not involve Bessel beams.

In this work, we analyze the superposition of off-axis Bessel
beams of the same order and topological charge. A general
analytical expression for the OAM of the superposition under
study has been derived. We show that if the constituent beams
of the superposition have real-valued weight coefficients, the
total OAM of the superposition of the Bessel beams equals
that of an individual nonshifted Bessel beam. This property
enables generating nondiffractive beams with different inten-
sity distributions but identical OAM. The superposition of a
set of identical Bessel beams centered on an arbitrary-radius
circle is shown to be equivalent to an individual constituent
Bessel beam put in the circle center. As a result of a complex
shift of the Bessel beam, the transverse intensity pattern
and OAM of the beam are also shown to change. We show
that in the superposition of two or more complex-shifted
Bessel beams, the OAM may remain unchanged, while the
intensity distribution is changed. Numerical simulation is in
good agreement with theory.

II. FOURIER SPECTRUM OF A SHIFTED BESSEL BEAM

The complex amplitude of a nonparaxial stationary
light field that satisfies the Helmholtz equation has been
known to be expressed as the angular spectrum of plane
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waves [34]:

E(x,y,z) =
∫∫

R2
A(ξ,η) exp[ik(ξx + ηy

+ ikz
√

1 − ξ 2 − η2)] dξ dη, (1)

where k is the wave number of monochromatic light and
A(ξ,η) is the complex amplitude of the angular spectrum of
plane waves. In polar coordinates (r,φ), Eq. (1) takes the form:

E(r,φ,z) =
∫∫

R2
A(ρ,θ ) exp[ikrρ cos(θ − φ)

+ ikz
√

1 − ρ2)]ρ dρ dθ, (2)

where (ρ,θ ) are the polar coordinates in the Fourier plane. If
the beam is shifted from the axis by a Cartesian vector (x0,y0),
the amplitude of the angular spectrum of plane waves is given
by

A′(ρ,θ ) = A(ρ,θ ) exp[−ikρ(x0 cos θ + y0 sin θ )], (3)

where A(ρ,θ ) is the amplitude of the angular spectrum of
plane waves for the original nonshifted beam. Note that the
shift coordinates (x0,y0) may take complex values.

The angular spectrum of a nonshifted n-order Bessel beam
has been known [30] to be given by

An(ρ,θ ) = (−i)n

αλ
exp(inθ )δ

(
ρ − α

k

)
, (4)

where δ(x) is the Dirac δ function and α is the scale factor of
the nonshifted Bessel mode

En(r,φ,z) = exp(inφ + iz
√

k2 − α2)Jn(αr), (5)

where Jn(x) is the n-order Bessel function of the first kind. In
view of Eq. (3), the amplitude of the angular spectrum of the
shifted n-order Bessel beam is

A′
n(ρ,θ ) = (−i)n

αλ
exp(inθ )δ

(
ρ − α

k

)

× exp[−ikρ(x0 cos θ + y0 sin θ )]. (6)

III. RELATION BETWEEN THE AMPLITUDES OF
SPECTRA OF SHIFTED AND NONSHIFTED

BESSEL BEAMS

We shall find coefficients Amn of a series that describes the
expansion of the amplitude of the spectrum of a shifted n-order
Bessel beam (6) in terms of the amplitudes of the spectrum of
the nonshifted different-order Bessel beams:

A′
n(ρ,θ ) = δ

(
ρ − α

k

) ∞∑
p=−∞

Apn

(−i)p

αλ
exp(ipθ ). (7)

Multiplying both sides of Eq. (7) by [αλ/δ(ρ − α/k)]
exp(−imθ ) and integrating over θ from 0 to 2π we obtain:

∫ 2π

0
exp[i(n − m)θ − iα(x0 cos θ + y0 sin θ )]dθ

= in
∞∑

p=−∞
Apn(−i)p2πδpm. (8)

In the left-hand side of Eq. (8), we have∫ 2π

0
exp(inθ + ia0 cos θ + ib0 sin θ )dθ

= 2π

⎛
⎝ ia0 − b0√

a2
0 + b2

0

⎞
⎠

n

Jn

(√
a2

0 + b2
0

)
, (9)

where a0 and b0 are some constants (not necessarily real).
In view of Eq. (9), the coefficients in the right-hand side of

Eq. (8) are

Amn =
⎛
⎝ x0 + iy0√

x2
0 + y2

0

⎞
⎠

n−m

Jm−n

(
α

√
x2

0 + y2
0

)
. (10)

In particular, if the same-value shift is real on one
coordinate and imaginary on the other (x0 = c/α,y0 = ic/α),
the coefficients in Eq. (10) are simplified to

Amn =
{ cm−n

(m−n)! if m � n,

δnm if m � n.
(11)

In this particular case, the amplitude of the angular spectrum
of plane waves for the shifted Bessel beam can be represented
by a linear combination of the spectrum of the different-order
Bessel modes:

A′
n(ρ,θ ) = δ

(
ρ − α

k

)

×
∞∑

p=0

cp

p!

(−i)n+p

αλ
exp[i(n + p)θ ], (12)

with the parameter c defining the degree of asymmetry of
the shifted n-order Bessel mode. The angular spectrum of the
shifted Bessel mode in Eq. (12) is seen to be identical to that
of an asymmetric Bessel mode [30].

Rearranging Eq. (1) with use of Eqs. (6) and (9), we obtain
the relationship for the amplitude of the shifted Bessel beam:

E′
n(x,y,z) = exp(iz

√
k2 − α2)

×
[

(x − x0) + i(y − y0)√
(x − x0)2 + (y − y0)2

]n

× Jn(α
√

(x − x0)2 + (y − y0)2). (13)

IV. ORBITAL ANGULAR MOMENTUM OF A SHIFTED
BESSEL BEAM

Projection of OAM on the optical axis z and total power of
the laser beam can be found from the relations [30]:

iJz =
∫∫

R2
E∗ ∂E

∂φ
rdrdφ =

(
2π

k

)2 ∫∫
R2

A∗ ∂A

∂θ
ρdρdθ,

(14)

W =
∫∫

R2
E∗Erdrdφ =

(
2π

k

)2 ∫∫
R2

A∗Aρdρdθ, (15)

When calculating Eqs. (14) and (15) for the shifted Bessel
beam, we shall utilize Eq. (6). Then the projection of OAM
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onto the optical axis is

Jz = λ

α
δ(0)

[
nI0(2αr0i) + α

r0i

Im(y0x
∗
0 )I1(2αr0i)

]
, (16)

where r0i = [(Imx0)2 + (Imy0)2]1/2,I0(x),I1(x) are modified
Bessel functions, whereas the total power of the beam is

W = δ(0)

kα

∫ 2π

0
exp[2α(Imx0 cos θ + Imy0 sin θ )]dθ

= λ

α
δ(0)I0(2αr0i), (17)

where δ(0) is the Dirac δ function at zero. From Eqs. (16)
and (17), we can infer that although both the projection of
OAM onto the optical axis and the power of the shifted Bessel
beam are infinite, their ratio is finite:

Jz

W
= n + α

r0i

Im(x∗
0y0)

I1(2αr0i)

I0(2αr0i)
. (18)

From Eq. (18) it follows that if the coordinates of the shift
vector (x0,y0) are both purely real or purely imaginary, the
normalized OAM in Eq. (18) equals that of a nonshifted Bessel
beam:

Jz

W
= n. (19)

The normalized OAM of the shifted and nonshifted Bessel
beams, Eqs. (18) and (19), will differ only when the shift is real
on one coordinate and imaginary on the other. For instance,
assuming x0 = b/α and y0 = ic/α, the OAM in Eq. (18) takes
the form:

Jz

W
= n + b

I1(2|c|)
I0(2|c|) . (20)

It can be seen that at b > 0, the OAM in Eq. (20) is larger
than that in Eq. (19), becoming smaller at b < 0. Note that
the change of the beam shape is defined by the magnitude of
the imaginary shift. The intensity pattern of the shifted beam
in Eq. (13) takes the form of an ellipse at small c < 1 and
is shaped as a semicrescent at c > 1, finally taking the form
of an astigmatic Gaussian beam at c >> 1 [30]. On the x

axis, the center of the Bessel beam in Eq. (5) is shifted by
�x = (b − c)/α.

V. ORBITAL ANGULAR MOMENTUM OF THE
SUPERPOSITION OF SHIFTED BESSEL BEAMS

Let us analyze the superposition of P shifted n-order Bessel
beams of Eq. (13). Here the amplitude of angular spectrum of
plane waves is given by

A(ρ,θ ) =
P−1∑
p=0

CpApn(ρ,θ ), (21)

where

Apn(ρ,θ ) = (−i)n

αλ
exp(inθ )δ

(
ρ − α

λ

)

× exp[−ikρ(xp cos θ + yp sin θ )] (22)

is the amplitude of angular spectrum of the p-th constituent
beam shifted by a complex vector with coordinates (xp,yp).

Based on (14) and (15), the normalized OAM of the superpo-
sition in Eq. (21) is given by

Jz

W
= n − iα

∑P−1
p=0

∑P−1
q=0 C∗

pCq
x∗

pyq−xqy∗
p

Rpq
J1(αRpq)∑P−1

p=0

∑P−1
q=0 C∗

pCqJ0(αRpq)
, (23)

where J0(x),J1(x) are the Bessel functions of the zero and first
order,

Rpq =
√

(x∗
p − xq)2 + (y∗

p − yq)2,
(24)

Rpp = 2i

√
(Imxp)2 + (Imyp)2.

Although there is an imaginary factor iα in Eq. (23), the
entire relation is real. This conclusion can be made from
the facts that (i) at p = q, |Cp|2 in the numerator is real,
the magnitudes Rpq and J1(αRpq) are purely imaginary,
and the difference of two complex conjugated numbers
x∗

pyp − xpy∗
p is also purely imaginary and (ii) for any p and

q, which are not equal to each other, Rpq = R∗
qp, whereas the

terms with indices (p,q) and (q,p) also represent the difference
of two complex conjugated numbers.

It can be shown that with all constituent Bessel beams in
the superposition (21) shifted by a real vector (xp,yp) and all
coefficients Cp assumed to be real, the numerator in (23) equals
zero, so the total OAM of the superposition equals that of an
individual nonshifted n-order Bessel beam in Eq. (19). This is
a key finding of the present research. Based on it, it becomes
possible to form the most diverse nonparaxial laser beams
that would have different transverse intensity distributions but
identical OAM of Eq. (19), while traveling without diffraction.
Examples of such beams are discussed below.

From Eq. (23), interesting particular cases can be inferred. If
P = 2,x0 = c/α,y0 = ic/α,x1 = c/α,y1 = ic/α, then R00 =
R11 = 2ic/α,R01 = R10 = 0, a simple expression for the
normalized OAM can be derived [with the coefficients in
Eq. (21) defined by arbitrary complex numbers C0,C1]:

Jz

W
= n + c(|C0|2 − |C1|2)I1(2|c|)

(|C0|2 + |C1|2)I0(2|c|) + 2Re{C∗
0C1} . (25)

Equation (25) suggests that in the superposition of two
n-order Bessel beams with complex (purely imaginary) but
matching shifts on one axis and equal coefficients |C0| =
|C1|, the normalized OAM of Eq. (25) equals OAM of an
individual nonshifted Bessel beam of n order, Eq. (19). Thus,
assuming |C0| = |C1|, the transverse intensity pattern of the
superposition of two shifted Bessel beams can be varied
(because with varying c, the Bessel beam’s shape varies),
whereas the total OAM remains unchanged.

VI. SUPERPOSITION OF THREE SHIFTED
BESSEL BEAMS

Below we analyze a superposition of three n-order Bessel
beams that are shifted so their centers are found at the vertices
of an equilateral triangle. Thus, in the superposition of Eq. (21),
P = 3,R01 = R02 = R12, the weight coefficients C0,C1,C2

are arbitrary complex numbers, with the coordinates of the
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complex shift vector assumed to be given by
{
xp = R0 cos

( 2πp

3

) + c
α

exp
(−iγ − i

2πp

3

)
,

yp = R0 sin
( 2πp

3

) + i c
α

exp
(−iγ − i

2πp

3

)
,

(26)

where R0 is the center of a circle on which the singularity
centers of the shifted Bessel beams are found, c defines the
asymmetry of the shifted Bessel beam, and γ is the angle of
rotation of the asymmetric shifted Bessel beam. Then OAM is

Jz

W
= n+±D1ξI1(2c) + Im{D2(ξ ∓ ic

√
3)J1(

√
3ξ ± ic)}

D1I0(2c) + 2Re{D2J0(
√

3ξ ± ic)} ,

(27)

with “+” taken for γ = 0 and “−” taken for γ = π ,

D1 = |C0|2 + |C1|2 + |C2|2,
(28)

D2 = C∗
0C1 + C∗

1C2 + C∗
2C0,

where ξ = αR0 ± c. In a particular case of γ = π,c = αR0,
the ξ parameter equals zero and Eq. (27) is rearranged to

Jz

W
= n + c

√
3I1(c)Im{D2}

D1I0(2c) + 2I0(c)Re{D2} . (29)

From (29), we can infer that assuming real coefficients
C0,C1,C2, the term Im{D2} in (29) equals zero and the OAM of
the superposition of three shifted n-order Bessel beams equals
OAM of an individual nonshifted Bessel beam of Eq. (19).

By way of illustration, Fig. 1 depicts the calculated (a)
intensity pattern and (b) phase of the superposition of three
shifted Bessel beams with topological charge n = 3. The OAM
of the superposition is Jz/W = 3.

Figure 2 depicts the encoded phase [Fig. 2(a)] of the
superposition of three shifted Bessel beams with topological
charge n = 3 [Fig. 1(b)]. The phase was fed to a spatial light
modulator SLM PLUTO-VIS (1920 × 1080 resolution, 8-μm
pixel size).

Figures 2(b)–2(d) depicts the SLM-aided intensity patterns
generated in reflection by the incident plane wave with linear
polarization and wavelength of 633 nm at different distances.
From Fig. 2, the beam is seen to preserve its structure upon
propagation, and the intensity pattern is in agreement with the
simulation results [Fig. 1(a)]. The intensity was measured with

FIG. 1. (Color online) (a) Intensity and (b) phase (π , black; −π ,
white) of the superposition of three shifted Bessel beams with
parameters: n = 3, R0 = 4λ, α = 1/λ, c = 4, γ = π , vector of
weight coefficients C = [1,1,1]. Frame size, 2R = 60λ.

FIG. 2. (Color online) (a) Encoded phase [Fig. 1(b)] to generate
a Bessel beam with the transverse intensity pattern shaped as
an equilateral triangle and (b) experimentally generated intensity
patterns at different distances from the plane z = 0: (b) 0 mm,
(c) 200 mm, and (d) 400 mm. Mesh step (distance between the ticks)
is 0.5 mm.

a complementary metal-oxide-semiconductor camera MDCE-
5A (1/2 ′′, 1280 × 1024 resolution).

Figure 3 depicts the calculated phase and intensity distri-
butions generated by the superposition of three shifted Bessel
beams with identical weight coefficients, C = [1,1,1], taken
at different values of the rest parameters: n = 5, R0 = 8λ, and
c = 3. In this case, the diffraction pattern differs entirely, with
three bright spots being generated instead of an equilateral
triangle. Because in this beam c �= αR0, OAM cannot be
derived from Eq. (29). According to Eq. (27), the OAM of
this beam is fractional and equals

Jz

W
= 5 + Im{(5 + i3

√
3)J1(5

√
3 − 3i)} − 5I1(6)

I0(6) + 2Re{J0(5
√

3 − 3i)} ≈ 0.62.

FIG. 3. (Color online) Calculated (a) intensity and (b) phase (π ,
black; −π , white) patterns generated by the superposition of three
shifted Bessel beams with parameters n = 5, R0 = 8λ, α = 1/λ, c =
3, γ = π , weight coefficient vector, C = [1,1,1]. Frame size, 2R =
30λ.
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FIG. 4. (Color online) (a) Encoded phase to generate the super-
position of three Bessel beams with the transverse intensity pattern
featuring three bright spots [Fig. 3(a)] and experimentally generated
intensity patterns at different distances from the plane z = 0:
(b) 0 mm, (c) 200 mm, and (d) 400 mm. Mesh step (distance between
the ticks), 0.5 mm.

Figure 4 depicts the SLM-aided [Fig. 4(a)] phase and
[Figs. 4(b)–4(d)] intensity patterns generated at different

distances by the superposition of three shifted Bessel beams
with parameters n = 5, R0 = 8λ, α = 1/λ, c = 3, and γ = π .
From Fig. 4, the experimental diffraction patterns are seen to
be in agreement with the calculated intensity distribution in
Fig. 3(a).

VII. SUPERPOSITION OF IDENTICAL BESSEL BEAMS
FOUND AT THE VERTICES OF A REGULAR POLYGON

As in the previous case, we shall analyze the superposition
of P shifted n-order Bessel beams with their singularity
centers found at the vertices of a regular polygon [similar
to (26)]:

xp = R0 cos

(
2πp

P

)
+ c

α
exp

(
− iγ − i

2πp

P

)
,

(30)

yp = R0 sin

(
2πp

P

)
+ i

c

α
exp

(
− iγ − i

2πp

P

)
.

where p = 0, . . . ,P − 1.
For certainty, assume γ = π and c = αR0. Then we have,

instead of (30),

xp = iR0 sin

(
2πp

P

)
,

(31)

yp = −iR0 cos

(
2πp

P

)
.

The general relationship for the OAM of Eq. (23) takes the
form:

Jz

W
= n + α

2R0
∑P−1

p=1

∑p−1
q=0 Im{C∗

pCq} sin
[

π(p−q)
P

]
I1

{
2αR0

[
π(p−q)

P

]}
∑P−1

p=0 |Cp|2I0(2αrpi) + 2
∑P−1

p=1

∑p−1
q=0 Re{C∗

pCqJ0(αRpq)}
. (32)

With all coefficients Cp assumed to be real, the numerator
in Eq. (32) equals zero and OAM of the superposition of
shifted Bessel beams equals that of an individual nonshifted
Bessel beam in Eq. (19). By way of illustration, Fig. 5 depicts
the numerically simulated intensity pattern and phase for the

FIG. 5. (Color online) (a) Intensity and (b) phase (π , black; −π ,
white color) of a superposition of four (P = 4) shifted Bessel
beam with parameters n = 7, R0 = 6λ, α = 1/λ, c = 6, γ = π ,
C = [1,1,1,1]. Frame size, 2R = 60λ.

superposition of four shifted Bessel beams with topological
charge n = 7. The normalized OAM of the superposition
equals Jz/W = 7. As seen in Fig. 5(b), within a main
squarelike intensity ring there are seven optical vortices with
topological charge +1.

Figure 6 depicts the SLM-aided encoded phase [Fig. 6(a)]
and intensity patterns [Figs. 6(b)–6(d)] generated at different
distances by the superposition of four shifted Bessel beams
(Fig. 5) with topological charge n = 7, R0 = 6λ, α = 1/λ,
c = 6, γ = π , C = [1,1,1,1]. The diffraction patterns in Fig. 6
are seen to be in good agreement with the simulated intensity
patterns in Fig. 5(a).

Another example in Fig. 7 shows [Fig. 7(a)] the intensity
and [Fig. 7(b)] phase of the superposition of six (P = 6) shifted
Bessel beams with the same topological charge n = 10, with
their singularity centers found at the vertices of a regular
hexagon. The normalized OAM of the superposition equals
Jz/W = 10.

Figure 8 depicts [Fig. 8(a)] SLM-aided encoded phase
and [Figs. 8(b)–8(d)] intensity pattern generated at different
distances by the superposition of six (P = 6) shifted Bessel
beams (Fig. 7) with the same topological charge n = 10 at
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FIG. 6. (Color online) SLM-aided (a) encoded phase of Fig. 5(b)
to generate the superposition of four shifted Bessel beams with
a square-shaped transverse intensity distribution and experimental
intensity patterns at different distances from the plane z = 0:
(b) 0 mm, (c) 200 mm, and (d) 400 mm. Mesh step (distance between
the ticks), 0.5 mm.

R0 = 12λ, α = 1/λ, c = 12, γ = π , C = [1,1,1,1,1,1]. The
diffraction patterns in Fig. 8 are seen to be in good agreement
with the simulation results in Fig. 7(a).

VIII. SUPERPOSITION OF A LARGE NUMBER OF
BESSEL BEAMS CENTERED ON A CIRCLE

In this section, we show that putting the center of a shifted
n-order Bessel beam at each point of a circle of radius R0

and taking the superposition of an infinite number of such
beams with identical weight coefficients, their superposition
will generate a conventional nonshifted n-order Bessel beam.

Describing the Bessel function as a series, the nonshifted
Bessel beam in Eq. (5) can also be presented as a series in the

FIG. 7. (Color online) Simulated (a) intensity and (b) phase (π ,
black; -π , white) of the superposition of six shifted Bessel beams
with parameters P = 6, n = 10, R0 = 12λ, α = 1/λ, c = 12, γ = π ,
C = [1,1,1,1,1,1]. Frame size, 2R = 60λ.

FIG. 8. (Color online) (a) SLM-aided encoded phase [Fig. 7(a)]
to generate the superposition of six shifted Bessel beams with a
hexagon-shaped transverse intensity distribution and experimental
intensity patterns at different distances from the plane z = 0:
(b) 0 mm, (c) 200 mm, and (d) 400 mm. Mesh step (distance between
the ticks), 0.5 mm.

plane z = 0:

E(x,y,z = 0) = exp(inφ)Jn(αr) =
∞∑

p=0

(−1)p

p!(n + p)!

×
(

α

2

)n+2p

(x − iy)p(x + iy)n+p. (33)

The continuous superposition of the shifted Bessel beams
of Eq. (33) centered on a circle of radius R0 is given by

E(x,y,z = 0) =
∞∑

p=0

(−1)p

p!(n + p)!

(α

2

)n+2p

×
∫ 2π

0
[(x − R0 cos θ ) − i(y − R0 sin θ )]p

× [(x − R0 cos θ ) + i(y − R0 sin θ )]n+pdθ.

(34)

In polar coordinates, Eq. (34) takes the form:

E(r,φ,z = 0) =
∞∑

p=0

(−1)p

p!(n + p)!

(
α

2

)n+2p

×
∫ 2π

0
[r exp(−iφ) − R0 exp(−iθ )]p

× [r exp(iφ) − R0 exp(iθ )]n+pdθ. (35)
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Both integrand terms in Eq. (35) can be given as a binomial
expansion:

E(r,φ,z = 0) =
∞∑

p=0

(−1)p

p!(n + p)!

(
α

2

)n+2p

×
p∑

s=0

n+p∑
t=0

(
p

s

)(
n + p

t

)
(−R0)s+t r2p−s+n−t

× exp[i(n + p − t)φ − i(p − s)φ]

×
∫ 2π

0
exp[i(t − s)θ ]dθ. (36)

Considering that integral (36) over θ takes a nonzero value
only at t = s, the sum over t drops out and Eq. (36) is reduced
to

E(r,φ,z = 0) = 2π exp(inφ)
∞∑

p=0

(−1)p

p!(n + p)!

(
αr

2

)n+2p

×
p∑

s=0

(
p

s

)(
n + p

s

)(
R0

r

)2s

. (37)

Changing the order of summation in Eq. (37), we obtain:

E(r,φ,z = 0)

= 2π exp(inφ)

[ ∞∑
s=0

(
R0

r

)2s

×
∞∑

p=s

(
p

s

)(
n + p

s

)
(−1)p

p!(n + p)!

(
αr

2

)n+2p]

= 2π exp(inφ)
∞∑

s=0

(
R0

r

)2s

×
∞∑

p=s

(−1)p

(s!)2(p − s)!(n + p − s)!

(
αr

2

)n+2p

. (38)

Replacing p − s with p and regrouping the terms of both
series, we can reduce the above relation to Bessel functions:

E(r,φ,z = 0) = 2π exp(inφ)

[ ∞∑
s=0

(R0/r)2s

(s!)2

×
∞∑

p=0

(−1)p+s

p!(n + p)!

(
αr

2

)n+2p+2s]

= 2π exp(inφ)

[ ∞∑
s=0

(−1)s

(s!)2

(
αR0

2

)2s]

×
[ ∞∑

p=0

(−1)p

p!(n + p)!

(
αr

2

)n+2p]

= 2πJ0(αR0)Jn(αr) exp(inφ). (39)

Equation (39) describes the amplitude of a conventional
Bessel beam up to a constant term 2πJ0(αR0). Figure 9 depicts
simulated superpositions of 5, 8, 10, 20, 40, and 60 shifted
Bessel beams with topological charge n = 7, centered on a

FIG. 9. (Color online) Transverse intensity distribution of the
superposition of P shifted Bessel beams at P = 5 (a), 8 (b), 10 (c),
20 (d), 40 (e), and 60 (f). Frame size in all figures is 240λ × 240λ.

circle of radius R0 = 100λ. For all beams shown in Figs. 9(a)–
9(f), simulation parameters were the same: n = 7, R0 = 100λ,
α = 1/λ. Frame size was 2R = 240λ.

From Fig. 9, a near-nonshifted or conventional Bessel mode
is seen to be generated already at P = 60, with its amplitude
defined by Eq. (39). All superpositions in Figs. 9(a)–9(f) have
the same normalized OAM, which is equal to Jz/W = 7.

Figure 10 depicts [Fig. 10(a)] SLM-aided encoded phase
(1024 × 1024 pixels) and [Figs. 9(b)–10(d)] intensity patterns
generated at different distances by the superposition of 40
(P = 40) shifted Bessel beams [Fig. 9(e)] with topological
charge n = 7, centered on a circle of radius R0 = 3.33 mm.

FIG. 10. (Color online) (a) SLM-aided encoded phase to gener-
ate the superposition of 40 shifted Bessel beams and experimental
intensity patterns at different distances from the plane z = 0:
(b) 0 mm, (c) 50 mm, and (d) 100 mm. Mesh step (distance between
the ticks), 0.5 mm.
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The SLM-encoded element has the size of 8 × 8 mm, scaling
factor α of the Bessel beams equals to 30 mm−1. Such values
of parameters are chosen to match the numerically obtained
Fig. 9(e): The picture size 2R = 240λ in Fig. 9(e) matches
2R = 8 mm in Fig. 10(a), the scaling factor α = 1/λ in
Fig. 9(e) matches α = 30 mm−1 in Fig. 10(a), and the radius
of the circle R0 = 100λ in Fig. 9(e) matches R0 = 3.33 mm
in Fig. 10(a). The diffraction patterns in Fig. 10 are seen to be
in good agreement with the simulation results in Fig. 9(e).

In all considered cases the α parameter of the Bessel
beam (5) was chosen as α = k sin θ = 1/λ, where θ is half
of inclination angle of the conical wave generating the Bessel
beam. In [35] the paraxiality parameter has been introduced for
the Gaussian-like beams: f = w/l = 1/(kw) = tan θ , where
w is the Gaussian beam waist radius, l is the Rayleigh range,
and θ is half of the beam’s divergence angle. The similar
parameter for the Bessel beam equals f ′ = α/k = sin θ . In
our case f ′ = 1/(2π ). The nondiffracting range for the Bessel
beam is lND = R/ tan θ ≈ Rk/α [1]. So, for example, the beam
in Fig. 1 has the range lND = 30λ(2π/λ)/(1/λ) = 60πλ.

IX. CONCLUSION

To summarize, the normalized OAM of the superposition
of shifted Bessel beams with identical topological charge has
been derived in an analytical form, Eq. (23). It has been shown

that if all weight coefficients of the constituent terms in the
superposition of shifted Bessel beams are real, the total OAM
of the superposition equals that of an individual nonshifted
Bessel beam. Based on this property, nondiffractive beams
that have different intensity distributions but the same OAM
can be generated (Fig. 9). The superposition of a large number
of identical Bessel beams centered on an arbitrary-radius circle
has been shown to be equivalent to an individual constituent
Bessel beam found at the circle center [Eq. (39)]. It has
been also shown that a complex shift of a Bessel beam
causes changes in the transverse intensity distribution, also
changing OAM [Eqs. (18) and (20)]. In the superposition
of two complex-shifted Bessel beams, the OAM may remain
unchanged, meanwhile the intensity distribution will change,
Eq. (25).

The experiment has been shown to be in good agreement
with theory (Figs. 2, 4, 6, 8, and 10).
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