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Transverse periodic PT symmetry for modal demultiplexing in optical waveguides
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Multimode waveguides can be used as multichannel devices to push the transmission bandwidth of optical
signals to its limits, provided demultiplexing can be correctly performed, e.g., by selecting a given mode from
the rest of the modes. This simple task is usually accomplished by Fourier filtering and requires long interaction
distances; here we propose a possibly more compact alternative by using parity-time (PT ) symmetry in a periodic
fashion in the transverse direction, laying out stripes with gain and losses across the guide width. We first describe
the evolution of the system as the level of gain and losses varies and then provide a perturbation analysis of
the waveguide mode eigenvalues that clarifies this behavior. We next show that this stripe pattern results in a
configuration of eigenvalues that can select a narrow subset of modes. We outline the close relationship between
a simplified tight-binding model for an array of coupled single-mode waveguides and a genuine broad multimode
dielectric waveguide, showing the advantage of the simplified model for quick studies exploring the complex
landscape of PT symmetry in multimode waveguides.
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I. INTRODUCTION

Parity-time (PT ) symmetry was introduced in the usual
Hermitical Hamiltonians by adding balanced imaginary con-
tributions to their diagonal elements and remarking that within
a given range of this contribution, the operators retained
real eigenvalues [1,2]. The evolution to complex eigenvalues
further leads to symmetry breaking of the two eigenmodes,
occurring at an exceptional point. In optics, applications of
PT symmetry can be naturally targeted as the imaginary
contributions are gain and loss, that have to appear in a
parity-symmetric fashion, such as ε(x,y,z) = ε∗(−x,y,z):
This condition on a dielectric map ε(x,y,z) corresponds to
a symmetric real dielectric constant and an antisymmetric
imaginary dielectric constant, transforming gain into loss
upon symmetry, e.g., Im[ε(x,y,z)] = −Im[ε(−x,y,z)], such
examples having a symmetry plane at x = 0.

Numerous developments of multiple-element PT -
symmetry systems (PTSSs) have appeared in the past few
years, especially in relation with optics [3–30]. Practical
implementations can relax the requirement of exact gain-
loss antisymmetry, for instance in so-called passive PT -
symmetric systems with variable losses but no gain [5–7] or
in plasmonics where considering fixed losses is a reasonable
starting point [8–10]. Most optics-related studies have favored,
as the linear-physics basis of their work, the two flavors of
PT symmetry that we itemize and illustrate in Figs. 1(a)
and 1(b).

The first of these configurations, represented in Fig. 1(a),
has been introduced in 2005, by Kulishov et al. It consists
of a periodic PT -symmetric potential along the propagation
direction of a waveguide with implications, such as “spatial
nonreciprocity,” in the form of a complete difference in
reflection from the two sides of the device [11]. This flavor
of PT symmetry [11–14] has recently been experimentally
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implemented in its passive form (i.e., without gain) in multi-
layer systems based on silicon [28] or organics [7], whereas
a waveguide implementation using two different modes has
also been a milestone of PT -symmetry applications in optics
[15].

At variance with this “longitudinal”PT symmetry, a simple
“transverse PT ” studied system consists of two waveguides
carrying gain and loss, respectively, and coupled together by
simple proximity as schematically shown in Fig. 1(b) [16,17].
The physics is simpler since only co-directional coupling is
involved. An experimental demonstration reported by Rüter
et al. in 2010 [16] provided a striking milestone of PT
symmetry in optics, going beyond the “passive-PT -symmetric
systems” of earlier examples. In parallel, the related case of
lattices of waveguides has also been vigorously investigated
by several authors [17–22,26,27,29–34]. We will indeed use
such a lattice as discussed later, noticing that in some cases in
Refs. [30–34], there are analytical results for the exceptional
points that could serve in further studies.

Still, it is a distinct flavor of PT symmetry that we
wish to introduce in this paper—a periodic variation in gain
and loss applied to the transverse direction of a multimode
waveguide as seen in Fig. 1(c). Besides an academic interest,
the study is motivated by the capability of such multimode
broad waveguides to serve as multichannel high-rate links
for datacom notably. A guide of the width of a couple of
microns may easily carry ten channels in a high-index core
to give an idea of the potential of this approach. To extract
a stream of data of a given channel from such systems,
there are several possibilities. What is generically needed
is some kind of spectrometer that takes into account the
dispersion of the transverse wave vector inside the waveguide
to select a channel. One can distinguish conservative and
nonconservative approaches.

The conservative framework is well exemplified by the
multimode interferometer (MMI) approach, a workhorse of
integrated optics [35,36]. Still, in such a case, there is a need
to physically modify the boundaries of the waveguide at the
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FIG. 1. (Color online) PT SSs: (a) longitudinal PT SS, (b) transverse PT SS made of two distinct guides, (c) multimode transverse guided
PT SS, (d) multiple coupled waveguide model as an approximation of the broad waveguide, and (e) the eigenvalue distribution close to the
band edge has a quadratic evolution, just as successive guided modes of a broad waveguide.

analyzer side such that the data stream is disrupted: It cannot
constitute a tunable device, choosing which channel to analyze
or offering, e.g., to switch between an analysis mode and a
blank “through” mode for all channels. Other methods for
modal demultiplexing (without MMI) have considered that
a generic solution could be obtained by defining a scatterer
from simple basic units, such as round “atoms” [37] or
other emerging schemes [38,39]. Even though they are not
commonly discussed, it is clear that conservative approaches
that fully disperse the transverse momentum spectrum and
reconstitute new channels, akin to add-drop filters in the
frequency domain, tend to be bulky: a lot of free space
or, equivalently, an arrayed-waveguide-grating-type (phasar)
device is required to perform the Fourier analysis of the
combined mode wave fronts inside the guide.

Nonconservative approaches work by imposing tunable loss
or gain patterns to select targeted modes. They may have the
advantage of tunability, especially when guidance is supported
by a high-index-contrast system or by a plasmonic system,
whose index tuning to implement the Fourier or conservative
strategies is difficult if not impossible to achieve.

The simplest nonconservative approach is relatively ob-
vious: It consists of forming a transverse gain profile g(x)
that matches the targeted mode intensity profile g(x): Ideally
[g(x) − go] � |E(x)|2 with a given bias gain go [go may be
negative: It then represents a given bias loss, allowing, for
instance, a zero mean for g(x)]. Because such approaches
have the same even P symmetry as |E(x)|2, they cannot
be PT symmetric. Their specific exploration for datacom
has yet to be performed, and there is a limited amount of
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mystery in this approach because it corresponds to the issue of
parasitic (generally higher-order) mode amplification in any
active multimode device, laser, or amplifier. Filamentations
in highly pumped media and modulation instabilities are
typical nonlinear phenomena related to the amplification and
saturation among higher-order transverse modes of slab or
fiber waveguides.

In this paper, we adopt a nonconservative strategy based
on PT symmetry to select one or very few modes from
a multimode waveguide with, ideally, maximum selectivity.
Although PT -symmetry effects on two separate waveguides
is well documented, studies of multimode systems with some
implementation of PT symmetry have focused so far on
separate coupled elements [17–22,26,27,29–34] rather than
modes of a single multimode waveguide. And they have
not considered the capability to specifically amplify a subset
of modes. Furthermore, our previous work on plasmonic
systems with PT symmetry [8–10,14] has suggested that PT
symmetry may offer a unique situation of “large differential
gain” in the vicinity of exceptional points, whereby the
imaginary part of the eigenvalues evolves faster than elsewhere
in dispersion diagrams. This may provide opportunities to
amplify a subset of modes having an exceptional point (EP)
in that parametric region comparatively to all other modes,
typically a pair of modes.

However, before getting the specific modal amplification
trends suggested above, it is useful to find tools that result in a
quick treatment of the main effects of PT symmetry in broad
waveguides. This will be a central point of our study, and we
will consider to this aim an array of individual oscillators (that
can be seen as single-mode waveguides) coupled only via a
first-neighbor (FN) interaction. Although such a tight-binding
system has been popular as a model for transport studies [26],
for instance in light localization studies among other things, it
has not been much used as a tool for multimode physics in a
given broad waveguide. We propose here a use of this system
to easily get the response of the broad waveguides submitted to
aPT -symmetric distribution of gain and loss. We check which
of the features obtained in this simple system correspond to
an actual slab waveguide having a gain or loss distribution
with odd parity. We propose ways to bridge both systems and
use the simplified generic system to carry out a first modal
discrimination study.

The paper is organized as follows. In Sec. II, we present the
general properties of PT -symmetric multimode waveguides,
typically with index contrast 2.8/1 to mimic silicon-on-
insulator (SOI) generic structures. In Sec. III, we justify
these results with the simplified FN coupled array mentioned
above. We subject this simpler model to PT symmetry and
examine the resulting shift of its eigenvalues by means of
a second-order perturbative analysis, revealing the underlying
physics through basic matrix elements and associated selection
rules. In Sec. IV, we discuss the exact diagonalization and the
exceptional points of the FN coupled array, and we show, in the
same section, how to modify the PT -symmetric perturbation
profile with some physical insight to fit the behavior of an
actual system. In Sec. V, we use the simplest form of transverse
PT symmetry to show an example of modal discrimina-
tion in a true multimode waveguide before concluding in
Sec. VI.

II. BROAD DIELECTRIC WAVEGUIDE WITH
TRANSVERSE PT SYMMETRY

We consider here a broad waveguide operated at a wave-
length λ, of core index having a real part of n = 2.8, and whose
thickness is W = 6λ, surrounded by index n = 1.0. In practice,
it could be a channel waveguide in the SOI technology, the
cladding index being not crucial to the study. For λ = 1.55 µm,
it would have a width of 9.3 µm and would support some 30
guided modes in the TE polarization, the sole polarization
studied here (electric field parallel to boundaries). A typical
application would envision using the 15 lowest order modes
that lie within an effective index range [2.4–2.8] that is high
enough, hence with limited and well-known dispersion effects
(the group index remains rather low) compared to the next
higher-order modes.

The PT -symmetric modulation consists of applying on
the slab a gain or loss modulation having antisymmetry with
respect to the guide symmetry plane. The total number of
periods is N , where 2N is the number of slab gain regions and
loss regions across the transverse width W of the waveguide,
Fig. 1(c). From here on we freeze the vertical dimension of
the waveguide and consider only a two-dimensional geometry
with an Oz waveguide direction as the symmetry line and a
transverse axis Ox. In other words, we are essentially interested
in dielectric maps ε(x) whose real part is x symmetric and
whose imaginary part is antisymmetric.

It is classical in such an integrated optics configuration to
first think in terms of a perturbation approach whereby the
modal gain of the mth mode is the weighted product of its un-
perturbed profile by the gain profile: gm ≡ ∫ |Em(x)|2g(x)dx.
This is a useful guide but will not be valid when we approach
the exceptional point and the symmetry-breaking points. Still,
it can help forecasting the fact that the compound gain +
mode profiles are determining the phenomenology. In the
zero-average gain situation [

∫ |Em(x)|2g(x)dx = 0], it thus
tells us that a zero modal gain does not only stem from the
interaction of an even mode with an odd gain profile, but
also the other way round, which opens up the possibility of
exceptional points in a non- PT -symmetric dielectric map
ε(x). The full perturbative approach made in Sec. III on the
simplified FN model will go more in depth.

Our study of the dielectric waveguide in this section goes
as follows.

Let us denote εR(x) as the slab index profile of value n2 =
7.84 in the x interval [−W/2 W/2] and 1.00 outside this
interval. We look for the poles of the transmission matrix U

along x of such a system by calculating such matrices on the
complex kz plane when varying the gain or loss parameter
�εI that defines the dielectric map according to the following
form:

ε (x) = εR (x) + i �εIf (x) . (1)

Here, f (x) � sgn[sin(6πx/W )] is our simple choice, with sgn
as the sign function: a square modulation exactly as that of
Fig. 1(c), odd vs x. We use either clever pole hunting or mere
scanning as exceptional points are tricky. We represent the pole
or generally the kz values by their effective index, i.e., their
normalized value neff = kz /ko, where ko = ω/c is the vacuum
wave vector of light at frequency ω/2π .
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FIG. 2. (Color online) (a) Branches of Re(neff ) vs gain or loss
denoted �εI . The background shows a color image of log10[|U11|]
where bluish lines are the zeros, (b) branches of Im(neff ) vs gain or
loss; the inset shows a color image of log10[|U11|], (c) complex plane
trajectory of neff for varying gain or loss in the range 0 → 0.2. The
six first mode trajectories are labeled. They are shown by a magenta
line color in (a).

The results are displayed in Fig. 2. Figure 2(a) shows the
evolution of Re(neff) vs �εI , Fig. 2(b) shows the evolution
of Re(neff), and Fig. 2(c) shows the complex plane trajectory.
See for instance Refs. [8,9] for such trajectories in other real
systems.

We can see in Fig. 2(a) that the original modes of the ideal
guide form clusters grouping six of them. The patterns share a
nearly identical topology whereby the first EP (merging of two
real indices) is surrounded by two additional merging events
occurring at slightly higher |�εI |, the real part of the branches
thus formed being isolated from the next adjacent cluster. In
the imaginary part diagram, we see the successive branching,
but the clusters cannot be isolated from this perspective,
even though each set of 2 × 3 branches (complex conjugate
branches) corresponds to a cluster. In the complex plane
evolution diagram of Fig. 2(c), we grasp more clearly the
complexity of the evolutions of the real part, with several
“serpentine” branches corresponding to a nonmonotonous
evolution of the real part, first downward due to the generic
coupling effect by the gain or loss, then upward when real
parts are merged together after the third rightmost EP of each
cluster. Similarly, the second and third EPs of each cluster in
Fig. 2(a) do not coincide with the largest imaginary part of the
branches before merging (before symmetry breaking of the
eigenmodes).

All these specific patterns are nevertheless illustrative of
more universal features. For instance, the six-mode clusters
are intimately related to the 2N = 6 stacked media, and
we can conjecture that slicing the guide into N periods
of PT -symmetric nature results in clusters of 2N modes.
Yet, it would be instructive to have a toy model to depict
the eigenvalue behavior. Tracking the eigenvalues across
EPs or across accidental zeros of the transmission matrix
coefficient, such as the one indicated at around n = 2.635,
is difficult. If a low-order eigenvalue problem can be defined
that has similar properties, all the corresponding studies can
be accelerated, and the understanding of the use of PT SS to
accomplish a number of useful tasks can be more efficiently
explained and exploited. This is what we do in the next
section.

III. THE FIRST-NEIGHBOR WAVEGUIDE ARRAY
PARITY-TIME SYMMETRIC MODEL

The simplified model that we propose consists of an
array of M basically identical monomode waveguides (j =
1 . . . M , each mode being denoted |j 〉), coupled between
nearest neighbors only, Fig. 1(d). Their only difference comes
from a PT -symmetric perturbation. The evolution operator
(Hamiltonian) depicting such an array is a tridiagonal matrix
simply expressed as

Ajk = [ωo + i �ωIfj ]δj,k + κ[δj,k+1 + δj,k−1]. (2)

In other words, all elements are coupled to two neighbors,
but the extreme elements of the array have a single neighbor
instead. It is well known that such systems in the non-PT
case �ωI = 0 present bands and were studied in the context
of disorder or ordered systems [26,27,29,30,40–44] due to
their good embodiment of basic solid-state physics concepts
(bands, band edges, transport, etc.). Let us recall that for a
constant diagonal term (�ωI = 0), the eigenvalues of this
matrix are located on a band centered at ωo of width 2κ .
They are naturally labeled by a normalized wave vector qk =
k/2(M + 1) (k = 1, . . . ,M) into the dispersion relation ωk =
ωo + 2κ cos(2πqk), having the typical quadratic dependence
of confined levels near the band edges (BEs) ωBE = ωo± 2κ .
The top band edge is shown in Fig. 1(e). The eigenvalues
have a quadratic evolution downwards, just as the effective
indices of a broad waveguide do. Thus, the index k is a
normalized momentum that labels eigenvalues and eigenvec-
tors. These latter have k antinodes in their sine-type profile,
reading

|k〉 =
∑

j=1,...,M

{BM sin[jπk/(M + 1)]|j 〉}. (3)

We took the signs so that the lower eigenvalues correspond
to a downward band curvature (since defining and ordering
the qk is somewhat arbitrary) and use arbitrary values ωo =
1 and κ = 0.1 to give the appearance of a band dispersing
downward from the positively valued band edge ωBE = 1.2 on.
So their ordering follows the eigenvalues n2

eff of the Helmholtz
equations. The eigenvalues at the other band edge (ωBE = 0.8)
are just symmetrically situated. We will see that the evolutions
caused by the imposition of extra PT -symmetric modulations
made below are also symmetric at both band edges.
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To implement a gain or loss modulation equivalent to the
square one of the broad dielectric waveguide above, we impose
the PT symmetry to the fj sequence around j = M/2. To
find properties that are independent of the size M , simple
symmetry considerations should be used to avoid artifacts.
For instance, since we have six equal regions in the example
above, f (x) � sgn[sin(6πx/W )], we take M to be a multiple
of 6 to safely implement a sequence fj = ±1 made of six
subsections each with exactly the same number of elements
j = M/6. The same principle can of course apply to a higher
transverse index with 2N subsections, suggesting M/2N to be
an integer to correspond to f (x) � sgn[sin(2Nπx/W )].

Before extracting exact solutions in Sec. IV, we present here
a perturbative analysis to second order of the eigenvalues. The
matrix elements of i �ωI fj between two eigenmodes 〈k| and
|l〉 involved in second-order eigenvalue perturbations can be
written using a continuous function f (x),

Dkl = 〈|i �ωIf (x)| l〉 . (4)

And the second-order perturbative shift of eigenvalue ωI

is δω
(2)
I = ∑

k �=1 |Dkl|2/(ωk − ωl). There is a vanishing first-
order term if f has the odd-P parity through the waveguide
central plane. We represent as a color map these matrix
elements for the 40 first k,l values of a large guide (M = 204)
in Fig. 3(a) for a case where N = 3. It is clear that the
pattern then bears the footprint of a sixfold cycle. We will
now elucidate this feature with some more generality and
show that it essentially amounts to a transverse momentum
conservation rule, somehow similar to that met in describing
confined phonons interacting with confined electrons in a
square profile quantum box [44].

To see this, we replace the discrete sum on j ′s by
∫

dx, The
essential ingredient of Dkl then transforms into an integral of
the form

Dkl ∝
∫ W/2

−W/2
sin[πk(x + W/2)/W ]

× sin[πl(x + W/2)/W ]f (x)dx. (5)

At this stage, we can further simplify the problem by
considering the fundamental harmonic of the square periodic
function f (x). We can write it, 2N being even and f (x) being
odd with respect to x = 0, f1(x) � sin(2πNx/W ). Working out
the product of the two first sine in the integrand of Eq. (5), we
have to calculate

Dkl ∝
∫ W/2

−W/2
cos[π (k − l)(x + W/2)/W ] sin(2πNx/W )

− cos[π (k + l)(x + W/2)/W ] sin(2πNx/W )dx.

(6)

Each of the two terms gives rise in turn to terms in
sin[π (k ± l)(x + W/2)/W ± 2πNx/W ]. These are sine waves
integrated between two of their zeros: one zero at x = −W/2
corresponding to the argument �Nπ and one zero at x =
+W/2 corresponding to the argument (k ± l ± N )π . This
explains that every other element is zero when integration
between �Nπ and (k ± l ± N )π takes place on an even
number of integrand antinodes (k ± l ± 2N even implies k ± l

even).

Apart from this true selection rule, we have a “mild” rule
to identify the strongest terms, i.e., those corresponding to the
modes experiencing the strongest interaction. The integrals of
individual terms give the largest nonzero absolute value when
they correspond to a single antinode on the integration domain,
hence the generic “strongest coupling selection rule,”

k ± l ± 2N = ±1. (7)

Equation (7) gives the basis to explain the structure of
Fig. 3(a) and the full system of Fig. 2. For instance, the two
dark red arrows highlight an oblique line of matrix elements
with much higher values than their neighbors, indicating
that the k and l modes involved in each of these elements
interact preferentially. It is easy to verify that these modes
follow the rule given by Eq. (7) if one remembers that the
PT -symmetry profile chosen here is 2N = 6: Their indices
verify k + l = 7, or equivalently, k + l = 2N + 1. We can thus
state that preferential interactions occur among modes 3 and
4, modes 2 and 5, and modes 1 and 6, just as in the full system
of Fig. 2 where an EP between modes 3 and 4 is followed by
EPs between modes 2 and 5 and modes 1 and 6, respectively.

There is some more complexity due to the presence of
four terms from Eq. (6), connected to the order of the three
interactions, but the essence of the structure of Fig. 3(a) lies in
this selection rule. Higher harmonic components of f (x), such
as fp(x) � sin(2πpNx/W ) within a prefactor intervene simply
by the substitution k± l±(2pN) = ±1 in Eq. (7), creating more
patterns with the 2N periodicity.

It is easy to numerically compute the perturbative eigenval-
ues using Eq. (4) as performed in Fig. 3(b). The sixfold pattern
of the full system of Fig. 2 is well reproduced for the first six
modes, and the ordering of crossing of modes of opposite
curvatures is in the observed order [(3,4),(2,5),(1,6)]. Further
modes are also grouped in a similar way, but the figures are
rather complex and do not render this very clearly.

To conclude this section, a second-order perturbative
analysis performed on a generic FN coupling array explains
the formation of clusters of six modes for the full system of
Fig. 2. We will now extract more useful information from the
same waveguide array problem with an exact resolution that
will include exceptional points at mode crossings.

IV. EXCEPTIONAL POINTS IN THE WAVEGUIDE
ARRAY MODEL

We can easily extract the evolution of real and imaginary
parts of the eigenvalues as a function of �ωI as well as the
locus (trajectory) followed by them in the complex plane. A
typical case is shown in Fig. 4.

We see that the coincidence with the true multimode
waveguide calculation of Fig. 2 is achieved to a high degree.
Of course, the clusters are exactly the same; they stem from
the system’s symmetry. The real part trajectories, for instance
how they merge at the succession of EPs of the first and second
clusters, are quite well reproduced, including the inflections.
The evolution of the imaginary parts presents similar trends.
At this stage, it is interesting to tune the model in order to test
either the degree of resemblance that can be attained or the
influence of physical parameters.
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FIG. 3. (Color online) (a) Color plot of the ∼100 ×100 squared matrix elements Dkl of thePT perturbation V ≡ VPT for N = 6, M = 204,
the scaling of VPT to κ making the quantity dimensionless; the color map is based on log10(|Dkl |). The inset shows the 40 first modes with
every other element vanishing (selection rule k + l odd) and the two dark red arrows at the top left corner point the line k + l = 7 = N + 1 with
the strongest interaction, (b) perturbation induced eigenvalues for the ∼50 top eigenvalues by a growing PT -symmetric potential (abscissa
= PT perturbation strength), and (c) detail for the 14 top ones, showing the trend of perturbed modes to group into clusters of N = 6
elements.

For this, we test a simple modification of the gain or
loss profile by imposing, instead of a constant fj , a gain
or loss profile with a strength increasing or decreasing from
the guide center to its edges with a parabolic trend: fj =

±[1+ α(j/M − 1/2)2] with α = 1 for instance or α = −1.
This operation would be lengthy to reproduce for the true
multimode waveguide by the transmission matrix method
(TMM) as would a cosine modulation discussed next.

FIG. 4. (Color online) Eigenvalue vs gain or loss parameters using here N = 204 (a) Re(ω) vs �ωI , (b) Im(ω) vs �ωI , and (c) trajectory
of in complex plane for the ten first eigenvalues with a zoom on the first cluster.
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FIG. 5. (Color online) (a) Profile of the gain or loss distribution
across the guide, based on |�ωI | = 5 × 10−4 for a case with more
gain on the edges (α = 1), (b) Re(ω) vs �ωI for the configuration
α = 1 in (a), (c) comparison to the constant gain or loss profile case
(α = 0); note that the first EP is more separated and the next one more
clustered than in (b), (d) the same in the case of depleted gain or loss
on the edges: α = −1 (solid line) and α = −0.275 (dashed line), (e)
for α = −1, the set of higher EPs now has a different topology with
adjacent mode pairing, and (f) the limit case is found at α = −0.275
and has an eigenvalue crossing pattern.

In Fig. 5 we illustrate the effect of the parameter α on
the first cluster(s), focusing on the real part and the shape
around the successive EPs. We can see how the clustering
evolves through the role of the intermediate EP located at
point EP2. As we tune the curvature parameter α down from
α = 1 to α = 0, EP2 approaches the upper curves that give
rise to EP3. If we go to negative α, EP2 splits this curve,
around α = −0.275, Fig. 5(f) so that the two EPs now arise
along the curves of two adjacent modes. Beyond this point,
at α = −1, Fig. 5(e), the clustering does not have the same
topology. Hence, there is some tolerance on the exact profile
of gain or loss, but going too far can change the topology of the
EP and affect the operation in terms of device physics rather
profoundly.

We next examine the possibility of introducing a constant
loss (or gain) factor for one of the subsets, while keeping
the other tunable with variable gain (see Fig. 6). This is a
situation we have pointed out to implement PT symmetry
with plasmonics [8–10]. Indeed, for an adequate value of the
constant loss factor, here −|�ωI | = −2 × 10−4, the first EP
can be pulled nearly onto the real axis [Im(ωEP) ∼ 0]. The
local evolution of the eigenvalues remains mostly similar to
the previous case so that the singularities can in principle be
exploited on a similar basis. A gauge transform is known to
connect in general unbalanced versions to balanced versions of
PT symmetry [10], and it is likely that an ansatz of this gauge
transform also works here. Note however that the diagram in
the complex plane becomes more intricate.

FIG. 6. (Color online) Case of constant losses and variable gain
as illustrated by the profile in (a). (b) Real part and (c) imaginary part
of the eigenvalues with on this latter the overall positive slope. The
most affected plot is that of the complex plane (d), stemming mainly
from the overall growth of gain in the imaginary part (c), whereas the
real part (b) is essentially similar to the balanced gain or loss case.

V. MODE PAIR SELECTION IN THE PT -SYMMETRIC
BROAD WAVEGUIDE WITH TRANSVERSE PERIODICITY

We now turn to the possible application ofPT symmetry to
modal selection in broad waveguides, using still the simplified
array model. The input modes are supposed to be the familiar
eigenmodes of the lossless(or gainless) system with a (scalar)
profile essentially given by Em(x) = Eosin(πmx/W ), which
holds well for all low-order modes that do not leak much
outside the guide.

We project one such mode |m〉 onto the eigenmodes |p〉 of
the system in the presence of the gain and loss pattern. We
then evolve each mode with its complex exponential behavior
exp(iωpz), reminding that we noted the eigenvalues ω in order
to get analogies but that they are indeed propagation constants
along the guide z. We just look at the result in terms of
intensity after a finite length with the aim of direct detection
in mind: The system is highly nonconservative and does not
seem yet to lend itself well to the ideal drop function whereby
all nonselected modes would be unaffected. We typically use a
length L such that the gain-length product gL brings a reference
gain of 20 or 40 dB, a value certainly overestimated in terms
of effective gain since PT symmetry demands propagation in
both gain and loss media; but it is eventually high enough to
distinguish signals and give a first look at the issue of cross-talk
behavior.

The central idea is to operate just above an EP so that there
is a large gain difference with the other nearby modes due to
the abrupt behavior of the eigenvalues in the EP’s vicinity. We
apply here this idea using a case where 8 layers + 2 half-layers
alternating gain and loss are present across the waveguide,
corresponding to N = 4.5 periods and a variation f (x) �
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FIG. 7. (Color online) Spatial evolution of basic waveguide modes 1–10 submitted to various gain or loss patterns: (a) the PT -symmetric
�ωI profile with unit widths W/9, selecting in (b) modes 4 and 5 and leaving others at nearly zero gain, (c) the same square function but in a
symmetric version, thus suited for mode 4 in the series of nine modes tested in (d). Note the modest rejection of modes 2, 6, and 7, and (e) and
(f) the same as (c) and (d) with a sinusoidal �ωI profile. The rejection is poorer than in (c) and (d).

sgn[sin(9πx/W )] within a scalar factor. Because we consider
an odd number of layers in this example, each section with
gain or loss in the transverse direction has a dimension W/9
except for the external layers which have a size of only W/18.
For our simplified waveguide array model, we now need to
use a total number of modes of a multiple of 9 and even, here
M = 144 to get perfect compatibility with this periodicity and
the PT symmetry.

With our dimensionless amplitude gain values �ωI of 5.5
× 10−3 per unit length, we use a length of 1.5 × 104 formal
units, thus �ωIL is around 50, corresponding to nearly 20 dB
of intensity for the amplified cases a little above the first EP as
we will see.

Figure 7 shows the fate of the ten first modes injected
separately in the broad waveguide and submitted to three
different �ωI (x) profiles. In Fig. 7(b) is the case of the
PT -symmetric profile shown in Fig. 7(a). Only two modes
are clearly selected, modes 4 and 5, and it can be seen that
they evolve toward the same transverse profile on the right end
of the waveguide with more power at the bottom (small x). To

understand this behavior, we plot in Figs. 8(a)–8(c) the same
information on the eigenvalue spectrum and complex plane
location as in the above Fig. 4 for instance. Notice that the
modulation with 2N = 9 elements now results in a clustering
of eight modes per cluster. We have set an upper limit between
the first and the second EP: We see from Figs. 8(a) and 8(b)
that modes 4 and 5 have just gone above their EP and have
thus become complex-conjugated values. One of them is a
gain mode, and the other is a loss mode. Their amplitude and
phase profile are given in Figs. 8(d) and 8(e) with expected
symmetries. We see that the gain mode has its lobes on the
low x side of the waveguide where there is more gain than
on the opposite large x side. The favored mode of Fig. 7(b)
is just the gain mode. Upon projecting modes 4 and 5 of
the non-PT system, it is clear from the profiles that both
eigenmodes of Fig. 8 are generated but only the gain one
strengthens upon propagation, whereas the other one decays.
An in-depth analysis of the fringe pattern at the start of the
propagation would make this fully explicit and could offer
some interest in other contexts.
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FIG. 8. (Color online) Eigenvalues as a function of �ωI : (a) real part with the first EP apparent at �ωI ∼ 3.3 × 10−4, (b) imaginary part
with the same EP, (c) eigenvalue trajectories and EP in the complex plane, (d) amplitude profiles along x of the gain and loss modes evidenced
in Fig. 7 and pointed by the circles in (a)–(c), (e) phase profiles of the same modes.

In other words, the fact that two modes are amplified,
while not a strict single-mode selection mechanism, is a direct
consequence of the above-EP system eigenstates with only
the gain mode emerging after enough propagation. The other
modes of Fig. 7(a) are very silent, remaining essentially at
their entrance level: They all feel the compensating influence
of gain and loss across the two signs taken by �ωI (x) because
they are far below their own EP and thus remain essentially
identical to the injected modes [see Figs. 8(a) and 8(b)]. By
the same token, there is very little interaction between the
silent modes (or between the silent modes and modes 4 and 5)
because they essentially remain a set of orthogonal solutions
just as the injected modes. It is not our purpose here to quantify
the selectivity as the metrics need to be worked out in a given
context to be really significant. But this apparent selectivity
is a good omen for the general use of PT symmetry in this
modal selection spirit.

Comparatively, if we implement similar gain or loss
values but with a profile �ωI (x) that is plainly symmetric
with the same transverse periodicity, i.e., W/9 elements,
we see in Fig. 7(b) that now only one mode emerges from
the competition, mode 4. This result is expected as this
is the only mode whose four antinodes can approximately
coincide with the four gain stripes in �ωI (x). But we also
see that it is hard to achieve selectivity. The modest rejection
of modes 2, 6, and 7 seems difficult to avoid, �ωI (x) having
Fourier components that favor these other modes. Since an

electromagnetic problem, such as this one, is not linear with
respect to dielectric modulation (all the more if we additionally
operate above the EP), there is no obvious orthogonality that
can grant selective amplification of a given mode from such a
case. As a simple attempt at minimizing the Fourier spectrum
of the modulation �ωI (x), we show in Fig. 7(e) the case of
a sinusoidal modulation of �ωI (x). The effect is to make
rejection even worse, see Fig. 7(f).

It is of course delicate to extrapolate from this particular
example. An optimal strategy for �ωI (x) with selectivity as a
figure of merit could well be none of the proposed solutions.
On the other hand, homing in on good solutions from the
start is certainly welcome to understand what opportunities
are provided by these PT -symmetric systems. Here, we are
operating with overall gains on the order of 15 dB, and the
rejection of nonselected modes (among the ten first modes) is
about 13–15 dB for the PT -symmetric case, whereas it drops
to half this value for the symmetric profile �ωI (x).

VI. CONCLUSION

In conclusion, we have studied a broad waveguide with the
issue of selecting one of its modes by a transverse modulation
of gain and loss in mind. We have analyzed the mode clustering
of a real system and shown that it was equivalent to that of a
more easily resolved first-neighbor model. We have provided
a perturbation analysis to second order and worked out the
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relevant quasiselection rules to explain that clustering. From
the point of view of the fate of field distributions entering such
a broad waveguide, we have succeeded to isolate a pair of
modes with a high rejection in the case of a PT -symmetric
profile. Conversely, we have not been able, by a substantial
amount, to get a similar rejection with a symmetric profile.
We cannot ascribe yet an exact analytical theory to account
for rejections above the EP among other aspects, but we have
enough confidence in the validity of the scheme we propose
to conjecture that it could be exploited with good generality in
any generic multimode guiding systems that can support gain
with transverse spatial modulation.

We also note that optical signal processing between an
input and an output plane may be envisioned from any mix of
modal and nonmodal points of view. For instance, the scope
of devices, such as MMIs (based on broad waveguides) is
a spatial imaging operation, not a modal one. A very general
task, analogous to defining a signal processing operation in the
general time-frequency domain (wavelet based for instance),
could be a mix of spatial and modal requirements. We did
not wish to be excessively general for the time being and
only explored here a PT -symmetric broad waveguide system
with a view to its modal behavior, and we have found very
encouraging features in this respect.
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[6] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L.
Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-
symmetric whispering-gallery microcavities, Nat. Phys. 10, 394
(2014).

[7] Y. Yan and N. C. Giebink, Passive PT Symmetry in Organic
Composite Films via Complex Refractive Index Modulation,
Adv. Opt. Mater. 2, 423 (2014).

[8] H. Benisty, A. Degiron, A. Lupu, A. De Lustrac, S. Chenais,
S. Forget, M. Besbes, G. Barbillon, A. Bruyant, S. Blaize, and
G. Lerondel, Implementation of PT symmetric devices using
plasmonics: Principle and applications, Opt. Express 19, 18004
(2011).

[9] H. Benisty, C. Yan, A. Degiron, and A. Lupu, Healing near-PT-
symmetric structures to restore their characteristic singularities:
analysis and examples, J. Lightwave Technol. 30, 2675 (2012).

[10] A. Lupu, H. Benisty, and A. Degiron, Switching using PT-
symmetry in plasmonic systems: positive role of the losses, Opt.
Express 21, 21651 (2013).

[11] M. Kulishov, J. M. Laniel, N. Bélanger, J. Azaña, and D. V.
Plant, Nonreciprocal waveguide Bragg gratings, Opt. Express
13, 3068 (2005).

[12] M. Kulishov, J. M. Laniel, N. Bélanger, and D. V. Plant,
Trapping light in a ring resonator using a grating-assisted
coupler with asymmetric transmission, Opt. Express 13, 3567
(2005).

[13] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and
D. N. Christodoulides, Unidirectional invisibility induced by
PT-symmetric periodic structures, Phys. Rev. Lett. 106, 213901
(2011).

[14] A. Lupu, H. Benisty, and A. Degiron, Using optical PT-
symmetry for switching applications, Photonics Nanostruct.
Fundam. Appl. 12, 305 (2014).

[15] L. Feng, M. Ayache, J. Huang, Y.-L. XU, M.-H. Lu, Y.-
F. Chen, Y. Fainman, and A. Scherer, Nonreciprocal light
propagation in a silicon photonic circuit, Science 333, 729
(2011).
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