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Chiroptical signal enhancement in quasi-null-polarization-detection geometry: Intrinsic limitations
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Despite its unique capability of distinguishing molecular handedness, chiroptical spectroscopy suffers from
the weak-signal problem, which has restricted more extensive applications. The quasi-null-polarization-detection
(QNPD) method has been shown to be useful for enhancing the chiroptical signal. Here, the underlying
enhancement mechanism in the QNPD method combined with a heterodyne detection scheme is elucidated.
It is experimentally demonstrated that the optical rotatory dispersion signal can be amplified by a factor of ∼400,
which is the maximum enhancement effect achievable with our femtosecond laser setup. The upper limit of the
QNPD enhancement effect of chiroptical measurements could, in practice, be limited by imperfection of the
polarizer and finite detection sensitivity. However, we show that there exists an intrinsic limit in the enhancement
with the QNPD method due to the weak but finite contribution from the homodyne chiroptical signal. This is
experimentally verified by measuring the optical rotation of linearly polarized light with the QNPD scheme. We
further provide discussions on the connection between this intrinsic limitation in the QNPD scheme for enhanced
detection of weak chiroptical signals and those in optical enantioselectivity and Raman optical activity with a
structured chiral field. We anticipate that the present work could be useful in further developing time-resolved
nonlinear chiroptical spectroscopy.
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I. INTRODUCTION

Optical activity resulting from the differential interaction
of left- and right-circularly-polarized (LCP and RCP) beams
is a property shown only by chiral matter with broken mirror
symmetry [1]. Because of its unique ability to characterize
the handedness of chiral species, chiroptical spectroscopy
measuring frequency-dependent optical activity such as cir-
cular dichroism (CD), optical rotatory dispersion (ORD), and
Raman optical activity (ROA), has widely been used in diverse
research areas to determine stereospecific structures of chiral
molecules [1–3]. However, most of the chiroptical methods
suffer from the weakness of the corresponding signals imposed
by weak magnetic dipole or electric quadrupole interaction-
induced transitions. Enhancement of the chiroptical signal
would thus enable extensive applications requiring high
sensitivity, such as time-resolved chiroptical spectroscopy and
microscopy.

The main difficulty of measuring a weak chiroptical signal
in the conventional method utilizing LCP and RCP beams
comes from a huge background contribution of the achiral
signal, which is about four to six orders of magnitude larger
than the chiral signal. Effective elimination or reduction of
the achiral background is therefore essential to boost up
the chiroptical measurement sensitivity. Pioneering work on
enhancing chiroptical measurement has been done by Kliger
and co-workers, who used an ellipsometric technique and its
modified version to carry out nanosecond electronic CD and
ORD experiments with significant signal enhancement in the
UV-visible frequency range [4–6]. Instead of LCP and RCP
light, a pair of elliptically (rotated linearly) polarized beams
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were used as incident radiation for CD (ORD) measurements
in their setup. Similar approaches have been applied in the IR
frequency range as well to measure vibrational CD and ORD
signals that are much weaker than the electronic ones [7].
Recently, interesting alternatives measuring wave interference
between a chiral signal and a reference field called a local
oscillator (LO) have been developed for electronic and vibra-
tional CD and ORD [8–11], and nonlinear coherent anti-Stokes
Raman scattering ROA (CARS-ROA) measurements [12,13].

A key ingredient commonly used for chiroptical enhance-
ment in the above methods is quasi-null-polarization detection
(QNPD), where the incident and detection polarizations are
properly controlled such that the chiral signal remains constant
while the achiral signal decreases. Thereby, the ratio of
chiral to achiral signal, which is related to the chiroptical
enhancement factor, can be significantly increased even though
the total signal (chiral+achiral) actually decreases. However,
such an enhancement effect is limited not only because the
total amount of photons detected decreases as the achiral
signal approaches zero, but also because the cross term of
the chiral and achiral signals vanishes so that phase (sign)
information that is a characteristic property of the chiral signal
is lost. In this case, the enhancement effect cancels out or
even gets worse, which implies that there exists an explicit
limit for the maximum enhancement that is theoretically or
experimentally possible [14,15]. There still remain questions
about how much enhancement could be achieved and which
factor would determine its upper limit in the QNPD method.

In this paper, we address chiroptical signal enhancement
in the QNPD method. First, a brief account of the close
relation between chiroptical measurement and heterodyned
detection is presented. Then we describe the chiroptical
enhancement mechanism of the QNPD method on the basis
of a heterodyned detection scheme and demonstrate that there
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exists an intrinsic upper limit of the chiroptical enhancement
in the QNPD method using both simulation and experiment.
Other practical issues influencing the enhancement factor such
as imperfections of real polarizers and detector sensitivity are
also discussed, and a range of future applications are briefly
noted.

II. THEORY

Typically, the electronic chiroptical transition intensity is
two to three orders of magnitude smaller than the absorption at
visible wavelengths, since the molecular dimension is smaller
than the wavelength of chiral light. For vibrational optical
activity (VOA), the relative chiroptical intensity compared
to the absorption is further reduced to 10−4–10−6 not only
because the IR wavelength is an order of magnitude larger
than the visible but also because the effective radius (r) of
charge circulation by nuclear vibration is much smaller than
that by the more delocalized electronic state. Therefore, there
is a great need for significant enhancement of the VOA signal
in the IR frequency range [16].

A. Chiroptical effect on an electric field

Within the linear response theory, the transmitted electric
field vector through a solution containing chiral molecules can
be written as

|�〉 = e−iÂcL|ψ〉, (1)

where |ψ〉 is the incident electric field vector, and the operator
Âc representing the weak chiroptical effects on the propagating
light is given as

Âc =
(

ρ − iκ

2

)
Î −

(
δ

2
− iη

4

)
σ̂y . (2)

Here, Î and σ̂y are the 2×2 identity matrix and the y-
component vector of the Pauli matrices, respectively. L is
the thickness of the solution sample and κ , ρ, η, and δ are
the absorption coefficient [=(ln 10)εc], dispersion (=2πn/λ),
circular dichroism [= ln 10(εL − εR)c], and circular birefrin-
gence [=2π (nL − nR)/λ], respectively, where ε, n, λ, and
c are, respectively, the decadic molar extinction coefficient,
refractive index, wavelength, and molar concentration. Typi-
cally, the ratios η/κ and δ/ρ are on the order of |m/(μc)| ∼
10−3–10−2, where m and μ represent the transition magnetic
and electric dipoles of a chiral molecule.

Now, the chiral-medium influence operator e−iÂcL can be
rewritten as

e−iÂcL = e−κL/2−iρL

(
cosh x −i sinh x

i sinh x cosh x

)
, (3)

where

x = ηL

4
+ iδL

2
. (4)

Note that the real and imaginary parts of x are related to the
CD and circular birefringence (or ORD). We shall consider
two specific cases where the incident light is either elliptically
polarized or rotated linearly polarized, which have been used to
measure the CD and ORD dissymmetry factors, respectively.

FIG. 1. (Color online) QNPD optical schemes for (a) CD and (b)
ORD signal enhancement. Instead of LCP and RCP or (±45°)-rotated
LP, LEP and REP with a small ellipticity of β (a) or (±)-LP beams
slightly rotated by β (b) are used as incident radiation. P, polarizer; S,
chiral sample; A, analyzer; D, detector. The analyzer (A) allows only
the horizontal field (Echiral + ELO) to be transmitted through while the
vertical field (EV ) is blocked. Note that the phase differences (
ϕ)
between EV and ELO are ±90° for (a) CD and 0° or 180° for (b)
ORD.

B. CD measurement with elliptically polarized light

Now, let us consider the experimental configuration [see
Fig. 1(a)] that involves incident left (+) and right (−)
elliptically polarized (LEP and REP) light which is written as
a linear combination of the two basis polarization states, i.e.,

|ψ±〉 = cos θ |V 〉 ± i sin θ |H 〉, (5)

where |V 〉and |H 〉 are the vertical and horizontal polarization
states, respectively.

In the present QNPD scheme, the incident elliptically
polarized light (EPL) is controlled to be weakly elliptical
[see Eq. (5)] and the major axis of the polarization ellipse
is assumed to be parallel to |V 〉. Then, only the horizontal
component of the transmitted field is allowed to pass through
the linear polarizer placed in front of the photon detector, so
that we need to consider the |H 〉-projected component of |�±〉,

E±
H = 〈H |�±〉 = 〈H |e−iÂcL|ψ±〉

= e−κL/2−iρL(i cos θ sinh x ± i sin θ cosh x)

= e−κL/2−iρL
(
i|E0

V | sinh x ± i|E0
H | cosh x

)
, (6)

where the electric field amplitudes of the vertical and hori-
zontal components of the incident EPL are denoted as |E0

V |
(= |〈V |ψ±〉|) and |E0

H | (= |〈H |ψ±〉|), respectively. Note that
the horizontal component of the transmitted E field consists
of two contributions. The first term in Eq. (6) is produced
by the interaction of the vertical (major) component of the
incident EPL with chiral molecules, which makes E0

V rotate
via the ORD effect and change its polarization state to become
elliptically polarized with a nonzero H component via the CD
effect. Now, the second term in Eq. (6) originates from the H
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component of the incident EPL whose phase and amplitude
are altered by its interaction with chiral molecules.

In general, due to the weakness of chiroptical effects, i.e.,
|η|L/4 � 1 and |δ|L/2 � 1, we have |x| � 1. Therefore,
Eq. (6) can be approximately written as

E±
H = ie−κL/2−iρL

(∣∣E0
V

∣∣ {ηL

4
+ iδL

2

}
± ∣∣E0

H

∣∣) . (7)

Note that the first term in Eq. (7) is directly related to the CD
(η) and circular birefringence (δ), whereas the second term
is just the attenuated and dispersed component resulting from
the H component of the incident EPL. From Eq. (7), one can
immediately find that the H component of the incident EPL
(the second term) behaves like a local oscillator (or reference)
field that interferes with the chiroptical signal field (the first
term). Therefore, we shall introduce notations to refer to these
two contributions as

Echiral = ie−κL/2−iρL
∣∣E0

V

∣∣ sinh x

∼= ie−κL/2−iρL

(
ηL

4
+ iδL

2

) ∣∣E0
V

∣∣ (8)

and

ELO = ie−κL/2−iρL
∣∣E0

H

∣∣ cosh x ∼= ie−κL/2−iρL
∣∣E0

H

∣∣, (9)

so that Eq. (7) is rewritten as

E±
H = Echiral ± ELO. (10)

As can be seen in Eqs. (8) and (9), the CD contribution
(∝η) to the chiral field is either in or out of phase with the
local oscillator, depending on the sign of η, whereas the ORD
contribution (∝δ) is in quadrature (±90°) with the LO.

As shown in Fig. 1(a), the transmission axis of the analyzer
is aligned perpendicular to the major axis of the incident EPL
so that the detector (D) reads only the horizontal components
as

I± = |Echiral ± ELO|2
= |Echiral|2 + |ELO|2 ± 2Re[EchiralE

∗
LO], (11)

where I± is the transmitted intensity for LCP (+) and RCP (−)
beams [or (±)-rotated linearly polarized (LP) beams for ORD
measurement] in the present QNPD geometry. Equation (11)
consists of the molecular-chirality-independent homodyne
term Ihomodyne = |Echiral|2 + |ELO|2, and the chirality-sensitive
heterodyne (interference) term Iheterodyne = 2Re[EchiralE

∗
LO].

The CD signal or dissymmetry factor (g) is given as the
intensity difference between LCP and RCP beams normalized
by their average intensity,

g = I+ − I−

(I+ + I−)/2
= 2Iheterodyne

Ihomodyne

= 4Re[EchiralE
∗
LO]

|Echiral|2 + |ELO|2 . (12)

Equations (11) and (12) show that the CD signal (g) is
essentially the ratio of the heterodyne (interference) to the
homodyne signals. Note that the phase information about
the complex Echiral is obtained only from the heterodyne
term (2Re[EchiralE

∗
LO]) while the homodyne one (|Echiral|2 +

|ELO|2) contributes to the detected field intensities I± as a
positive background.

Inserting Eqs. (8) and (9) into Eq. (12), we find that

g = 4Re[sinh x cosh x∗]
∣∣E0

V

∣∣∣∣E0
H

∣∣
|sinh x|2∣∣E0

V

∣∣2 + |cosh x|2∣∣E0
H

∣∣2
∼= 4Re[x]

∣∣E0
V

∣∣∣∣E0
H

∣∣
|x|2∣∣E0

V

∣∣2 + ∣∣E0
H

∣∣2

= 4Re[x]
β

β2 + |x|2 , (13)

where the second approximate equality was obtained from
|x| � 1 and the aspect ratio β of the incident EPL is related
to its ellipticity angle θ as

β =
∣∣E0

H

∣∣∣∣E0
V

∣∣ = sin θ

cos θ
. (14)

At small ellipticity angle, i.e., weakly elliptically polarized
light, the aspect ratio is approximately identical to the
ellipticity angle, i.e., β�θ .

To show the enhancement effect of the QNPD method on
the CD signal (g), let us consider the standard case that the
incident light beams used are left and right circularly polarized
light (CPL) (θ = ±45°) that form the complete set of basis
states. Then the dissymmetry factor for CD in this case is given
as

gCPL = 4Re[x]

1 + |x|2 . (15)

Therefore, we now introduce the enhancement factor G
defined as the ratio of g to gCPL, that is,

G = g

gCPL
= β(1 + |x|2)

β2 + |x|2 . (16)

Note that the aspect ratio β is what one can easily
control experimentally. In the case that β � |x|, the chiral
signal amplitude is much smaller than the LO amplitude,
i.e., |Echiral| � |ELO| and the enhancement factor is inversely
proportional to the aspect ratio so that one can increase the
G factor by making the ellipticity of the EPL beams small.
However, as the aspect ratio β is further decreased below
|x|, the chiral field amplitude becomes larger than the LO
amplitude, i.e., |Echiral| > |ELO| and the enhancement factor
becomes linearly proportional to β so that the enhancement
effect in this domain disappears. From Eq. (16), one can
immediately find that the enhancement factor G and the
dissymmetry factor g have intrinsic upper limits at

βmax = |x| =
√(

ηL

4

)2

+
(

δL

2

)2

,

which are

Gmax = g(βmax)

gCPL
= (1 + |x|2)

2|x| (17)

and

g(βmax) = 2Re[x]

|x| = η/2√
(η/4)2 + (δ/2)2

. (18)

Since the chiroptical effects are very weak, i.e., |x| � 1,
the maximum enhancement factor (∼1/2|x|) is indeed very
large.
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C. ORD measurement with slightly rotated
linearly polarized light

Instead of using EPL, one can use slightly rotated linearly
polarized light (LPL) beams to measure ORD signals, where
the incident beam polarization states are

|ψ±〉 = cos φ|V 〉 ± sin φ|H 〉. (19)

The rotation angle of LPL from the vertical direction is denoted
as φ. In the present QNPD scheme with incident rotated
LPL beams [see Fig. 1(b)], the horizontal component of the
transmitted field which is allowed to pass through the analyzer
is found to be

E±
H = 〈H |�±〉 = e−κL/2−iρL(i cos φ sinh x ± sin φ cosh x)

= e−κL/2−iρL
(
i
∣∣E0

V

∣∣ sinh x ± ∣∣E0
H

∣∣ cosh x
)
. (20)

Again, since the chiroptical effects are very weak,
|η|L/4 � 1 and |δ|L/2 � 1, we have

E±
H

∼= e−κL/2−iρL

(
i
∣∣E0

V

∣∣ {ηL

4
+ iδL

2

}
± ∣∣E0

H

∣∣)
= Echiral ± ELO, (21)

where the chiral and LO terms are given as

Echiral = ie−κL/2−iρL
∣∣E0

V

∣∣ sinh x

∼= ie−κL/2−iρL

(
ηL

4
+ iδL

2

) ∣∣E0
V

∣∣ (22)

and

ELO = e−κL/2−iρL
∣∣E0

H

∣∣ cosh x ∼= e−κL/2−iρL
∣∣E0

H

∣∣. (23)

The only difference between the CD measurement with EPL
beams and the ORD measurement with rotated LPL beams is
the difference in the phases of the corresponding LO fields
[compare Eq. (23) with Eq. (9)].

Now, the dissymmetry factor defined in Eq. (12) can be
measured and it provides information on ORD as

g = I+ − I−

(I+ + I−)/2
= 4Re[EchiralE

∗
LO]

|Echiral|2 + |ELO|2

∼= 4Im[x]
β

β2 + |x|2 . (24)

The aspect ratio, β, in this case of the rotated LPL is related
to its rotation angle φ as

β =
∣∣E0

H

∣∣∣∣E0
V

∣∣ = sin φ

cos φ
. (25)

At small rotation angle, the aspect ratio approximately equals
the rotation angle, i.e., β � φ.

To show the QNPD enhancement effect on the ORD signal
(g), we consider the cases that the incident LPL beams are
rotated LPL with rotation angle φ=±45°—–note that the two
LPL beams correspond to the two orthogonal basis states. Then
the dissymmetry factor for ORD in this case is given as

g45 = 4Im[x]

1 + |x|2 . (26)

The enhancement factor G defined as the ratio of g to g45 is
found to be identical to Eq. (16) except for the difference in the

definition of the aspect ratio [compare Eq. (14) with Eq. (25)],
i.e.,

G = g

g45
= β(1 + |x|2)

β2 + |x|2 . (27)

Also, the intrinsic upper limits of the enhancement factor
G and the ORD dissymmetry factor g are at

βmax = |x| =
√(

ηL

4

)2

+
(

δL

2

)2

,

and they are

Gmax = g(βmax)

g45
= (1 + |x|2)

2|x| (28)

and

g(βmax) = 2Im[x]

|x| = δ√
(η/4)2 + (δ/2)2

. (29)

Since |x| � 1, the maximum enhancement factor Gmax is
again ∼1/2|x|.

In this section, we have shown that the underlying mech-
anisms of the enhancement effects found in both the CD
measurement with EPL beams [see Fig. 1(a)] and the ORD
measurement with rotated LPL beams [see Fig. 1(b)] are essen-
tially the same. Now, measuring the ORD signals for varying
aspect ratio of the rotated LPL beams, we experimentally show
that there is indeed an upper limit of the enhancement effect
and further discuss its origin and connection to the intrinsic
limit of optical enantioselectivity and the ROA signal with the
structured or the so-called superchiral field.

III. EXPERIMENTAL AND NUMERICAL
SIMULATION METHODS

The experimental layout of the QNPD for ORD mea-
surement is shown in Fig. 2. A femtosecond pulse train
(Libra, Coherent Inc.) centered at 800 nm is used as incident
light source and two polarizing components respectively
as a polarization rotator (Glan-Laser polarizer, P) and an
analyzer (Glan-Thomson polarizing beam splitter, PBS), in
between which the chiral sample (CS) is placed. For ORD
measurement, the transmission axis of the first polarizer (P)
on a motorized rotational stage is slightly rotated left [(+)-LP]
and right [(−)-LP] from the crossed angle position (vertical)
with that of the analyzer (horizontal). Here, the PBS spatially
separates the horizontally (S⊥) and vertically (S||) emitted
signal beams after the chiral sample. The S⊥ corresponds

FIG. 2. (Color online) The experimental layout of the QNPD for
ORD measurement. P, Glan-laser polarizer; PBS, Glan-Thomson
polarizing beam splitter; CS, chiral sample; ND1 and ND 2, neutral
density filters; CCD, charge-coupled device detector.
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to the transmitted signal (I±) described in the text, whereas
the S||, which carries the achiral response signal, is used
for correcting the intensity fluctuation of the light source
(intensity referencing). These two beams are focused into the
entrance slit of the monochromator; it is slightly displaced
vertically and then detected in the lower and upper tracks of
the CCD detector (PIXIS100B, Princeton Inst.), respectively.
For calculating the dissymmetry factor (g), only the signals
at a specified CCD pixel (λdet = 800 nm) were used. To
gain statistical information (the standard deviation of the
ORD signal), pulsed measurements (4000 shots for each I±)
were made by synchronizing the CCD with the 200 Hz laser
repetition rate. Neutral density filters (ND1 and ND2) are used
to avoid detector saturation as well as to examine the effect
of the total amount of photons detected on the enhancement
of the chiroptical signal (see the results in the next section for
more detail).

The chiral sample used for the ORD measurement is Ni(+)
(tartrate)2 in aqueous solution. The ORD signal of aqueous
Ni(+) (tartrate)2 is large enough at 800 nm that the contribution
of its homodyne signal intensity (|Echiral|2) to the chiroptical
enhancement can be readily measured experimentally [8]. Low
(24 mM) and high (120 mM) concentrations of the sample
were compared to investigate how the chiroptical enhancement
effect is changed depending on the homodyne signal intensity.

For numerical simulation, Eqs. (11) and (24) were cal-
culated considering only the shot noise of photons and
the dark noise of the CCD without photons. The standard
deviation of photon counts equals the square root of the
average photon number (N ) so that the signal-to-noise ratio
(SNR) is given as N/

√
N = √

N . Simulating each fluctuating
intensity with dark and shot noises, the following stepwise
procedure was used: First, the amplitudes of the chiral signal
(|Echiral| = |(δL/2)E0

V |) and LO (|ELO| = |(sin β)E0
V |) fields

are calculated from a specified incident vertical field strength
(|E0

V |) and the Malus law, assuming that there is no attenuation
of the incident beam by the sample absorption (η = 0),
scattering, or any other reflections of the optics. Second, I±
in Eq. (11) is then obtained from the calculated |Echiral| and
|ELO|. Last, the dark and shot noises are added to the average
photon number N , assuming that N is proportional to each
intensity (the square of the electric field).

IV. EXPERIMENTAL RESULTS

Figure 3 shows the ORD enhancement of aqueous Ni(+)
(tartrate)2 solution (3 mM) measured in the QNPD scheme. In
the cases that β is relatively large (>0.002), the ORD signal
(squares) increases and is simply proportional to 1/β (dashed
line) as the incident rotation angle of the (±) LP beam de-
creases. In the region where β < 0.002 (see the inset of Fig. 3),
however, the measured ORD enhancement effect decreases
together with β. The enhancement effect is maximal at ∼400
(β= 1.7 × 10−3). According to the theory discussed in the
above section, the intrinsic maximum enhancement should be
obtained as Gmax

∼= 1/2|x| at βmax = |x|. Since the original
ORD (δL/2) and CD (ηL/4) signals at 3 mM are respectively
1.4 × 10−4 rad and −7.0 × 10−5 rad (|x| = 1.6 × 10−4), one
should theoretically have Gmax = 3100 at βmax = 1.6 × 10−4,
which is an order of magnitude larger (for Gmax) or smaller

FIG. 3. (Color online) The enhanced ORD signal (squares) mea-
sured at 800 nm for 3 mM aqueous Ni(+) (tartrate)2. The enhance-
ment is increased with the 1/β curve (dashed line) at large β but
decreases below β = 0.002 (inset).

(for βmax) than the experimental result. This large difference
between the experiment and the theory implies that there are
other technical issues. For instance, real polarizers (P and PBS
in Fig. 2) are not optically perfect and have limited extinction
ratio (∼10−5). Consequently, a leakage transmitted through
the analyzer (PBS) could interfere with the ORD signal, giving
rise to an unfavorable enhancement at very small β.

In the present case where the original chiroptical strength is
very small (|x| = 1.6 × 10−4), the technical problems caused
by imperfection of a real measurement system are likely
the dominant factors determining the practical limit of the
enhancement effect. Nonetheless, to experimentally verify that
there clearly exists an intrinsic upper limit in the QNPD
enhancement effect as shown in Eqs. (28) and (29), we
investigated the influence of the homodyne signal contribution
(|Echiral|2) on the chiroptical enhancement. Figure 4(a) depicts
the standard deviation (σs) of the normalized ORD signal
(g/G) as a function of β to compare the ORD enhancement
effects at low (24 mM) and high (120 mM) concentrations.
Note that the homodyne signal intensity (∝ |x|2) is determined
by the chiroptical susceptibility (
χ ), concentration (c),
and path length (L) of the sample. Here, the total number
of average photons [N = (N+ + N−)/2, where N± is the
detected photon number of I±] was controlled to be fixed so
that the average intensity (I+ + I−)/2 read by the detector
is constant regardless of varying β. However, the fixed
N values were differently set for 24 mM (N = 250) and
120 mM (N = 1000) because of the technical problem of
the limited extinction ratio of our polarizer as follows. For the
high concentration (120 mM), the homodyne signal intensity
itself is strong enough to have N = 1000 constantly over
the entire range of β. For the low concentration (24 mM),
however, the incident beam intensity should be significantly
increased to maintain N = 1000 at the very small β. Due to the
limited extinction ratio (∼ 10−5) of our polarizer, increasing
the beam intensity inevitably produces non-negligible leaked
light, which contaminates the S⊥ signal and interferes with
accurate measurements. To avoid this problem, N = 250 for
24 mM was chosen, where no significant contribution of
the leaked light was observed even at β=0.14° which is the
smallest β accessible in our experiment.

053839-5



RHEE, EOM, AHN, SONG, AND CHO PHYSICAL REVIEW A 91, 053839 (2015)

FIG. 4. (Color online) The chiroptical signal enhancement for
fixed average photon counts (N ). (a) The standard deviations (σs)
of the normalized ORD signal (g/G) measured at 24 mM (N = 250)
and 120 mM (N = 1000) concentrations of Ni(+) (tartrate)2. (b)
The measured ORD dissymmetry factor g (circles) from Eq. (12)
together with the calculated one (dashed line) from Eqs. (26) and (27),
where Re[x] = ηL/4 = −2.3 × 10−3, Im[x] = δL/2 = 4.6 × 10−3

and |x| = 5.1 × 10−3 were used in 120 mM Ni(+) (tartrate)2.

In both cases, the SNR (inversely proportional to σs)
improves as β decreases as long as β > βmax while the
σs at 120 mM (N = 1000) is slightly smaller than that at
24 mM (N = 250) because the smaller is N , the lower is the
SNR obtained in I±. At the high concentration (120 mM),
σs has a minimum value at βmax ∼ 4.5 × 10−3 (maximum
enhancement) and then increases again below that point.
In contrast, such a minimum was not observed at the low
concentration (24 mM) because the maximum enhancement
is achieved at much smaller β than the experimentally
measurable range of β (see the simulation results in Fig. 5).

Figure 4(b) depicts the enhanced ORD dissymmetry factor
(g) with respect to β/|x| for the high-concentration solution
(120 mM) with |x| = 5.1 × 10−3. The dissymmetry factor
g reaches its maximum value g(βmax) =1.77 at βmax =
5.1 × 10−3. The maximum enhancement factor is then esti-
mated to be Gmax = g(βmax)/g45 = 96.2. This experimental
result is in excellent agreement with the theoretically calcu-
lated value of Gmax = 1/2|x| = 98.0, indicating that Gmax

is indeed determined by the sample’s original chiroptical
intensity (|x|).

To further examine the dependence of the chiroptical
enhancement on the original chiroptical strength (|x|), simple
numerical simulations (see Fig. 5) of the ORD measure-

FIG. 5. (Color online) Numerical simulations of the chiroptical
signal enhancement in the QNPD scheme. (a) The standard deviation
(σs) and (b) SNR of the normalized ORD signal (g/G) as a function of
β for three different original chiroptical strengths, |x| = 5.1 × 10−3

(black solid line), 8.6 × 10−4 (red dashed line), and 1.0 × 10−4 (blue
dash-dotted line). Fixed average photon counts (N = 1000) were
used for all cases. For comparison with the experiment, the simulation
results (red dotted line) at N = 250 are plotted for |x| = 8.6 × 10−4.
The grayed square in (a) shows the measurement window in our
experiment [see Fig. 4(a)].

ments with the QNPD method were carried out. Figure 5(a)
shows the simulated standard deviations (σs) of the normal-
ized ORD signals for three different chiroptical strengths
(|x| = 5.1 × 10−3, 8.6 × 10−4, and 1×10−4). Here, the total
number of average photons was set to be constant (N = 1000)
irrespective of β. In the case of |x| = 8.6 × 10−4, an additional
simulation of N = 250 (red dotted line) was performed for
direct comparison with the experiment [compare Fig. 4(a) and
the grayed square in Fig. 5(a)]. For all cases, the logarithm plots
of σs versus β are V-shaped and show the minimum σs (the best
SNR) at each different βmax. For β > βmax, σs decreases with
β due to the chiroptical enhancement effect (G ∼ 1/β) but
it increases again for β < βmax because the homodyne signal
intensity (|Echiral|2) contributes as a dominant noise source
(G ∼ β). βmax shifts to lower values (βmax = 5.1 × 10−3,
8.6 × 10−4, and 1.0 × 10−4) as the original chiroptical
strength |x| becomes smaller; the results are in excellent
agreement with the theoretical βmax = |x|.

In both the experiment and numerical simulation above, the
fixed average photon counts were used regardless of varying
β. This is mainly to examine the existence of the enhancement
limit intrinsically caused by the QNPD optical geometry
in the ideal case. In a real measurement system, however,
due to the finite detection sensitivity (or finite incident light
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FIG. 6. (Color online) Comparison between the chiroptical en-
hancement effects for fixed and variable photon counts (N ). The
(a) experimentally measured and (b) simulated standard deviations
(σs) of the normalized ORD signals for weak (24 mM and |x| =
8.6 × 10−4) and strong (120 mM and |x| = 5.1 × 10−3) chiroptical
signal intensities. Fixed N : N = 250 at 24 mM and |x| = 8.6 × 10−4

and N = 1000 at 120 mM and |x| = 5.1 × 10−3. Variable N : (a)
N =46 000 and (b) N =50 000, respectively, at β =0.035.

intensity ∼ |E0|2), keeping the number of the detected photons
(N ) constant as in the above case is not possible below very
small β. Consequently, N should decrease with β (I± ∼
|sin β|2|E0|2).

Figure 6 shows how the enhancement effect is affected
when the number of detected photons (N ) varies with β.
For comparison, the experimental and simulation results for
fixed N in Figs. 4(a) and 5(a) are plotted together [squares in
Fig. 6(a) and solid line in Fig. 6(b)]. In both cases (24 mM
and 120 mM), the standard deviations of the normalized ORD
signals for variable N are smaller than those for fixed N at the
largest β (β i =0.035) in our experiment. This is because N at
β i (Ni) was differently set for each case in our experiment, i.e.,
Ni (fixed)= 250 or 1000 and Ni (variable)= 46 000. A stark
contrast with the case of fixed N (black squares) is that the
enhancement effect at 24 mM is hardly observed for variable N

(red circles). Similarly in the case of 120 mM, the enhancement
rate of β for variable N is significantly reduced at β > βmax in
comparison to the case of fixed N even though the minimum

σs in both cases appears at the same βmax = 5.1 × 10−3. The
lower enhancement observed at β > βmax for variable N may
originate from the decrease of the SNR by loss of detectable
photons. In general, the SNR of detected photons (N ) is simply
given by N/

√
N =√

N , assuming that the photon counting
follows the Poisson distribution. Since the detected N of I±
is proportional to β2 (I± ∼ |sin β|2|E0|2 ∝ β2) at small β,
the SNR of photon loss decreases by a factor of β, which
essentially cancels out with the enhancement effect G ∼ 1/β.
The simulation results in Fig. 6(b) also illustrate similar
aspects. For variable N (red dashed line), σs does not change
with β at β � βmax = |x| so that there is no enhancement
effect, which is in contrast with the case of fixed N (black solid
line) obeying 1/β enhancement. Therefore, a prior condition
for making an effective chiroptical enhancement in the QNPD
is that the total amount of signal photons should be kept
constant without being reduced by β to achieve the best SNR
of the ORD signal (g).

V. DISCUSSION

As mentioned earlier, the heterodyned term
(2Re[EchiralE

∗
LO]) produced by self-interference between

Echiral and ELO determines the phase (sign) and amplitude of
the chiroptical signal (Echiral) with respect to the homodyne
terms (|E⊥|2 + |E±

LO|2), which can be considered as positive
background noise. The key to the chiroptical enhancement is
to make the ratio of the heterodyne (signal) to the homodyne
(noise) terms large, as shown in Eq. (24). In the QNPD scheme
for ORD measurement, it is possible to increase this ratio
simply by making the rotation angle φ small. At relatively
large β (>βmax), |Echiral| � |ELO| and the LO intensity is the
main background noise (|Echiral|2 + |ELO|2 ∼= |ELO|2). Since
this LO intensity is proportional to | sin φ|2, the background
noise is reduced as φ decreases. On the other hand, the chiral
signal field strength is nearly unchanged because it is given
by the product of the vertical field component of the incident
slightly rotated LPL and the original chiroptical strength,
i.e., |Echiral| ∝ |x||cos φ| ∼= |x|. Consequently, the chiral
signal-to-noise ratio is given as |Echiral|/|ELO| ∼= |x|/|φ| at
small but not too small φ.

As β decreases further so that |Echiral| � |ELO|, the
homodyne chiroptical signal is now the dominant noise source
(|Echiral|2 + |ELO|2 ∼= |Echiral|2). Consequently, the enhanced
dissymmetry factor (g) is decreased and vanishes as β

approaches zero. At perfect cross-polarization geometry (β
= 0), the transmitted field intensity is solely from the homo-
dyne chiroptical signal, i.e., I± = |Echiral|2. In this case, one
cannot obtain any chiroptical information (g = 0) because the
heterodyne term is zero (2Re[EchiralE

∗
LO] = 0) so that the phase

information of Echiral is completely lost in the observables (I±).

A. Imperfect polarizer

In our QNPD setup, the maximum ORD enhance-
ment (G ∼ 400) at 3 mM concentration was obtained at
β= 1.7 × 10−3 (see Fig. 3). This enhancement factor is
however much smaller than the theoretical upper limit Gmax

∼=
1/2|x| = 3100. One of the determining factors is optical
imperfection of the prism-type polarizer (Glan-Laser or
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Glan-Thomson polarizer) used here. Due to the nonzero
extinction ratio (ρe∼10−5) of the polarizers, undesired trans-
mitted light passing through the crossed polarizer-analyzer
was detected at β < 1.7 × 10−3. This (∼10−5|E0|2, where
|E0| is the incident beam amplitude) becomes the dominant
noise source because it is even larger than the LO intensity
(|sin β|2|E0|2 ∼ 2.9 × 10−6|E0|2 at β= 1.7 × 10−3). Conse-
quently, the transmitted light due to imperfect polarizers makes
the experimentally achievable enhancement factor smaller
than the ideal limit. Clearly, use of polarizers with better
extinction ratio such as a Brewster angle reflection polarizer
(ρe ∼ 10−7) [17,18] would enable one to reach as close to the
intrinsic enhancement limit (Gmax = 3100 in the present case)
as possible.

B. Detector sensitivity

Finite detection sensitivity of real detectors could also be
another practical problem limiting the effective enhancement.
At relatively large β, the transmitted intensity (I±) is strong
enough so that a light intensity attenuator should be used
in front of the detector to avoid detector saturation as well
as to achieve a good SNR. At very small β, however,
the transmitted intensity level (∼|sin β|2|E0|2) could be too
low to make the total amount of detected photons constant
for maintaining the best SNR even with a highly sensitive
detector. In our case, the incident light power (>500 mW at
800 nm) is high enough to saturate the CCD detector even
at β = 1.7 × 10−3. Therefore, it is the low extinction ratio
of the polarizers instead of the limited detection sensitivity
that is the dominant factor preventing us from realizing the
ideal enhancement of the chiroptical measurement. However,
for vibrational optical activity (VOA) measurement in the IR
frequency range, the detection sensitivity would be critical not
only because the VOA signal is exceedingly small (|x| ∼ 10−5)
but also because both the IR detector and IR light source
are less sensitive and weaker, respectively, than those in the
visible frequency domain. Noting that the intrinsic maximum
enhancement factor is purely determined by the original
chiroptical intensity (Gmax

∼= 1/2|x|), we believe that the
potentially achievable enhancement for the VOA signal is
much larger than that of the electronic counterpart. However,
since βmax(= |x|) giving Gmax becomes much smaller along
with the very small |x| value and the transmitted light level at
βmax is likely to be extremely weak (∼ |sin βmax|2|E0|2), the
detector sensitivity or the incident light intensity would be a
critical factor for achieving maximal enhancement in the VOA
measurement.

C. Comparison with previous works

The enhancement effects on chiroptical measurements with
the QNPD method were briefly discussed in our recent review
article [15]. However, it appears that the presence of intrinsic
upper limits of such chiroptical enhancement effects has
not been discussed nor experimentally demonstrated before.
Therefore, before we close this section, we shall compare
how these chiroptical enhancement effects are related to other
previous works.

Recently, a direct connection between the QNPD enhance-
ment effects in chiroptical spectroscopy and the weak amplifi-
cations with the cross-polarizer method has been revealed and
discussed [19]. For the sake of completeness, let us briefly
discuss the essential aspect of weak measurement theory.
The Hamiltonian of the standard measurement is written as
Ĥ = −αx ′Â, where x ′ is a canonical variable of the meter
and α is either unity or a normalized time-dependent function
compactly centered at the time of measurement. Considering
an ensemble of photons in an optical measurement, with a
preselected initial state |ψi〉 and a postselected final state |ψf 〉
with |g(x ′)〉 the initial state of the measuring device, Aharonov,
Albert, and Vaidman showed that the probability amplitude can
be approximately given as [20]

〈ψf |�〉 = 〈ψf |e−i
∫

Ĥ (t)dt |g(x ′)〉|ψi〉
∼= 〈ψf |1 − i

∫
Ĥ (t)dt |g(x ′)〉|ψi〉

= 〈ψf |ψi〉(1 − ix ′Aw)|g(x ′)〉
∼= 〈ψf |ψi〉e−ix ′Aw |g(x ′)〉, (30)

where the weak value of the system operator Â is defined as

Aw ≡ 〈ψf |Â|ψi〉
〈ψf |ψi〉 . (31)

Then it was shown that the weak value in Eq. (31) can be
arbitrarily large, far outside the range of eigenvalues of Â, if
the overlap 〈ψf |ψi〉 between the pre- and postselected states or
the detection probability |〈ψf |ψi〉|2 is made to be very small.
Experimentally, this is realized by controlling the transmission
axes of the polarizer and the analyzer to be orthogonal to
each other, and this weak value amplification scheme has
been applied to measurements of the phase and amplitude of
the photon wave function [21], polarization-state-dependent
beam deflection of 1 Å [22], and the small longitudinal phase
shift induced by birefringent materials [23]. In fact, these
optical measurements with cross polarizer-analyzer geometry
are essentially identical to the present QNPD method, which
was initially shown to be of use by Kliger [5,6]. In the case
of the present QNPD chiroptical measurement, using the
linearization-and-exponentiation approximation in Eq. (30)
and considering the chiral-medium influence operator e−iÂcL,
with Âc in Eq. (2), one can show that the H component
of the transmitted light after its interaction with the chiral
medium is given as, for (±) EPL used to measure the CD
signal, E±

H
∼= ±i|E0

H | e−iA±
w,EPLL, and (±)-rotated LPL used to

measure the ORD (or circular birefringence) signal, E±
H

∼=
±|E0

H | e−iA±
w,rLPLL, where the corresponding chiroptical weak

values are, respectively,

A±
w,EPL ≡ 〈H |Âc|ψ±〉

〈H |ψ±〉 =
(

ρ ∓ δ

2

1

β

)
− i

(
κ

2
∓ η

4

1

β

)
(32)

and

A±
w,rLPL ≡ 〈H |Âc|ψ±〉

〈H |ψ±〉 =
(

ρ ∓ η

4

1

β

)
− i

(
κ

2
± δ

2

1

β

)
, (33)

where the corresponding aspect ratios are defined in Eqs. (14)
and (25). Again, in the limit of small elliptical angle of
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EPL or rotation angle of LPL used to measure CD and
ORD, respectively, the amplification factors both are 1/β so
that as the ellipticity angle θ or rotation angle φ decreases,
the corresponding dissymmetry factors for CD and ORD
signals increase, i.e., there is an amplification effect. However,
as shown in this paper, the amplification factor cannot be
arbitrarily large due to the intrinsic contribution from the
homodyne term [see Eqs. (13) and (24)].

This existence of an upper limit in the QNPD enhancement
factor is, in fact, similar to the case of the enhancement
effect of the so-called superchiral field on optical enantios-
electivity [14,15,24]. Tang and Cohen [25,26] considered the
dissymmetry factor for optical enantioselectivity defined as

g = A+ − A−

(A+ + A−)/2
, (34)

where A± are the rates of absorption of (±)-handed chiral light
by a given chiral molecule. Since A± can be written as a sum
of chiral and nonchiral terms as A± = Anonchiral ± Achiral, the
dissymmetry factor for optical enantioselectivity is

g = 2Achiral

Anonchiral

(35)

where

Anonchiral
∼= 2ω

ε0

(
α′′Ue + 1

c2
χ ′′Um

)
(36)

and

Achiral = − 2

ε0
G′C. (37)

Here, the imaginary parts of the complex electric polariz-
ability and the complex magnetic susceptibility are denoted
as α′′ and χ ′′, respectively. G′ represents the real part of
the mixed electric-dipole–magnetic-dipole polarizability G̃,
which is a measure of molecular chirality, whereas the C
factor defined as (1/2)ε0{E · (∇ × E) + c2 B · (∇ × B)} is a
measure of optical chirality [25,27]. The electric and magnetic
field energy densities are denoted as Ue and Um, respectively,
in Eq. (36).

For traveling plane-polarized light waves, the electric-
field—electric-dipole interaction strength is two to three orders
of magnitude larger than the magnetic-field—magnetic-dipole
interaction strength, i.e., α′′Ue � χ ′′Um/c2. Therefore, the
second term in the expression for Anonchiral in Eq. (36) can be
safely ignored. In addition to this approximation, Tang and Co-
hen further considered standing-wave-type chiral fields with
nodes at which the electric field energy density approaches
zero. Consequently, it was shown that the dissymmetry factor
in this special case can be arbitrarily large, i.e.,

g ∝ (C/Ue) → ∞ as Ue → 0. (38)

However, due to the fact that the total electromagnetic field
energy density does not depend on position, the approximation
α′′Ue � χ ′′Um/c2 may not hold at the nodes of electric field.
In the region where α′′Ue < χ ′′Um/c2, the dissymmetry factor
decreases and approaches zero as Ue → 0 [14]. Therefore,
there should exist an intrinsic limit in the enhancement of g

for optical enantioselectivity, much like the existence of an

intrinsic limit in the enhancement factor for QNPD chiroptical
spectroscopy.

To make this analogy clear, let us consider the terms
contributing to Anonchiral and Achiral in more detail. From the
Fermi’s golden rule expression, the first term 2ωα′′Ue/ε0 in
Anonchiral results from the interaction between the electric field
and the electric-field-induced electric dipole, whereas the sec-
ond term 2ωχ ′′Um/(ε0c

2) results from the interaction between
the magnetic field and the magnetic-field-induced magnetic
dipole. However, Achiral represents the transition probability
induced by mixed interactions between the electric field and
the magnetic-field-induced electric dipole and between the
magnetic field and the electric-field-induced magnetic dipole.
Therefore, the two terms contributing to Anonchiral can be con-
sidered as homo-transition processes, and those contributing
to Achiral as hetero- (mixed-) transition processes. Similarly
to the fact that the chiroptical enhancement factor reaches its
maximum value when the two homodyne terms have an equal
magnitude, i.e., |Echiral| = |ELO| in Eqs. (13) and (24), the
enhancement factor for optical enantioselectivity was shown to
be maximum at α′′Ue = χ ′′Um/c2. This equality suggests that
the maximum enhancement of any optical enantioselectivity is
expected when the ratio of the electric field and magnetic field
energy densities is controlled to be the ratio of the magnetic
and electric susceptibilities, i.e., Ue/Um = χ ′′/c2α′′.

Recently, Cameron and Barnett [28] showed that the
dissymmetry factor for Raman optical activity (ROA) can
be arbitrarily large when chiral molecules are placed at the
nodal regions of the standing-wave-type chiral fields that were
originally considered by Tang and Cohen. They showed that
the enhancement effect becomes very large as the electric
field energy density approaches zero. However, their results
were based on the same approximation that the electric-field—
electric-dipole interaction strength is two to three orders of
magnitude larger than the magnetic-field—magnetic-dipole
interaction strength. Again, this is valid only for traveling-
wave-type chiral fields and not for standing-wave-type chiral
fields so that there should also exist an intrinsic upper limit in
the enhancement effect on the ROA by the superchiral field.
This is currently under investigation and the result will be
presented elsewhere.

VI. SUMMARY AND A FEW CONCLUDING REMARKS

In this paper, the underlying enhancement mechanism
of a chiroptical measurement combined with heterodyned
detection in the QNPD method was fully elucidated and the
intrinsic limitations of such enhancement effects in CD and
ORD measurements with EPL and rotated LPL, respectively,
were clarified. It was demonstrated that the ORD dissymmetry
factor (g) can be significantly enhanced by adjusting the
rotation angle of the incident LPL in the QNPD method but
there exists an intrinsic upper limit, which is purely determined
by the original chiroptical strength (|x|) of the sample. For
an originally weak ORD signal (|x| = 1.6 × 10−4), however,
its amplification was experimentally limited to ∼400 times,
which is far from its ideal limit (Gmax

∼= 1/2|x| = 3100) and
is thus considered as the practical limit caused by other
technical problems. Although the primary source limiting
the enhancement effect observed in our QNPD setup is the
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low extinction ratio of real polarizers used, the intrinsic
enhancement limit is mainly due to the homodyne chiroptical
intensity contribution to the corresponding dissymmetry factor
regardless of the imperfection of a real measurement system.
With more optically perfect polarizers and a stronger light
source, we believe that a higher amplification toward the
intrinsic limit would be achievable in the QNPD method.

ACKNOWLEDGMENTS

This work was supported by the Korea Basic Science
Institute (KBSI Grant No. T34428) for H.R. The experimental
data presented here were measured using the Femtosecond
Multidimensional Laser Spectroscopic System (FMLS) at
KBSI. M.C. is grateful for the financial support by Grant No.
IBS-R023-D1.

[1] N. Berova, K. Nakanishi, and R. W. Woody, Circular Dichroism:
Principles and Applications, 2nd ed. (Wiley-VCH, New York,
2000).

[2] L. D. Barron, Molecular Light Scattering and Optical Ac-
tivity, 2nd ed. (Cambridge University Press, Cambridge, UK,
2004).

[3] L. A. Nafie, Vibrational Optical Activity: Principles and
Applications (Wiley, Chichester, UK, 2011).

[4] E. Chen, Y. Wen, J. W. Lewis, R. A. Goldbeck, D. S.
Kliger, and C. E. M. Strauss, Rev. Sci. Instrum. 76, 083120
(2005).

[5] D. B. Shapiro, R. A. Goldbeck, D. Che, R. M. Esquerra, S. J.
Paquette, and D. S. Kliger, Biophys. J. 68, 326 (1995).

[6] C. F. Zhang, J. W. Lewis, R. Cerpa, I. D. Kuntz, and D. S. Kliger,
J. Phys. Chem. 97, 5499 (1993).

[7] J. Helbing and M. Bonmarin, J. Chem. Phys. 131, 174507
(2009).

[8] I. Eom, S.-H. Ahn, H. Rhee, and M. Cho, Phys. Rev. Lett. 108,
103901 (2012).

[9] H. Rhee, I. Eom, S.-H. Ahn, and M. Cho, Chem. Soc. Rev. 41,
4457 (2012).

[10] H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim,
S.-J. Jeon, and M. Cho, Nature (London) 458, 310 (2009).

[11] I. Eom, S.-H. Ahn, H. Rhee, and M. Cho, Opt. Express 19, 10017
(2011).

[12] K. Hiramatsu, H. Kano, and T. Nagata, Opt. Express 21, 13515
(2013).

[13] K. Hiramatsu, M. Okuno, H. Kano, P. Leproux, V. Couderc, and
Hiro-o Hamaguchi, Phys. Rev. Lett. 109, 083901 (2012).

[14] J. S. Choi and M. Cho, Phys. Rev. A 86, 063834 (2012).
[15] H. Rhee, J. S. Choi, D. J. Starling, J. C. Howell, and M. Cho,

Chem. Sci. 4, 4107 (2013).
[16] S. R. Domingos, A. Huerta-Viga, L. Baij, S. Amirjalayer, D. A.

E. Dunnebier, A. J. C. Walters, M. Finger, L. A. Nafie, B. Bruin,
W. J. Buma, and S. Woutersen, J. Am. Chem. Soc. 136, 3530
(2014).

[17] D. J. Dummer, S. G. Kaplan, L. M. Hanssen, A. S. Pine, and
Y. Zong, Appl. Opt. 37, 1194 (1998).

[18] H. Rhee, S.-S. Kim, S.-J. Jeon, and M. Cho, ChemPhysChem
10, 2209 (2009).

[19] M. Cho, Phys. Rev. A 88, 023833 (2013).
[20] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60,

1351 (1988).
[21] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C.

Bamber, Nature (London) 474, 188 (2011).
[22] O. Hosten and P. Kwiat, Science 319, 787 (2008).
[23] N. Brunner and C. Simon, Phys. Rev. Lett. 105, 010405 (2010).
[24] K. Y. Bliokh and F. Nori, Phys. Rev. A 83, 021803(R) (2011).
[25] Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010).
[26] Y. Tang and A. E. Cohen, Science 332, 333 (2011).
[27] R. P. Cameron, S. M. Barnett, and A. M. Yao, New J. Phys. 14,

053050 (2012).
[28] R. P. Cameron and S. M. Barnett, Phys. Chem. Chem. Phys. 16,

25819 (2014).

053839-10

http://dx.doi.org/10.1063/1.2009847
http://dx.doi.org/10.1063/1.2009847
http://dx.doi.org/10.1063/1.2009847
http://dx.doi.org/10.1063/1.2009847
http://dx.doi.org/10.1016/S0006-3495(95)80191-8
http://dx.doi.org/10.1016/S0006-3495(95)80191-8
http://dx.doi.org/10.1016/S0006-3495(95)80191-8
http://dx.doi.org/10.1016/S0006-3495(95)80191-8
http://dx.doi.org/10.1021/j100123a009
http://dx.doi.org/10.1021/j100123a009
http://dx.doi.org/10.1021/j100123a009
http://dx.doi.org/10.1021/j100123a009
http://dx.doi.org/10.1063/1.3256224
http://dx.doi.org/10.1063/1.3256224
http://dx.doi.org/10.1063/1.3256224
http://dx.doi.org/10.1063/1.3256224
http://dx.doi.org/10.1103/PhysRevLett.108.103901
http://dx.doi.org/10.1103/PhysRevLett.108.103901
http://dx.doi.org/10.1103/PhysRevLett.108.103901
http://dx.doi.org/10.1103/PhysRevLett.108.103901
http://dx.doi.org/10.1039/c2cs15336j
http://dx.doi.org/10.1039/c2cs15336j
http://dx.doi.org/10.1039/c2cs15336j
http://dx.doi.org/10.1039/c2cs15336j
http://dx.doi.org/10.1038/nature07846
http://dx.doi.org/10.1038/nature07846
http://dx.doi.org/10.1038/nature07846
http://dx.doi.org/10.1038/nature07846
http://dx.doi.org/10.1364/OE.19.010017
http://dx.doi.org/10.1364/OE.19.010017
http://dx.doi.org/10.1364/OE.19.010017
http://dx.doi.org/10.1364/OE.19.010017
http://dx.doi.org/10.1364/OE.21.013515
http://dx.doi.org/10.1364/OE.21.013515
http://dx.doi.org/10.1364/OE.21.013515
http://dx.doi.org/10.1364/OE.21.013515
http://dx.doi.org/10.1103/PhysRevLett.109.083901
http://dx.doi.org/10.1103/PhysRevLett.109.083901
http://dx.doi.org/10.1103/PhysRevLett.109.083901
http://dx.doi.org/10.1103/PhysRevLett.109.083901
http://dx.doi.org/10.1103/PhysRevA.86.063834
http://dx.doi.org/10.1103/PhysRevA.86.063834
http://dx.doi.org/10.1103/PhysRevA.86.063834
http://dx.doi.org/10.1103/PhysRevA.86.063834
http://dx.doi.org/10.1039/c3sc51255j
http://dx.doi.org/10.1039/c3sc51255j
http://dx.doi.org/10.1039/c3sc51255j
http://dx.doi.org/10.1039/c3sc51255j
http://dx.doi.org/10.1021/ja411405s
http://dx.doi.org/10.1021/ja411405s
http://dx.doi.org/10.1021/ja411405s
http://dx.doi.org/10.1021/ja411405s
http://dx.doi.org/10.1364/AO.37.001194
http://dx.doi.org/10.1364/AO.37.001194
http://dx.doi.org/10.1364/AO.37.001194
http://dx.doi.org/10.1364/AO.37.001194
http://dx.doi.org/10.1002/cphc.200900340
http://dx.doi.org/10.1002/cphc.200900340
http://dx.doi.org/10.1002/cphc.200900340
http://dx.doi.org/10.1002/cphc.200900340
http://dx.doi.org/10.1103/PhysRevA.88.023833
http://dx.doi.org/10.1103/PhysRevA.88.023833
http://dx.doi.org/10.1103/PhysRevA.88.023833
http://dx.doi.org/10.1103/PhysRevA.88.023833
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1038/nature10120
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1126/science.1152697
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevLett.105.010405
http://dx.doi.org/10.1103/PhysRevA.83.021803
http://dx.doi.org/10.1103/PhysRevA.83.021803
http://dx.doi.org/10.1103/PhysRevA.83.021803
http://dx.doi.org/10.1103/PhysRevA.83.021803
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1126/science.1202817
http://dx.doi.org/10.1088/1367-2630/14/5/053050
http://dx.doi.org/10.1088/1367-2630/14/5/053050
http://dx.doi.org/10.1088/1367-2630/14/5/053050
http://dx.doi.org/10.1088/1367-2630/14/5/053050
http://dx.doi.org/10.1039/C4CP03505D
http://dx.doi.org/10.1039/C4CP03505D
http://dx.doi.org/10.1039/C4CP03505D
http://dx.doi.org/10.1039/C4CP03505D



