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Polarizable particles trapped in a resonator-sustained optical-lattice potential generate strong position-
dependent backaction on the intracavity field. In the quantum regime, particles in different energy bands are
connected to different intracavity light intensities and optical-lattice depths. This generates a highly nonlinear
coupled particle-field dynamics. For a given pump strength and detuning, a factorizing mean-field approach
predicts several self-consistent stationary solutions of strongly distinct photon numbers and motional states.
Quantum Monte Carlo wave-function simulations of the master equation confirm these predictions and reveal
complex multimodal photon-number and particle-momentum distributions. Using larger nanoparticles in such a
setup thus constitutes a well-controllable playground to study nonlinear quantum dynamics and the buildup of
macroscopic quantum superpositions at the quantum-classical boundary.
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I. INTRODUCTION

The dynamics of polarizable pointlike particles trapped by
an optical cavity light field has been the subject of intense
theoretical and experimental studies in the past decade [1–4].
Beyond implementing improved neutral-atom cavity-QED
systems [5–7], recently proposed applications of such setups
range from ultrahigh-Q optomechanics [3,8,9] to precision
tests of quantum mechanics at a mesoscopic scale [10] and
gravity [11]. Following the first pioneering experiments more
than a decade ago [5–7], several groups have implemented
reliable cavity-based optical traps in their experiments for
various particle numbers ranging from a single or few atoms
[12–15] to Bose-Einstein condensates (BECs) [16–19] or
lately even considerably heavier nanoparticles [20–22].

Particles in cavity fields, in contrast to free-space optical
potentials, substantially act back on the field dynamics
[23,24], which generates complex and rich nonlinear dynamics
[25–28]. In the standard optomechanical limit of very tightly
trapped particles or membranes, which can essentially be
modeled by harmonic oscillators [29,30], a wealth of in-
teresting physics beyond ground-state cooling appears in
the strong-coupling regime. Typical examples are atom-field
entanglement, nonlinear oscillations, and multistable behavior
[26,31–35]. The system dynamics gets even more complex and
rich, if one refrains from linearizing the particle motion and
considers its full dynamics along the cavity potential [36,37].

In most cases the optical potential along the cavity axis
is well approximated by a sinusoidal lattice potential with
a depth proportional to the momentary intracavity photon
number [2]. While for deep potentials the harmonic-oscillator
basis allows for analytic insight, it becomes inadequate for
shallower lattices. The eigenfunctions of periodic potentials
are delocalized Bloch functions, which can be transformed to
localized Wannier functions [38]. Unfortunately, no analytic
solutions for either the Bloch or the Wannier functions are
known even for a fixed lattice depth. Hence, aiming for an
explicit analytic treatment in the (dynamic) quantum-potential
limit is a hopeless goal. In view of these complications,
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several semiclassical and mean-field models with factorized
evolution of the particles and the field have been developed to
obtain some first insights [23,26,39]. Here the field expectation
value is governed by ordinary differential equations containing
particle expectation values. This field is in turn inserted in the
effective Hamiltonian for the particle motion [36,40]. Even in
this strongly simplified limit the nonlinearity of the interaction
does not allow for a straightforward solution in the general
case and further assumptions are needed [33].

In this paper we study the full quantum dynamics and the
steady-state properties for the case of a single particle in a
cavity-sustained optical lattice in the strongly coupled and
strongly pumped limit. Hence, our treatment will centrally
be based on straightforward numerical solutions of the corre-
sponding quantum-optical master equation. Strong emphasis
will be put on steady-state properties of the system in the limit
of very low temperatures close to T = 0, where semiclassical
treatments predict a multitude of stationary solutions. To this
end we will heavily rely on quantum Monte Carlo wave-
function simulations [41–43], since a direct solution of the
master equation becomes very slow and cumbersome owing
to the large joint particle-field Hilbert space, even though we
consider the simplest possible system involving only a single
particle.

This paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and the master equation, from which
we derive equations for the expectation values of the cavity
field and the photon number, depending on the particle state. To
get some first qualitative insight into the system behavior and to
identify interesting parameter regimes, we start with simplified
semiclassical models. Factorizing atom and field dynamics, we
approximate the photon field by a classical field characterized
by its mean photon number, which is determined by the spatial
distribution of the particle. We then look for self-consistent
steady-state solutions for the expected photon number.
Section III is devoted to studies of these self-consistency
conditions in various limiting cases. We first consider the
deep-trap limit of harmonic particle confinement, which allows
for an analytic treatment. This analysis is afterwards extended
to localized Wannier states in the general case of a periodic
optical lattice. In Sec. IV we then numerically solve the
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FIG. 1. (Color online) A particle within a driven optical cavity.
The longitudinal cavity pump η builds up an intracavity field that
drives the particle motion. The particle’s motional state affects the
cavity detuning (dynamic refractive index), which in turn influences
the intracavity photon number. Photons leak through the cavity
mirrors at a rate 2κ .

full master equation in typical operating regimes determined
before and also analyze the behavior of single Monte Carlo
trajectories. Finally, in Sec. V the conclusions are drawn.

II. MODEL

We consider the standard case of a driven, damped cavity
mode with a single polarizable particle of mass m moving
along the cavity axis, as sketched in Fig. 1. The Hamiltonian
(� = 1) in a rotating frame with pump amplitude η, cavity
detuning �C, and effective particle-field interaction strength
U0 is then given by [44]

H = p2

2m
− [�C − U0 cos2(kRx)]a†a − iη(a − a†), (1)

where kR = 2π/λ is the single-photon recoil momentum,
with λ being the cavity mode wavelength. The particle
position and momentum operators x and p, and the photon
mode annihilation (creation) operators a(†), obey the standard
canonical commutation relations

[x, p] = i, [a, a†] = 1, (2)

with all other commutators vanishing. The coupling strength is
parametrized by U0, which denotes the optical potential depth
per photon as well as the maximum cavity mode resonance
frequency shift that a particle induces when placed at a
field antinode. Here we consider a large negative U0, which
corresponds to high-field seeking particles.

We assume operation far from any internal optical reso-
nances, such that spontaneous light scattering and absorption
losses from the particle into the mode can be neglected [1].
The dominant loss mechanism is then cavity damping, which
at optical frequencies can be incorporated by a standard master
equation treatment parametrized by a loss rate κ [45]:

ρ̇ = −i[H, ρ] + κ(2aρa† − a†aρ − ρa†a). (3)

From this master equation we straightforwardly derive
ordinary differential equations (ODEs) for the expectation
values of the field amplitude, 〈a〉 = α, and the photon number,
〈n〉 = 〈a†a〉, which read

α̇ = [i(�C − U0〈cos2(kRx)〉) − κ]α + η, (4a)

˙〈n〉 = η(α + α∗) − 2κ〈n〉. (4b)

Within the semiclassical treatment with a c-number descrip-
tion of the field amplitude the particle-field density matrix
is assumed to be separable. Obviously, the field dynamics

depends on the motional state of the particle via the expectation
value (bunching parameter)

b := 〈cos2(kRx)〉 (5)

in a nonlinear fashion. This parameter itself is, in turn, gov-
erned by the Schrödinger equation containing the Hamiltonian
(1), whose spatial eigenstates are Bloch functions according
to the quantized lattice depth V0 = |U0|a†a. This yields a
different evolution for each photon-number component of the
total wave function and thus a very complex time evolution.
Hence, a full solution of the master equation (3) requires a
numerical approach, which can be directly implemented using
a truncated photon number and momentum basis expansion.
Note that due to the periodic nature of the potential we can
work with periodic boundary conditions in real space and use
a discrete momentum basis {|p〉 = |jkR〉} with j ∈ N0.

As these calculations are time consuming and the range of
physical parameters (η,�C,U0,ωR) is large, we first try to get
some qualitative insight and find interesting parameter regions
using the factorized semiclassical approach involving Eqs. (4).

III. SELF-CONSISTENT SEMICLASSICAL SOLUTIONS
OF THE COUPLED ATOM-FIELD DYNAMICS

Let us now analyze potential stationary solutions of the
coupled ODE system (4). As the field dynamics in the semi-
classical approximation depends on the position distribution of
the particle via the expectation value (5) only, for the system to
reach a steady state we need a stationary wave function. This
leads to the self-consistency condition

〈n〉 = η2

κ2 + (�C − U0〈cos2(kRx)〉)2
, (6)

where the wave function of the particle has to be an eigenstate
of Eq. (1) with the photon-number operator a†a replaced
by 〈n〉. Note that the expectation value 〈cos2(kRx)〉 in the
denominator on the right-hand side of Eq. (6) does not
explicitly involve any field operators. Nevertheless, the time
evolution of the spatial part of the wave function depends on
the field intensity. Hence, the state can only be stationary if it is
an eigenstate of the Hamiltonian (1) for the momentary photon
number. Note that the pump amplitude η is a free parameter in
the above equation and in many cases for a given eigenstate of
the particle Hamiltonian a self-consistent choice of η can be
made to fulfill Eq. (6) [40]. We, however, opt for the opposite
approach and determine self-consistent photon numbers for
given pump strengths.

Let us mention, though, that this is only a necessary
condition and by no means sufficient for a stable stationary
equilibrium subject to the quantum fluctuations of the system.
At this point it can only serve as a guide toward interesting
parameter regions, which is, e.g., the case when several dif-
ferent spatial eigenfunctions lead to the same pump amplitude
η. We will discuss this in some more detail below for specific
limiting examples.

A. Harmonic-oscillator expansion in a deep lattice

In the limit where the potential depth V0 ≈ |U0|〈n〉
strongly exceeds the recoil energy ER ≡ ωR := k2

R/(2m), the
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lowest-energy particle states are well localized within a single
well of the optical lattice. For low enough temperatures
the optical potential Veff(x) = U0〈n〉 cos2(kRx) can then be
approximated by a harmonic potential [40]:

U0 〈n〉 cos2(kRx) ≈ U0 〈n〉 (
1 − k2

Rx2
)
. (7)

The corresponding trapping frequency ωho then reads

ωho

ωR
= 2

√
|U0|
ωR

〈n〉 � 1, (8)

and we can analytically find the respective oscillator states
|nho〉 to this frequency. The expectation value in the denomi-
nator of Eq. (6) is then well approximated by 〈cos(kRx)2〉 ≈
1 − k2

R〈x2〉 with

〈x2〉nho = 〈nho|x2|nho〉 = 2nho + 1

2mωho
, (9)

such that

k2
R〈x2〉nho = (2nho + 1)

ωR

ωho
= 2nho + 1

2
√

|U0|
ωR

〈n〉
. (10)

Hence, within the harmonic-oscillator approximation Eq. (6)
becomes the simple algebraic equation

〈n〉 = η2

κ2 +
[
�C − U0

(
1 − 2nho+1

2
√ |U0 |

ωR
〈n〉

)]2 , (11)

which can be easily solved for each choice of eigenstate num-
ber nho. Figure 2 shows contours in the �C-〈n〉 plane for dif-
ferent values of η for which Eq. (11) holds. While the lowest-
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FIG. 2. (Color online) Self-consistent photon-number contours
for a harmonically trapped particle as a function of the cavity-
pump detuning for different pump amplitudes η. The four plots
show contours in the �C-〈n〉 plane for different harmonic-oscillator
eigenstates |nho〉, where Eq. (11) holds self-consistently. All excited
states, nho � 1, yield the possibility of two self-consistent solutions
for a certain range of detuning �C and therefore may allow for
optomechanical bistability. Parameters: U0 = −10ωR and κ = ωR.

energy state nho = 0 results in a unique photon number, multi-
ple (up to two) solutions are possible for higher excited states.

B. Self-consistent states for the full lattice dynamics

Several interesting aspects of the deep-trap harmonic-
oscillator regime have been studied in the past [27,33,40].
In many respects the system is directly related to standard
optomechanical models with quadratic coupling [29]. For
ultracold particles and weaker optical potentials the motion
is strongly delocalized in the lattice [2]. Hence, we now turn
to the full model and consider the particle’s motion in the
periodic optical lattice:

Veff(x) = U0 〈n〉 cos2(kRx). (12)

For very shallow lattices close to zero temperature, i.e., for
a BEC in a cavity, a two-mode expansion of the wave function
can be applied [16,46], which again allows for analytic treat-
ments and analogies with optomechanical couplings. However,
the validity range of this model is limited in temperature, time,
and coupling strength. As we are here more interested in the
limit of strong nonlinear backaction in deep potentials, we can-
not apply this simplification and have to solve the Schrödinger
equation for a periodic potential, which gives us the well-
known Bloch states 
mq(x), where m denotes the energy band
and q is the quasimomentum [38]. Being periodic with the
lattice constant, they are not the best basis to describe a single
localized particle. Hence, we switch to a Wannier basis, where
each basis state represents a localized wave function with its
center of mass at a particular lattice site. Such basis states have
been very successfully used to study ultracold particle dynam-
ics in optical lattices [47,48]. The Wannier functions for a given
band index m localized at lattice position R are defined as [38]

wm(x − R) :=
√

a

2π

∫ π/a

−π/a


mq(x)e−iqRdq, (13)

where a is the lattice periodicity. The Bloch functions 
mq(x)
are only defined up to a phase. In order to obtain the maximally
localized (i.e., real and exponentially decaying) Wannier
functions, these phases need to be properly adjusted [38]. In
what follows we choose for simplicity R = 0.

We are now able to restate the self-consistency equation (6)
for each band index m as

0 = η2

κ2 + (�C − U0bm)2
− 〈n〉, (14)

with

bm =
∫ ∞

−∞
[wm(x)]2 cos2(kRx) dx. (15)

Contrary to the harmonic oscillator wave functions, there is
no analytic expression for Wannier functions and we have to
numerically solve the Schrödinger equation for each particular
〈n〉. Therefore 〈n〉 does not explicitly appear on the right-hand
side of Eq. (14), but enters implicitly through the shape of the
wave function. As before, we can obtain the contours where
Eq. (14) holds self-consistently in the �C-〈n〉 plane for the
same values of η; see Fig. 3.

The behaviors of the photon numbers for the lowest-energy
states nho = 0 and m = 0 in both cases are very much alike,
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FIG. 3. (Color online) Same as Fig. 2 for particles in localized
Wannier states. Photon numbers above the dashed lines for wm�1

correspond to bound Wannier states (E < 0). Higher bands exhibit
up to three solutions of Eq. (14) for a given value of �C. Parameters:
U0 = −10ωR and κ = ωR.

because the corresponding lowest bound states in both models
are similar. Indeed, the maximally localized Wannier func-
tions converge to the harmonic oscillator functions for deep
potentials [38]. For the higher-energy eigenstates, however, the
photon numbers differ significantly. The reason behind is that
in a harmonic oscillator all states are bound, while Wannier
states for increasing m � 1 undergo a transition from bound
to free states for a given photon number (i.e., potential depth).
Dashed lines in Fig. 3 indicate this boundary. For m � 1 sharp
bends appear, yielding self-consistent contours reminiscent of
nonlinear response curves. The origin of these peculiarity at the
transition from free to bound states becomes evident, if we look
at the spatial particle density of the respective Wannier states.
Figure 4 illustrates the behavior of the fourth band Wannier
state w4 for different mean photon numbers (i.e., potential
depths). The key quantity here is the expectation value of
the bunching parameter bm [Eq. (15)], which determines
the backaction of the particle on the cavity field, i.e., its
effective refractive index. For free particles, 〈E〉 > 0, the wave
function is barely localized and bm ≈ 1

2 . Around 〈E〉 ≈ 0
the Wannier states localize around potential maxima, i.e.,
optical field nodes, which minimizes the backaction of the
particle on the cavity, bm < 1

2 , while for deeper potentials
〈E〉 < 0 and particles are drawn toward field antinodes and
the index of refraction increases with potential depth, bm > 1

2 .
Thus the nonlinear behavior of the refractive index allows
for multiple self-consistent solutions for certain ranges of
the cavity detuning �C. In particular, we also find solutions
corresponding to unbound particle states (e.g., for w4 in Fig. 3).

C. Stability of the self-consistent factorized solutions

As we saw above, for certain parameter ranges in both the
harmonic oscillator and the Wannier contour plots more than
one self-consistent solution appears. Whether or not these so-
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FIG. 4. (Color online) Spatial particle distribution in a fourth
band Wannier state for different photon numbers: (a) Free particle:
The wave function is barely localized, b4 � 0.5. (b) Transition to
a bound state: The wave function is localized at potential maxima,
b4 < 0.5. (c) Tight-binding regime: The wave function is strongly
localized in a single potential well, b4 > 0.5.

lutions have significant relevance for the full system dynamics
depends on their stability properties, i.e., their response against
small deviations in the photon number or the spatial distribu-
tion. Some qualitative insight can already be gained by virtue of
Eq. (6). The right-hand side of Eq. (6) depends on the shape
of the wave function in real space, which in our semiclassical
model implicitly depends on 〈n〉. The term on the right-hand
side of Eq. (6) determines the mean photon number that is
allowed by the spatial part of the wave function in steady
state. If it increases or decreases with 〈n〉 faster than 〈n〉 at a
self-consistent point, one may assume that the self-consistent
configuration is unstable. Therefore we find that at stable
self-consistent configurations the inequality

∂

∂〈n〉
η2

κ2 + (�C − U0〈cos2(kRx)〉)2
− 1 < 0 (16)

must hold. This rather intuitive result is verified in the
Appendix via linear stability analysis. The stability regions
for the fourth band (where up to three self-consistent solutions
exist) are shown in Fig. 5.

IV. NUMERICAL ANALYSIS OF THE FULL COUPLED
ATOM-FIELD DYNAMICS

In order to test the above analysis, we now strive to solve
the full master equation [Eq. (3)]. As already mentioned,
the (even for a single particle) large Hilbert space makes a
direct numerical integration attempt practically unfeasible for
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FIG. 5. (Color online) Contour plot for the right-hand side of
Eq. (14) for the fourth band Wannier state. Solid (dotted) lines
mark stable (unstable) self-consistent solutions according to Eq. (16).
Parameters: η = 6ωR, U0 = −10ωR, and κ = ωR.

realistic parameters and photon numbers. We therefore make
use of quantum Monte Carlo wave-function simulations, in
which single stochastic state vectors (instead of the whole den-
sity matrix) are evolved subject to a non-Hermitian effective
Hamilton operator [41–43]. This evolution is stochastically
interrupted by quantum jumps corresponding to a projective
removal of one photon. Mathematically, averaging over a large
number of such trajectories then approximates the full density
matrix. Interestingly, the jumps can be physically interpreted as
detection events of photons leaking out of the resonator. Hence,
single trajectories provide a microscopic view of the processes
incorporated in the master equation since the ensemble average
over many trajectories converges toward the solution of the
latter.

In what follows we compare our above predictions with the
time evolution of single trajectories as well as to their ensemble
average. The numerical implementation of these simulations
was done within the C++QED framework allowing efficient
and fast simulations [49–51]. Since dynamic aspects have been
eliminated in our self-consistency and stability analysis, it is
not clear which of the self-consistent solutions appear in the
dynamics and what are their corresponding probabilities.

A. Time evolution of single trajectories

We consider a small sample of single quantum trajectories
in a multistable regime. Figure 6 shows the corresponding ex-
pectation values of the intracavity photon number 〈n〉 as well as
of the kinetic energy 〈Ekin〉 = 〈p2〉/(2m). As one might expect,
both quantities jump simultaneously between rather stable
values. The latter can be identified as the possible semiclassical
values found above. Each trajectory thus seems to switch
between these states rather than forming state superpositions.
Between jumps both quantities appear to fluctuate only weakly
about the self-consistent values (upper three graphs). In some
cases 〈n〉 jumps to very low values, where no bound state
exists. In such cases the system continuously heats up (i.e.,
〈Ekin〉 increases) until a subsequent jump occurs and projects
the particle back into a bound state [as for example in Fig. 6(b)
between the two quantum jumps at ωRt ≈ 120 and 150; the
significantly increased photon number after the second jump
allows again for bound states]. Figure 6(d) shows an extreme
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FIG. 6. (Color online) Expectation values on single quantum
trajectories for η = 6ωR, �C = −7.5ωR, U0 = −10ωR, and κ = ωR.
The mean values jump between the stable values predicted by the
self-consistency equation (14) (dashed lines). (a) and (b) Trajectories
with several jumps from very high to very low photon numbers. (c)
Trajectory with only a few jumps. (d) Trajectory with a large increase
of 〈Ekin〉 during evolution in a low-photon-number state. The kinetic
energy mean value of the 12th and 14th excited bands are shown
as black solid lines. Although numerical values indicate that the
trajectory could be in a definite band, the neat picture of correlated
photon number and momentum jumps clearly breaks down at this
point. Note the different scaling of the 〈Ekin〉 axis.

case, where the particle remains essentially free for a long time.
We find that there exists a multitude of stable self-consistent
solutions of Eq. (14) around 〈n〉 = 4 for higher bands (m � 6),
whose self-consistent photon numbers increase only slightly
with increasing band index. A small plateau of 〈Ekin〉 in
Fig. 6(d) can be interpreted as an occupation of the 12th
Wannier state, 〈Ekin〉m=12. We also indicate the mean kinetic
energy of the 14th excited band, 〈Ekin〉m=14, and observe that
this energy is reached continuously rather than by discrete
jumps as in the bound case. Below we will reencounter
reminiscences of such trajectories in the ensemble-averaged
solution of the master equation.

Due to the self-consistent photon numbers’ small sensitivity
on the band index for m � 6, according to our semiclassical
analysis several excited bands can coexist at a given value of
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FIG. 7. (Color online) Self-consistent solutions of Eq. (14) for
the lowest Wannier states (m = 0) compared to ensemble-averaged
quantum simulation results. Solid lines mark self-consistent contours;
data points are quantum simulation results. The black line separates
the regions where �eff, 0 < −�eff, 2 (left) and �eff, 0 > −�eff, 2 (right)
along the self-consistent contours of the zeroth band; cf. Eq. (18). In
the left region quantum simulations are in accordance with the self-
consistent solutions of Eq. (14) for the lowest band, while deviations
arise in the right region due to population of the m = 2 Wannier state.
Parameters: U0 = −10ωR and κ = ωR.

〈n〉. Wannier functions for a given potential depth are mutually
orthogonal, therefore transitions between bands can only occur
through fluctuations in the unbound regime, yielding much
slower transition rates than in the bound regime. Trajectories
may jump back to bound states, Figs. 6(a)–6(c), or remain
unbound, Fig. 6(d). The likeliness of jumping back to a bound
state seems to decrease with kinetic energy. At this stage it
appears that the momentum part of the wave function controls
the expected intracavity photon number rather than vice versa.

The correlated particle-field jumps reflect strong particle-
field correlations and some amount of entanglement, as
previously discussed in similar contexts [34,52].

B. Stationary solution of the master equation via
ensemble-averaged quantum trajectories

We now investigate the solution of the master equation (3)
of the joint particle-field density matrix by averaging over a
sufficiently large ensemble of Monte Carlo trajectories. First
we check the distribution of photon numbers for a specific
choice of parameters and compare it to the semiclassical
results. In Fig. 7 we depict the simplest case of parameters,
where only a single semiclassical solution exists. Interestingly,
we see that the mean photon numbers obtained from the
Monte Carlo simulations agree surprisingly well with the
self-consistent solutions of Eq. (14) for the lowest Wannier
state, as long as the cooling regime (large negative effective
detuning) is maintained. Closer to resonance we see a deviation
toward higher photon numbers, which indicates the appearance
of motional exited states (cf. Fig. 3).

Motivated by the single trajectories depicted in Fig. 6 one
can deduce a microscopic interpretation of the dynamics. To
each band may be assigned a kinetic temperature kBT =
2Ekin = 〈p2〉/m, which increases with the band index [53].
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FIG. 8. (Color online) Combined photon-number and
momentum-state occupation probability after a time interval
of �t = 310ω−1

R , starting from a state with zero momentum and
one cavity photon, k = 0 and n = 1, for U0 = −10ωR, κ = ωR,
η = 6ωR, and different values of the detuning. The density matrix is
approximated via quantum simulations with ensemble averages over
1000 trajectories for each parameter set. The numbers in each box
give the detuning �C in units of ωR.

The sign of the effective detuning

�eff, m := �C − U0bm (17)

determines whether the according band is heated (+) or cooled
(−). Heating means that in a certain band the system tends
toward populating higher excited bands, while cooling implies
the opposite. Since the value of �eff,m is different for every
band, some bands (the lower ones) are heated and others
(the higher ones) are cooled. From the proportionality of the
cooling/heating rates to �eff,m, we conclude that higher bands
appear in the ensemble-averaged steady-state solution if

�eff,m > −�eff, m+2. (18)

Note that for symmetry reasons the dynamics induced by the
Hamiltonian (1) conserves the parity of the initial state. For
a particle initially in the ground state, the lowest accessible
excited state is the second band and consequently m + 2
appears in Eq. (18). Hence the system effectively remains in
the lowest band until �eff, 0 > −�eff, 2; see Figs. 7 and 8. This
implies that, though the system is effectively blue detuned, it
does not get heated; see Fig. 9. For certain parameter values
a further increase of �C around �eff, 0 = 0 even yields further
cooling before the second excited band is populated.

A more complete picture of this dynamics can be found
if one includes momentum distributions, as depicted in Fig.
8, which represents the essence of the underlying physics.
For large negative cavity detunings �C the photon-number
distribution follows the mean values obtained for the lowest-
band approximation from our semiclassical model [Eq. (14)].
With increasing �C higher bands m + 2 appear when heating
depletes the lowest band if Eq. (18) is satisfied. Note that
the population of higher momenta at relatively small photon
number in Fig. 8 (e.g., at �C = −7.5ωR) can be traced back
to trajectories like the one shown in Fig. 6(d).
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FIG. 9. (Color online) Quantum simulation results showing the
particle’s average kinetic energy 〈Ekin〉 as a measure of its temperature
as a function of the cavity detuning for different pump amplitudes.
For η = 5ωR an interval where the final temperature decreases with
increasing detuning is clearly visible. The plot shows only a detail
of the set of data points for better visibility of the effect. In order to
eliminate temporal fluctuations at single time instances the plotted
points are time averages of 〈Ekin〉 of 100 values in the interval ωRt ∈
(305,310]. The dashed lines are interpolations between data points
and merely serve as a guide to the eye. The other parameters are
U0 = −10ωR and κ = ωR.

V. CONCLUSIONS AND OUTLOOK

We have shown that the dynamics of a quantum particle
trapped in a cavity-sustained optical lattice can reach a
multitude of quasistationary solutions at the same operation
parameters. Fluctuations of the cavity field as well as quantum
dynamics of the particle eventually trigger transitions between
such states observable in single Monte Carlo quantum trajec-
tories and stable for extended periods. Key properties of these
strongly correlated atom-field solutions can be understood
from an analysis in terms of localized Wannier functions and
a mean-field approximation of the cavity mode. Quantum
simulations exhibit few but fast transitions between such
quasistationary states. Averaged over a sufficiently large
ensemble, the final density matrix in this regime is a mixture
of several Bloch bands with corresponding photon-number
distributions. While the density matrix is mostly a mixture of
such quasistationary states, some atom-field entanglement can
be present in the transition phase, where the photon-number
expectation value lies in between two stationary values.
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APPENDIX: LINEAR STABILITY ANALYSIS
OF SELF-CONSISTENT SOLUTIONS

We here present the derivation of Eq. (16). The equations
of motion for the field amplitudes α = (α,α∗)T read

∂

∂t
α = U (α, α∗)α + η, (A1)

with η = (η,η)T and

U (α, α∗) =
(

i�eff(α, α∗) − κ 0
0 −i�eff(α, α∗) − κ

)
. (A2)

Its steady-state solution reads

αss =
( −η

i�eff−κ
−η

−i�eff−κ

)
. (A3)

We now investigate the stability of this steady-state solution
against small perturbations. The effective detuning �eff :=
�C − U0b [cf. Eq. (17)] depends on the field amplitudes via
the bunching parameter b [Eq. (5)]. This dependence has to be
considered in our stability analysis. We assume that

α = αss + δ, (A4)

where

δ =
(

δ

δ∗

)
, (A5)

and obtain

∂

∂t
(αss + δ) = U (αss + δ, α∗

ss + δ∗)(αss + δ) + η

= U (αss, α
∗
ss)δ +

[
∂U (α, α∗)

∂α

∣∣∣∣
α=αss

· δ

]
αss

+O(δ2), (A6)

where the term in the square parenthesis has to be interpreted
componentwise for each element of the matrix U . Using

∂αf = (∂nf )
(
α∗
α

)
with n = α∗α, we find

[
∂U (α, α∗)

∂α

∣∣∣∣
α=αss

· δ

]
αss

= i
∂�eff

∂n

∣∣∣∣
n=nss

(
α∗

ssδ + αssδ
∗) (

1 0

0 −1

)
αss

= i
∂�eff

∂n

∣∣∣∣
n=nss

(
nss α2

ss
−[α∗

ss]
2 −nss

)
δ. (A7)

Finally, we arrive at

∂

∂t
δ = Aδ + O(δ2), (A8)

with the coefficient matrix

A := U (αss, α
∗
ss) + i

∂�eff

∂n

∣∣∣∣
n=nss

(
nss α2

ss

−[α∗
ss]

2 −nss

)
. (A9)

Linear stability requires negative real parts of the eigenval-
ues of A. From

Tr(A) = −2κ < 0 (A10)

follows that the eigenvalues of A must be of the form λ1,2 =
a1,2 ± ib. At this point we have to discriminate between three
cases: (i) λ1,2 = a1,2 ± ib, (ii) complex-conjugate eigenvalues
λ1,2 = a ± ib, and (iii) real eigenvalues λ1,2 = a1,2. The first
case can be ruled out since det(A) is real (see below). In the
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second case it follows from the negative trace [Eq. (A10)] that
a < 0, since Tr(A) ≡ 2a, i.e., linear stability is always ensured.
The third case implies det(A) ≡ a1a2, which is positive for

negative eigenvalues. We thus require det(A)
!
> 0, which

evaluates to

κ2 +
[
�eff + nss

∂�eff

∂n

∣∣∣∣
n=nss

]2

− n2
ss

(
∂�eff

∂n

)2
!
> 0. (A11)

Inserting the steady-state photon number [cf. Eq. (A3)]

nss = η2

κ2 + �2
eff

, (A12)

simple arithmetic yields the condition

κ2 + �2
eff + 2�eff

η2

κ2 + �2
eff

∂�eff

∂n

∣∣∣∣
n=nss

> 0, (A13)

which can be recast into the form

1 − ∂

∂n

η2

κ2 + �2
eff

∣∣∣∣
n=nss

> 0. (A14)

This is precisely the inequality (16).

[1] P. Domokos and H. Ritsch, J. Opt. Soc. Am. B 20, 1098 (2003).
[2] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev.

Mod. Phys. 85, 553 (2013).
[3] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[4] Cavity Optomechanics, edited by M. Aspelmeyer, T. J.

Kippenberg, and F. Marquardt (Springer, New York, 2014).
[5] J. Ye, D. W. Vernooy, and H. J. Kimble, Phys. Rev. Lett. 83,

4987 (1999).
[6] D. Kruse, M. Ruder, J. Benhelm, C. von Cube, C. Zimmermann,
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