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Gap solitons in PT -symmetric lattices with a lower refractive-index core
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We address the existence and stability properties of families of gap solitons in a lower refractive-index core,
sandwiched between two optical lattices with a parity-time (PT ) symmetry imprinted in a defocusing medium.
The scale of flat-topped complex solitons can be controlled arbitrarily by varying the embedded index core.
Multipeaked solitons are found to exhibit equal peak values in the region of the index core, and they have no
analog in other lattice-modulated or bulk media. We demonstrate that, in sharp contrast to solitons in regular PT
lattices, flat-topped and multipeaked solitons are either stable or suffer a negligibly weak instability, even when
the gain-loss coefficient approaches the PT -symmetry-breaking point. Our results, thus, build a bridge between
the PT defect solitons in a narrow index core and the PT kink pairs in a broad index core. We also suggest an
effective way for the observation of “surface solitons” in PT -symmetric lattices.
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I. INTRODUCTION

The interplay between nonlinearity, periodicity of the
underlying structure, and local lattice deformations has at-
tracted broad attention during the past decade, since it offers
new possibilities for the realization of different types of
spatial solitons. For a review of early works, see, e.g., [1]
and references therein. The appropriate modulation of these
freedoms can be utilized to suppress the instability of solitons,
which is crucial for their applications in practice.

The dynamics of solitons in nonlinear media modulated
by complex lattices exhibiting a PT symmetry has been a
topic of continuously renewed interest recently, due to their
fundamental physics and potential applications in various
physical fields [2–4]. PT symmetry demands that a Hamilto-
nian share a common eigenfunction set with the PT operator.
The parity operator P̂ , responsible for spatial reflection, is
defined through the operations p̂ → −p̂, x̂ → −x̂, whereas
the time-reversal operator T̂ leads to p̂ → −p̂, x̂ → x̂, and
î → −̂i. From the normalized Schrödinger equation i�t =
Ĥ� [Ĥ = p̂2/2 + V (x) and p̂ = −i ∂

∂x
], one can deduce that

T̂ Ĥ = p̂2/2 + V ∗(x), which results in Ĥ P̂ T̂ = p̂2/2 + V (x)
and P̂ T̂ Ĥ = p̂2/2 + V ∗(−x). Thus, a necessary condition for
the Hamiltonian to be PT symmetric is that the potential
function V (x) should satisfy the condition V (x) = V ∗(−x) [5–
7]. The importance of a PT symmetry lies in that a non-
Hermitian Hamiltonian can display entirely real spectra [2–7].
Diverse families of spatial solitons were explored theoretically
and observed experimentally inPT -symmetric potentials with
gain-loss components [8–20].

On the other hand, series of fascinating applications have
been revealed in photonic crystal fibers (PCFs) with a high-
contrast refractive-index modulation [21,22]. An analog of
a PCF-like structure with a low-contrast modulation was
reported in nonlinear systems as well [23]. The latter case
is similar to the optically induced real lattices with a defect,
in which stable nonlinear defect states may exist [24]. In
real lattices with an index core, localized stable flat-topped
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and dipole solitons were found [25]. The reverse setting, i.e.,
an optical lattice with a finite number of sites, can support
symmetric and antisymmetric solitons with a nonvanishing
intensity at infinity [26]. In the two-dimensional case, soliton
shape can be controlled by varying the shape of the lattice
defects [27].

We should note that all works on defect solitons in
PT lattices focused on a defect covering a single lattice
site [11,12,28]. Moreover, to our knowledge, solitons in
lattices with gain-loss defects have not yet been reported
elsewhere. As is well known, the dynamics of solitons in PT
lattices is dramatically different from that of solitons in real
lattices [8–20], especially when the gain and loss are strong.
Considering the fact that flat-topped and dipole solitons can
exist in an index core embedded in a real lattice, it is natural to
ask: Can solitons can be supported by a defect covering several
PT lattice sites? If yes, what is their dynamics and how do the
low-index core and the gain-loss components influence them?

To answer these questions, we investigate the properties of
spatial solitons in a low-refractive-index core, surrounded by
two optical lattice walls with a PT symmetry. By analogy
with solid-state physics, localized nonlinear modes with well-
defined borders and abruptly decaying wings can be termed
as domain solitons [25]. Flat-topped solitons with arbitrary
scale can be derived by varying the size of the index core. The
influence of the gain-loss component on the stability of solitons
is studied in detail. Particularly, we find a class of multipeaked
solitons with equal peak value, which have no analog in real
lattices and are different from the multipeaked solitons in
regular PT lattices [29]. The confinement of lattice walls
and the Bragg reflections on beams suppress the instability of
solitons remarkably. Unstable solitons are very robust and can
propagate for a long distance (thousands of diffraction lengths)
with no obvious distortion.

II. THEORETICAL MODEL

We consider light propagation along the z axis in
a defocusing Kerr medium with a transverse complex
refractive-index modulation. The dynamics of the beam can
be described by the dimensionless nonlinear Schrödinger
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equation [30,31]

i
∂A

∂z
= −1

2

∂2A

∂x2
+ |A|2A − p[V (x) + ipiW (x)]A, (1)

where A is the complex field amplitude; x and z are the
normalized transverse and longitudinal coordinates, respec-
tively; p is the depth of lattice; and V (x) and W (x) correspond
to the distribution of the real and imaginary refractive-index
modulation. To study the domain solitons in a low-refractive-
index core, we set V (x) = cos2(�x), W (x) = sin(2�x) for
|x| � nπ/2� and V (x) = 0 and W (x) = 0 otherwise. Here
� denotes the frequency of the lattice and n is the number
of lattice periods removed from the PT lattice to form a
low-index core. Obviously, V (x) and W (x) satisfy the demand
of PT symmetry; i.e., V (−x) = V (x), W (−x) = −W (x).
Here pi ∈ [0,0.5] characterizes the relative strength of gain
and loss. The PT lattice degenerates to a purely real harmonic
lattice when pi = 0 and reaches a symmetry-breaking point
if pi = 0.5, beyond which the system undergoes an abrupt
phase transition. In particular, above this critical threshold,
the system loses its PT property and as a result some of the
eigenvalues become complex [5]. For a typical input beam
with λ = 1 μm, a = 10 μm (beam width) and n0 = 3, x = 1
and z = 1 in the dimensionless Eq. (1) correspond to ∼10 μm
in the transverse direction and ∼7 mm in the propagation
direction. Here p = 1 corresponds to a maximum variation
of refractive index ∼8 × 10−5.

We plot an example of a sandwiched PT lattice with
a low-index core in Fig. 1(a). The two lattices surrounding

FIG. 1. (Color online) (a) Profile of defectedPT lattice with p =
4, pi = 0.1, and n = 7. Solid blue line, real part; dashed red line,
imaginary part. (b) Band-gap lattice spectrum versus lattice depth p

at pi = 0.1. (c) Band-gap structure of the lattice at p = 4. Dashed
line indicates the real eigenvalues of b at pi = 0.7. (d) Imaginary
part of the double-valued band at pi = 0.7. � = 2 hereinafter. All
quantities are plotted in dimensionless units.

the index core form a well, which can be utilized to capture
the nonlinear bound states. Before we discuss the properties
of solitons, it is important to understand the Floquet-Bloch
spectrum of a periodic lattice without an index core. Although
the soliton mainly resides in the core region, the oscillatory
tails or wings of the nonlinear mode unavoidably penetrate
into the bulk of lattice. Thus, the existence region of solitons
is still restricted in the gaps of the PT lattice. To solve the
band-gap lattice spectrum, we search for solutions of the linear
version of Eq. (1) in the form A(x,z) = q(x) exp(ikx + ibz),
where k is the transverse Bloch wave number, b is the
longitudinal wave number, and q(x) = q(x + 2π/�) is the
complex periodic function [32]. Substitution of it into Eq. (1)
yields the eigenvalue problem

bq = 1

2

(
∂2q

∂x2
+ 2ik

∂q

∂x
− k2q

)
+ p[V (x) + ipiW (x)]q,

(2)

which can be solved numerically by the plane-wave expansion
method [33].

Note that the generalization of the Bloch theorem into
a system with complex periodic potentials is valid only
when the following two conditions are satisfied. First, the
periodicity of the real part of the potential is equal to that of
the imaginary part. In this case, both parts of the complex
potential can be decomposed to a Fourier series with the
same frequency (n�,n = 0, ± 1, ± 2,). The appearance of
gain and loss results in an asymmetry of coefficients in
addition to the fundamental Fourier component (n = 0), which
are symmetric for a system with real periodic potentials.
Second, the imaginary part of the potential is odd symmetric.
This property guarantees that the opposite gain and loss
components in each lattice periodicity compensate each other,
which eliminates the imaginary coefficients before all Fourier
components.

The band-gap structure of a lattice with pi = 0.1 is shown
in Fig. 1(b). It consists of a single semi-infinite gap and an
infinite number of finite gaps expanding with the growth of
lattice depth p. In the following discussions, we focus our
attention on solitons residing in the first finite gap, because in
defocusing media, solitons can only be found in finite band
gaps. The detail of a lattice spectrum at p = 4 is illustrated in
Fig. 1(c). The open gaps shrink with the growth of pi and are
entirely closed at the symmetry-breaking point pi = 0.5, after
which the gain-loss component plays a dominant role and the
lattice spectrum becomes partly complex [Fig. 1(d)].

We search for stationary solutions of Eq. (1) by assuming
A(x,z) = q(x) exp(ibz), where q is complex and represents
the profile of the light field; b stands for a propagation constant.
Substitution of the above expression into Eq. (1) yields the
following nonlinear ordinary differential equation:

1

2

d2q

dx2
− bq + p[V (x) + ipiW (x)]q − |q|2q = 0, (3)

from which, by applying the boundary conditions qr,i(x →
±∞) = 0, the stationary solution can be solved numerically
either by the Newton iterative method or by the squared
operator iteration method [34].
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To study the stability of solitons in a system described
by the nonlinear Schrödinger equation, one can consider the
eigenvalues of small perturbations on the stationary solu-
tions in the form A(x,z) = {q(x) + [v(x) − w(x)] exp(λz) +
[v(x) + w(x)]∗ exp(λ∗z)} exp(ibz), where q is the stationary
solution solved from Eq. (3); v,w � 1 are the infinitesimal
perturbations, and the superscript ∗ denotes the complex
conjugation. Substituting the perturbed solution into Eq. (1)
and linearizing it around q leads to coupled linear equations
of an eigenvalue problem [31]:

λ

[
v

w

]
= −i

[
iIm(q2) − ippiW L̂ + Re(q2)

L̂ − Re(q2) −iIm(q2) − ippiW

] [
v

w

]
.

(4)

Here, L̂ = 1
2

d2

dx2 − b + pV − 2|q|2. Equations (4) can be
solved numerically by a finite-difference method. The stability
of a soliton is determined by the spectrum of the above
linearization operator. Solitons can propagate stably only when
all real parts of eigenvalue λ equal zero.

III. FLAT-TOPPED GAP SOLITONS

First, we discuss the properties of flat-topped gap solitons in
lattices with different sizes of index cores and a relatively weak
gain-loss component (pi = 0.1). The dependence of power
[defined as P = ∫ ∞

−∞ |q(x)|2dx] on propagation constant b for
solitons in lattices with different n is shown in Fig. 2(a). It
decreases monotonically with b and varnishes when b exceeds
an upper cutoff of propagation constant bupp or is below a lower
cutoff blow. At fixed b, the power increases with the growth of
index core size n.

Two typical examples of soliton profiles in lattices with
different n are displayed in Figs. 2(b) and 2(c). While the
oscillatory tails or wings of nonlinear modes penetrate into
the bulk of the lattices, solitons are mainly confined in the
low-index core region between the two lattice walls. The delo-
calization length and peak amplitude decrease with the growth
of b. When the core region is wide and b is small, the modulus
of the soliton exhibits a flat-topped shape [Fig. 2(b)]. The
height of the flat top of the soliton at b = −0.6 in Fig. 2(b)
is 0.7746, which is just equal to

√| − 0.6|. By assuming n is
very large, it follows from Eq. (3) that |q(x → ±∞)| = √−b,
which means that gap solitons can be found only at b < 0, in
contrast to localized gap surface solitons requiring b > 0 [32].
Thus, flat-topped gap solitons can be intuitively regarded
as a pair of symmetric kink solitons or shock waves with
pedestal height equaling

√|b| and abruptly decaying tails in the
lattice sites [35]. If the core region is narrow, the distribution
of the soliton modulus is similar to the defect solitons
reported in [12]. The PCF-like structure with a low-index core,
therefore, bridges a gap between the surface kink pairs and the
defect solitons in complex lattices with a PT symmetry.

Due to the demand of PT symmetry, in complex lattices,
one cannot find the analog of surface solitons at the edge of a
real semi-infinite lattice. However, the kink solitons at an edge
of a lattice can be obviously classified as surface solitons [35].
Consequently, we propose a simple model for the realization
of symmetric surface solitons in PT lattices, which may be
useful in their practical applications, e.g., for exploring the
optical properties at the interface separating a low-index core
and a semi-infinite lattice with gain and loss.

In PT lattices, the nontrivial phase distribution of complex
nonlinear modes leads to the arising of power-flow density in
the form S = (i/2)(qq∗

x − q∗
x q) [2]. The power-flow density

FIG. 2. (Color online) (a) Power P versus propagation constant b for solitons in lattices with different n. (b, c) Profiles of solitons marked
in (a) in lattices with n = 7 and 3. (d) Transverse power flow of solitons shown in (b) across the lattice. (e) Existence regions of solitons at
the p,b plane for n = 7 (solid line) and 3 (dashed line). (f) Propagation simulation of a soliton at b = −0.6 shown in (b). The modulus of the
soliton is displayed. p = 4 except for (e), and pi = 0.1 in all panels. All quantities are plotted in dimensionless units.
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FIG. 3. (Color online) (a) Power P versus propagation constant b for solitons at different pi . (b) Profile of soliton at b = −0.2, pi = 0.45.
(c) Amplitude ratio of the imaginary and real parts of solitons versus b. (d) Instability growth rate versus b. (e) Unstable and (f) stable
propagation of solitons marked by circles in (d). The modulus of solitons is displayed; p = 4, n = 7 in all panels. All quantities are plotted in
dimensionless units.

corresponding to solitons shown in Fig. 2(b) is plotted in
Fig. 2(d). S > 0 everywhere implies that the power always
flows in one direction, i.e., from the gain toward the loss
region. Intriguingly, S remains a constant value in the region of
the index core and varies symmetrically in the near-interface
lattice sites.

The existence regions of gap solitons in lattices with varying
p and different n are shown in Fig. 2(e). We make five
comments here. First, solitons can only be found in the open
gap of PT lattices. Second, solitons stop to exist either when
the lattice is too deep (p > pupp) or when the lattice is too
shallow (p < plow). Third, the existence region shrinks with
the decrease of n. One can expect that the existence region
will occupy the whole gap (with a constant upper cutoff) when
n is big enough. Fourth, in a lattice with n = 7, bupp is a
constant for p � 2.75 and is a linearly decreasing function of
p if p � 2.62. Fifth, at larger n, while blow always coincides
with the lower edge of the first gap, bupp partially coincides
with the upper gap edge (p ∈ [1.92,2.62]). If the index core is
narrow, blow partially coincides with the lower gap edge when
p exceeds a critical value, e.g., pcr = 3.36 at n = 3.

To explore the stability properties, based on Eqs. (4), we
perform a linear stability analysis on the stationary solutions
mentioned above and find that gap solitons are completely
stable in their entire existence regions provided that the gain-
loss coefficient pi is relatively small. To test the predictions
of linear-stability analysis, we solve Eq. (1) numerically by
the standard beam-propagation method, and a representative
propagation example is illustrated in Fig. 2(f). It manifests the
strong guiding ability of a PCF-like structure, even though the
odd-symmetric gain and loss are added into the lattice.

Next, we address the influence of the gain-loss component
of the PT lattice on the existence and stability of gap

solitons. The lower cutoff blow decreases with the growth of
pi [Fig. 3(a)], because the lower gap edge shown in Fig. 1(b)
increases with pi and coincides with the descending upper
edge when pi = 0.5. In other words, the shrinkage of the first
finite gap with the growth of pi narrows the existence region
of solitons. The nature of defocusing nonlinearity results in
all power curves of solitons at different pi being monotonic
functions on b. In comparison with the profiles of solitons in
a lattice with weak gain and loss [Fig. 2(b)], it is immediately
found that the imaginary part of the soliton is enhanced in the
lattice with larger pi [Fig. 3(b)].

The ratios between the maxima of imaginary and real parts
of solitons are plotted in Fig. 3(c). The peak of the imaginary
part increases with the decrease of b. It becomes more obvious
when the gain-loss parameter pi is large. Interestingly, the
radio at blow approximately equals twice the ratio between the
coefficients before the real and imaginary lattice components.
Note that the real index modulation cos2(�x) can be rewritten
as [1 + cos(2�x)]/2, which implies that the coefficient pr

before the cos2(�x) is actually 1/2. It leads to the ratio between
the imaginary and real lattice components being limited in the
scope of [0,1]. For example, the ratio between max |qi | and
max |qr | at pi = 0.3 is 0.6, which is justly equal to pi/pr =
0.3/0.5. The physical explanation may be attributed to the fact
that the modulation of the linear refractive index plays a main
role in the distribution of solitons when b approaches the lower
gap edge of the PT lattice. One can also infer from Fig. 3(c)
that the upper cutoffs are independent of the strength of the
gain-loss parameter pi . All solitons cease to exist at the same
value bupp = −0.03. It is in good agreement with the existence
condition of surface kink solitons, i.e., b < 0.

The results of the linear stability analysis on solitons in
lattices with different pi are summarized in Fig. 3(d). Although
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FIG. 4. (Color online) (a) Moduli of flat-topped solitons at b =
−0.58 in lattices pi = 0.1. (b) Profile of three-peaked solitons at
b = −0.3 (pi = 0.4, n = 11), (c) profile of five-peaked solitons at
b = −0.3 (pi = 0.4, n = 15), and (d) instability growth rate versus
propagation constant b (pi = 0.4, n = 15). p = 4 in all panels. All
quantities are plotted in dimensionless units.

an oscillatory instability arises for solitons with high power
or small b, it is very weak (∼1 × 10−3) and the distortion
of solitons due to the instability can almost be ignored. As
pi approaches the symmetry-breaking point, solitons are still
very robust. This is in sharp contrast to the stability of solitons
in regular or single-site defected PT lattices, where the large
pi unavoidably destroys the solitons after a short propagation
distance. Instances of unstable and stable propagation of
solitons are presented in Figs. 3(e) and 3(f), respectively. They
manifest again the strong ability of PCF-like structures for
trapping and guiding beams, even when the gain and loss are
very strong.

IV. MULTIPEAKED GAP SOLITONS

The moduli of flat-topped solitons in lattices with larger
index cores are displayed in Fig. 4(a). By comparison with the
side lobes in the lattice sites, one finds that the moduli of two

solitons are almost identical, except for their spatial sizes. It
can be easily understood if we treat the solitons as a kink pair.
Recalling the solitons shown in Fig. 2(b), we find that the scale
of flat-topped solitons can be controlled arbitrarily by varying
the size of the embedded index core. The height of the flat top
is still equal to the square root of |b|, provided that the power
of the solitons exceeds a certain value or b is small.

We should note that multipole solitons with out-of-phase
neighboring components and multipeaked solitons with in-
phase neighboring components were widely reported in di-
verse nonlinear schemes. However, higher-order solitons with
a same peak value for each pole or hump were rarely reported,
with only few exceptions, e.g., truncated-Bloch-wave solitons
in real lattices [36], truncated-Bloch-wave solitons in PT
lattices [29], and multistable solitons in PT lattices imprinted
in competing cubic-quintic media [37]. The equal peaks of
the above solitons reside in the neighboring successive lattice
channels. In the following discussions, we elucidate a class of
solitons with several peaks in the core region of a PT lattice.
Unlike the solitons in [29,36,37], there are no lattice channels
for guiding the soliton poles.

Similar to the flat-topped solitons in Sec. III or solitons
in regular PT lattices, the real and imaginary parts of multi-
peaked solitons are also even and odd symmetric [Figs. 4(b)
and 4(c)], respectively, which is consistent with the symmetry
of lattices. The three-peaked soliton is composed of a tripole
real part and a quadrupole imaginary part. The five-peaked
soliton is a combination of a real part with five poles and
an imaginary part with six poles. However, the modulus or
intensity of the beam exhibits a multipeaked structure, in which
all main peaks are of the same value. It may be explained in
physics that the optical material always feels the intensity of the
beam, no matter how the real and imaginary parts of the beam
are distributes. Once the interplay between the refractive index
of the material and the intensity of the light beam stops, the
beam develops into an eigenmode of a nonlinear system and a
soliton forms. The superposition of out-of-phase fundamental
solitons at different positions constructs a bounded nonlinear
state in the present scheme. The multipeaked solitons may also
be understood by analogy with the formation mechanism of
standing waves in other fields of physics. A soliton with more
peaks can be found if one enlarges the size of the index core.

The linear stability analysis results shown in Fig. 4(d) are
in good agreement with the direction numerical propagation
simulations [Figs. 5(a) and 5(b)]. Unstable solitons still

FIG. 5. (Color online) (a) Unstable and (b) stable propagations of five-peaked solitons marked by circles in Fig. 4(d). (c) Propagation of
a five-peaked soliton at b = −0.28. The gain-loss component of the lattice is removed at z = 800. All quantities are plotted in dimensionless
units.
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propagate robustly for a very long distance (thousands of
diffraction lengths) without obvious distortions, greatly ex-
ceeding the present experimentally feasible sample lengths,
even in a lattice with strong gain and loss. To further illustrate
that the gain-loss component of the lattice is necessary for
the stable propagation of a soliton, we remove the imaginary
part of the lattice at a certain propagation distance and the
simulation result is shown in Fig. 5(c). The stable propagation
becomes a wild disorder though the main energy of the soliton
is still confined in the index core region.

V. CONCLUSIONS

To summarize, we report on the dynamics of spatial gap
solitons in a defocusing Kerr medium with an imprinted PT -
symmetric lattice, whose core region is replaced by a defect
covering several lattice sites. Such a sandwiched PCF-like
complex structure can be utilized to guide different families
of stable localized nonlinear states, i.e., flat-topped solitons
and multipeaked solitons. Flat-topped solitons link the defect
solitons in a small index core and the symmetric kink pairs or

surface wave pairs in a large index core. Their existence region
shrinks with the growth of the gain-loss component of the PT
lattice. Multipeaked solitons with a different number of peaks
can be found when the index core is large. The peak amplitudes
of the soliton modulus or intensity are of the same value.
Linear stability analysis corroborated by direct propagation
simulations reveals that both families of solitons are either
completely stable (in lattices with weak gain and loss) or suffer
a weak oscillatory instability (in lattices with strong gain and
loss). Unstable solitons can propagate robustly for a very long
propagation distance, even when the gain-loss coefficient is
close to the PT -symmetry-breaking point. This is in sharp
contrast to the stability of solitons in single-site defected or
regular PT lattices.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grant No. 11374268) and the Natural
Science Foundation of Zhejiang Province, China (Grant No.
LY13A040003).

[1] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto,
M. Segev, and Y. Silberberg, Discrete solitons in optics, Phys.
Rep. 463, 1 (2008).

[2] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, Optical solitons in PT periodic potentials, Phys.
Rev. Lett. 100, 030402 (2008).

[3] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides,
Observation of PT-Symmetry breaking in complex optical
potentials, Phys. Rev. Lett. 103, 093902 (2009).
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