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Phase-sensitive Kerr nonlinearity for closed-loop quantum systems
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The third-order susceptibility is investigated in a five-level atomic system in which the laser beams couple the
ground state to a four-level closed-loop system. It is found that under the condition of the multiphoton resonance,
one can enhance the Kerr nonlinearity of such a medium by properly adjusting the amplitudes and phases of the
applied fields. In this case, the linear and nonlinear absorption reduce considerably in a region with a positive
group velocity. It is demonstrated that the third-order susceptibility is very sensitive to the relative phase of
the applied fields. An analytical model is presented to elucidate such phase control of the Kerr nonlinearity. A
comparison is also made between the Kerr-nonlinear indices for the five-, four-, and three-level systems. It is
realized that the magnitude of the Kerr nonlinearity for the five-level system is larger than that of the three-
and four-level counterparts. Finally, it is shown that effect of Doppler broadening can lead to an enhanced Kerr
nonlinearity while maintaining linear and nonlinear absorption.
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I. INTRODUCTION

Third-order optical nonlinearity is encountered in any
material regardless of its spatial symmetry [1]. Since all
even-order nonlinearities are identically equal to zero in central
symmetric materials, the third-order nonlinearity represents
the lowest-order nonvanishing nonlinear optical susceptibility.
Kerr nonlinearity, which is proportional to the refractive part
of the third-order susceptibility, plays an important role in
optical data processing because it can be used to control a
signal of light by means of another light beam. The optical Kerr
nonlinearity also allows propagation of ultrashort soliton-type
pulses without spreading [2]. It is desirable to have large
third-order nonlinear susceptibilities under conditions of low
light power and high sensitivities [3,4] since it can be used for
realization of single-photon nonlinear devices. This requires
that the linear susceptibilities should be as small as possible
compared to the nonlinear ones. For many years, experimental
research on quantum nonlinear optics has been limited because
of a weak nonlinear response of even the best materials.

Electromagnetically induced transparency (EIT) [5,6] has
opened a possibility to achieve large nonlinearities [7].
Electromagnetically induced transparency also has many
notable applications in quantum and nonlinear optics such as
multiwave mixing [8–10], optical bistability [11,12], optical
solitons [13–17], and Kerr nonlinearity [18]. Many proposals
have been suggested both theoretically and experimentally
for achieving enhanced Kerr nonlinearity accompanied by
negligible absorption in three- and four-level atomic systems
[19–26]. Wang et al. [19] studied experimentally the enhanced
Kerr nonlinear coefficient in a three-level �-type atomic
system for various powers of the coupling beam. They showed
that the Kerr nonlinear coefficient behaves very differently in
the regions of strong- and weak-coupling power and changes
its sign when the coupling or the probe frequency detuning
changes a sign. It was found that the Kerr nonlinear index can
be greatly enhanced (compared to that in a two-level atomic
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system) due to the atomic coherence in the three-level atomic
system. Niu and Gong [20] investigated theoretically the effect
of spontaneously generated coherence on the Kerr nonlinearity
of three-level systems of the �-, ladder-, and V-shape types.
They found that with the spontaneously generated coherence
the Kerr nonlinearity can be clearly enhanced. In the �-
and ladder-type systems, the maximum Kerr nonlinearity
increases and at the same time enters the EIT window as
the spontaneously generated coherence gets larger. As for
the V-type system, the absorption property is significantly
modified and thus an enhancement of the Kerr nonlinearity
without absorption occurs for certain probe detuning.

In another study, Niu et al. [21] proposed a scheme for a
giant enhancement of the Kerr nonlinearity in a four-level sys-
tem with double dark resonances. They showed that the Kerr
nonlinearity can be enhanced by several orders of magnitude
(compared to the one generated in a single-dark-resonance
system) accompanied by a vanishing linear absorption. This
dramatic enhancement was attributed to the interaction of
dark resonances [21]. By using an efficient state-preparation
technique for the 87Rb D1 line, Hun et al. demonstrated that an
ideal four-level tripod-type atomic system can be formed that
generates a large cross-Kerr-nonlinearity via interacting dark
states in this system [24].

Recently, the self-Kerr-nonlinearity of a four-level N-type
atomic system was investigated near atomic resonance by
Sheng et al. [25]. They showed that the self-Kerr-nonlinear
coefficient of the probe field can be greatly enhanced by
properly adjusting the switching laser intensity. In addition,
they compared both experimentally and theoretically the self-
Kerr-nonlinear coefficients for different atomic energy-level
configurations of the two-, three-, and four-level cases. In
particular, they found that the magnitude of the self-Kerr-
nonlinear index for the four-level N-type atomic has the same
value as that for the three-level system. All of these studies
have dealt with the three- and four-level atomic systems.
More recently, Khoa et al. [26] investigated theoretically the
possibility of obtaining an enhanced self-Kerr-nonlinearity
under the EIT condition for a five-level cascade system. They
also made a comparison between the behavior of self-Kerr-
nonlinearity for such a five-level atomic system with that of
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four- and three-level cascade systems and observed the same
magnitude of the self-Kerr-nonlinear coefficient among the
three systems.

Due to its possible application in all-optical switching,
quantum information processing, and novel photonic devices,
especially at the few-photon level [27–29], it is expected
that more experimental studies on this subject will be carried
out. Thus, practical schemes are needed to achieve the Kerr-
nonlinearity enhancement.

In this paper a five-level atomic system is proposed that was
first introduced by Kobrak and Rice to establish a complete
population transfer [30,31] to a single target of a degenerate
pair of states [32]. The Kobrak-Rice five-level (KR5) system
was also employed to show advantages of the coherent
control of atomic or molecular processes [33]. Moreover,
by using intense laser fields, a new quantum measurement
has been introduced in the KR5 system [34]. Dispersion
and absorption and optical bistability of this configuration
have also been investigated [35,36]. However, the third-order
nonlinear susceptibility for this medium has motivated our
study.

Here we show that an enhanced Kerr nonlinearity with a
reduced absorption can be obtained under the condition of slow
light propagation. We find that the Kerr nonlinearity is very
sensitive to the relative phase of the applied fields and explore
the influence of the relative phase on the linear and nonlinear
optical properties of the medium. In particular, it is shown that
under the condition of the multiphoton resonance, one can
enhance the Kerr nonlinearity of such a medium by properly
adjusting the amplitudes and phases of the applied fields.
In this case, the linear and nonlinear absorption are reduced
remarkably in the region of the subluminal light propagation.
Also, we make a comparison between the Kerr-nonlinear
indices for this five- level system with that of the existing four-
and three-level atomic systems. We find that the magnitude of
the Kerr nonlinearity of the KR5 system is larger than that of
four- and three-level systems. The influence of the Doppler
broadening on the Kerr nonlinearity is also studied. We find
considerable changes in shape for the Kerr nonlinearity for
a small Doppler width below the natural linewidth of the
probe transition for which the linear susceptibility behaves
very similarly in shape to the nonbroadened case. In addition,
it is observed that the effect of the Doppler broadening can
lead to a giant Kerr nonlinearity.

The main advantages of applying the considered five-level
system over the atomic schemes proposed in Refs. [25,26] are
as follows. First, different from the atomic schemes explored
in those works, in the present study the higher orders of
nonlinearity are achieved by increasing the number of atomic
levels. This can be used for construction of nonclassical states
of light as well as coherent processing of quantum information.
Second, due to the closed-loop structure interacting with the
ground level, this medium is phase sensitive. This phase-
sensitive property provides an extra degree of freedom for
controlling the Kerr-nonlinear index, a feature that was absent
in Refs. [25,26]. This allows us to present an analytical model
to elucidate the phase control of the Kerr nonlinearity. Third,
in addition to the steady-state nonlinear susceptibilities, in
this paper the transient switching of the Kerr nonlinearity
is also investigated, which may provide results helpful for

FIG. 1. (Color online) Schematic diagram of the (a) five-, (b)
four-, and (c) three-level quantum systems. (d)–(f) General atom-field
states in the new basis.

the realization of fast optical nonlinearities and optically
controlled optical devices. Finally, the effect of the Doppler-
broadening effect on the Kerr nonlinearity is studied. In
particular, it is found that the effect of the Doppler broadening
can lead to a giant Kerr nonlinearity. This is an advantage of
this type of Kerr-nonlinearity enhancement over EIT technique
(see, for instance, Refs. [19,21,23–26]) because one does
not need very-strong-coupling laser fields. A disadvantage of
this method is that the linear and nonlinear absorption is not
eliminated.

II. MODEL AND EQUATIONS

We shall consider the KR5 quantum system shown in
Fig. 1(a). The system has an excited state |1〉, two nondegen-
erate metastable lower states |3〉and |5〉, and two intermediate
degenerate states |4〉and |2〉. The Rabi frequencies �43, �32,
�41, and �21 couple a pair of atomic internal states |1〉 and
|3〉 to another pair of states |4〉 and |2〉 in all possible ways
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to form a closed-loop scheme of the atom-light interaction, as
depicted in Fig. 1(a). Note that such a scheme is equivalent
to a consequently coupled cyclic chain of four states |1〉, |2〉,
|3〉, and|4〉, making a diamond-shape closed-loop system. An
additional tunable coherent probe field with Rabi frequency �p

is applied to the dipole-allowed optical transition |5〉 ↔ |3〉,

which couples the diamond-shape system to the ground (or
metastable) state |5〉. The spontaneous decay rates of the
upper level |i〉 to the lower level |k〉 are denoted by 2γik .
The spontaneous decays from the excited state |1〉to the lower
levels |3〉 and |5〉 are ignored. The total Hamiltonian of the
system is given by

H5-level = −�(�p |3〉 〈5| + �41 |1〉 eiφ 〈4| + �21 |2〉 〈1| + �32 |3〉 〈2| + �43 |4〉 〈3|) + H.c., (1)

where φ = φ41 + φ43 − φ32 − φ21 is the relative phase accumulated after completing a cyclic loop and φij denotes the phase of
the laser field that is applied to the transition |i〉 ↔ |j 〉. The equation of the motion for the density operator describing an atomic
system can be written as

ρ̇ = − i

�
[H5-level,ρ] + Lρ, (2)

where Lρ represents decay rates for the system. Applying the rotating-wave approximation, the equation of motion (2) reduces
to

ρ̇11 = −2(γ14 + γ12)ρ11 + i�41e
iφρ41 − i�∗

41e
−iφρ14 − i�∗

21ρ12 + i�21ρ21, (3a)

ρ̇22 = 2γ12ρ11 − 2γ23ρ22 + i�32ρ32 − i�∗
32ρ23 + i�∗

21ρ12 − i�21ρ21, (3b)

ρ̇33 = 2γ43ρ44 + 2γ23ρ22 − 2γ35ρ33 − i�43ρ34 + i�∗
43ρ43

− i�32ρ32 + i�∗
32ρ23 − i�∗

pρ35 + i�pρ53, (3c)

ρ̇44 = 2γ14ρ11 − 2γ43ρ44 + i�43ρ34 − i�∗
43ρ43 + i�∗

41e
−iφρ14 − i�41e

iφρ41, (3d)

ρ̇41 = ℑ1ρ41 + i�∗
41e

−iφ(ρ11 − ρ44) + i�43ρ31 − i�∗
21ρ42, (3e)

ρ̇42 = ℑ2ρ42 + i�43ρ32 + i�∗
41e

−iφρ12 − i�∗
32ρ43 − i�21ρ41, (3f)

ρ̇43 = ℑ3ρ43 + i�43(ρ33 − ρ44) + i�∗
41e

−iφρ13 − i�32ρ42 − i�∗
pρ45, (3g)

ρ̇45 = ℑ4ρ45 + i�∗
41e

−iφρ15 + i�43ρ35 − i�pρ43, (3h)

ρ̇21 = ℑ5ρ21 + i�32ρ31 + i�∗
21(ρ11 − ρ22) − i�∗

41e
−iφρ24, (3i)

ρ̇23 = ℑ6ρ23 + i�32ρ33 − i�∗
32ρ22 + i�∗

21ρ13 − i�43ρ24 − i�∗
pρ25, (3j)

ρ̇25 = ℑ7ρ25 + i�32ρ35 + i�∗
21ρ15 − i�pρ23, (3k)

ρ̇31 = ℑ8ρ31 + i�∗
32ρ21 + i�∗

43ρ41 + i�pρ51 − i�∗
41e

−iφρ34 − i�∗
21ρ32, (3l)

ρ̇35 = ℑ9ρ35 + i�∗
32ρ25 + i�∗

43ρ45 + i�p(ρ55 − ρ33), (3m)

ρ̇15 = ℑ10ρ15 + i�41e
iφρ45 + i�21ρ25 − i�pρ13, (3n)

ρ11 + ρ22 + ρ33 + ρ44 + ρ55 = 1, (3o)

where ℑ1 = −[i�14 + (γ43 + γ14 + γ12)], ℑ2 = i(�12 − �14) − (γ43 + γ23), ℑ3 = i�43 − γ43 − γ35, ℑ4 = −[i(�43 + �p) −
γ43], ℑ5 = −[i�12 + (γ23 + γ14 + γ12)], ℑ6 = i(�12 − �) − γ23, ℑ7 = i(�23 − � + �p) − γ23, ℑ8 = −[i(�14 + �43) +
(γ14 + γ12)], ℑ9 = −(γ35 − i�p), and ℑ10 = i(�14 + �43 + �p) − (γ14 + γ12). Here �43 = ω4 − ω43, �23 = ω2 − ω23, �14 =
ω3 − ω14, �12 = ω1 − ω12, and �p = ωp − ω35 are the one-photon resonance detuning for the transitions |4〉 ↔ |3〉, |2〉 ↔ |3〉,
|1〉 ↔ |4〉, |2〉 ↔ |1〉, and |3〉 ↔ |5〉, respectively. The parameter � = �12 − �14 + �23 − �43 defines the frequency of the
multiphoton detuning and ωi shows the central frequency of the corresponding laser field.

In order to derive the linear and nonlinear susceptibilities, we need to solve the density-matrix equations for the steady state.
Under the weak-field approximation one can apply the perturbation approach

ρij = ρ
(0)
ij + ρ

(1)
ij + ρ

(2)
ij + ρ

(3)
ij + · · · , (4)

where the constituting terms ρ
(0)
ij , ρ

(1)
ij , ρ

(2)
ij , and ρ

(3)
ij are of the zeroth, first, second, and third order in the probe field �p. Due to

the assumption �p � �43,�32,�41,�21, the zeroth-order solution is ρ
(0)
55 = 1, with other elements being zero (ρ(0)

ij = 0, where
i,j �= 5). Using this condition and substituting Eq. (4) into Eq. (3), the equations of motion for the first-order density-matrix
elements read

ρ̇
(1)
35 = ℑ9ρ

(1)
35 + i�∗

32ρ
(1)
25 + i�∗

43ρ
(1)
45 + i�p, (5a)

ρ̇
(1)
25 = ℑ7ρ

(1)
25 + i�32ρ

(1)
35 + i�∗

21ρ
(1)
15 − i�pρ

(1)
23 , (5b)
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ρ̇
(1)
45 = ℑ4ρ

(1)
45 + i�∗

41e
−iφρ

(1)
15 + i�43ρ

(1)
35 , (5c)

ρ̇
(1)
15 = ℑ10ρ

(1)
15 + i�41e

iφρ
(1)
45 + i�21ρ

(1)
25 . (5d)

Similarly, the equations of motion for the third-order density-matrix element read

ρ̇
(3)
35 = ℑ9ρ

(3)
35 + i�∗

32ρ
(3)
25 + i�∗

43ρ
(3)
45 + i�p

(
ρ

(2)
55 − ρ

(2)
33

)
, (6a)

ρ̇
(3)
25 = ℑ7ρ

(3)
25 + i�32ρ

(3)
35 + i�∗

21ρ
(3)
15 − i�pρ

(2)
23 , (6b)

ρ̇
(3)
45 = ℑ4ρ

(3)
45 + i�∗

41e
−iφρ

(3)
15 + i�43ρ

(3)
35 − i�pρ

(2)
43 , (6c)

ρ̇
(3)
15 = ℑ10ρ

(3)
15 + i�41e

iφρ
(3)
45 + i�21ρ

(3)
25 − i�pρ

(2)
13 . (6d)

After some algebraic calculations, we obtain the following the off-diagonal density-matrix elements ρ
(1)
35 and ρ

(3)
35 corresponding

to �p:

ρ
(1)
35 = i�p

(
�2

21ℑ4 − �2
41ℑ7 + ℑ4ℑ7ℑ10

)/
ℜ (7)

and

ρ
(3)
35 = �pρ

(2)
43

(
�41�21�32e

iφ − �43�
2
21 − �43ℑ7ℑ10

)/
ℜ + �pρ

(2)
23

(
i�32ℑ4ℑ10 − �2

41�32 + �41�21�43e
−iφ

)/
ℜ

+ iρ
(2)
55 �p

(
�2

21ℑ4 − �2
41ℑ7 + ℑ7ℑ4ℑ10

)/
ℜ − iρ

(2)
33 �p

(
�2

21ℑ4 − �2
41ℑ7 + ℑ7ℑ4ℑ10

)/
ℜ

− iρ
(2)
13 �p

(
�41�43ℑ7e

−iφ − �21�23ℑ4
)/

ℜ, (8)

where

ℜ = ℑ4ℑ10�
2
32 − �2

41�
2
32 − �2

43�
2
21 − ℑ7ℑ10�

2
43 − ℑ4ℑ9�

2
21 + ℑ7ℑ9�

2
41 − ℑ4ℑ7ℑ9ℑ10

+ 2�41�32�43�21 cos φ. (9)

Note that the second-order nonlinearity of Eq. (8) is solved to obtain ρ
(2)
ij , giving the steady-state results

ρ
(2)
41 = [

i�∗
41e

−iφ
(
ρ

(2)
44 − ρ

(2)
11

) − i�43ρ
(2)
31 + i�∗

21ρ
(2)
12

]
/ℑ1, (10a)

ρ
(2)
42 = ( − i�43ρ

(2)
32 − i�∗

41e
−iφρ

(2)
12 + i�∗

32ρ
(2)
43 + i�21ρ

(2)
14

)
/ℑ2, (10b)

ρ
(2)
43 = [

i�43
(
ρ

(2)
44 − ρ

(2)
33

) − i�∗
41e

−iφρ
(2)
13 + i�32ρ

(2)
42 + i�∗

pρ
(1)
45

]
/ℑ3, (10c)

ρ
(2)
23 = ( − i�23ρ

(2)
33 + i�∗

32ρ
(2)
22 − i�∗

21ρ
(2)
13 + i�43ρ

(2)
24 + i�∗

pρ
(1)
25

)
/ℑ6, (10d)

ρ
(2)
21 = [ − i�32ρ

(2)
31 + i�∗

21

(
ρ

(2)
22 − ρ

(2)
11

) + i�∗
41e

−iφρ
(2)
24

]
/ℑ5, (10e)

ρ
(2)
31 = (

i�∗
32ρ

(2)
21 − i�∗

13ρ
(2)
41 + i�∗

41e
−iφρ

(2)
34 + i�∗

21ρ
(2)
32 − i�pρ

(1)
51

)
/ℑ8, (10f)

ρ
(2)
11 = (

i�41e
iφρ

(2)
41 − i�41e

iφρ
(2)
14 − i�∗

21ρ
(2)
12

) + i�21ρ
(2)
21

)
/(2γ14 + 2γ12), (10g)

ρ
(2)
22 = (

2γ12ρ
(2)
11 + i�32ρ

(2)
32 − i�∗

32ρ
(2)
23 + i�∗

21ρ
(2)
12 − i�21ρ

(2)
21

)
/2γ23, (10h)

ρ
(2)
33 = (

2γ43ρ
(2)
44 + 2γ23ρ

(2)
22 − i�43ρ

(2)
34 + i�∗

43ρ
(2)
43 − i�32ρ

(2)
32 + i�∗

32ρ
(2)
23 − i�∗

pρ
(1)
35 + i�pρ

(1)
53

)
/2γ35, (10i)

ρ
(2)
44 = (

2γ14ρ
(2)
11 + i�43ρ

(2)
34 − i�∗

43ρ
(2)
43 + i�∗

44ρ
(2)
14 − i�41e

iφρ
(2)
41

)
/2γ43, (10j)

where

ρ
(1)
15 = −i�p(�32�21ℑ4 − �43�41e

iφℑ7)/ℜ, (11a)

ρ
(1)
25 = �p

(−�43�21�41e
iφ + �32�

2
41 − �32ℑ4ℑ10

)/
ℜ, (11b)

ρ
(1)
45 = �p

(−�32�21�41e
−iφ + �43�

2
21 + �43ℑ7ℑ10

)/
ℜ. (11c)

The linear susceptibility χ (1) and the third-order nonlinear susceptibility χ (3) of the medium for the weak probe laser field are
related to the atomic coherences as [1,37]

χ (1) = 2N℘2
53

ε0��p

ρ
(1)
35 , (12)

χ (3) = 2N℘4
53

3ε0��3
p

ρ
(3)
35 , (13)
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where N is the atomic number density matrix and ℘53

denotes the transition dipole moment between the levels |3〉
and |5〉. The analytical expression for first- and third-order
susceptibilities depends on the controllable parameters of the
system such as the detunings and intensities of the driving
fields as well as the relative phase of applied fields. It is well
known that the Kerr nonlinearity corresponds to the refraction
part of the third-order susceptibility χ (3), while the imaginary
part of χ (3) determines the nonlinear absorption [1]. The real
and imaginary parts of χ (1) correspond to the linear dispersion
and absorption, respectively. The slope of the linear dispersion
with respect to the probe detuning represents the group velocity
of a weak probe field.

III. ENHANCED KERR NONLINEARITY

Now we focus on the third-order susceptibility behavior
of the KR5 atomic system through numerical simulation.
For linear and nonlinear susceptibilities we plot the curves

in units of 2N℘2
53

ε0��p
and 2N℘4

53
3ε0�3�3

p
, respectively. Here we are

interested in the linear and nonlinear properties of the KR5
medium. The linear and nonlinear susceptibilities can be
modified by the controlling parameters such as intensity and
frequency detuning of coupling fields, i.e., Rabi frequencies,
and relative phase between applied fields. Therefore, the giant
Kerr nonlinearity with reduced linear and nonlinear absorption
can be obtained under the condition of low light power.

The first- and third-order susceptibilities of a weak probe
field are displayed in Fig. 2 for various values of the intensity of
the applied fields. Here we assume that all of the coupling fields
are in exact resonance with the corresponding transitions, so
the multiphoton resonance condition is fulfilled, i.e., � = 0.
Figures 2(a) and 2(b) show that when φ = 0 and �21 = �32 =
�43 = �41 = γ , the first- and third-order susceptibility spectra
have three linear and nonlinear absorption peaks. Figure 2(b)
shows that the maximal Kerr nonlinearity is accompanied by
large linear and nonlinear absorption around �p = 0. The
slope of linear dispersion is negative at zero probe field
detuning, which suggests superluminal light propagation. In
this case, the group velocity is negative [Fig. 2(c)] and
the medium is not suitable for application of low-intensity
nonlinear optics due to the absorption losses. Figure 3 displays
the curves for nonequal values of the coupling fields: �21 =
2γ , �41 = 1.1γ , �32 = γ , and �43 = 1.9γ . One can see that
the central peaks of the linear and nonlinear absorption are split
into four peaks in the absorption spectrum. Compared to Fig. 2,
now the linear and nonlinear absorption reduce so that three
reduced absorption windows appear around �p = 0, ± δ.
Within these reduced absorption regions the slope of linear
dispersion becomes positive. This represents the subluminal
light propagation with the positive group velocity [Fig. 3(c)].
In addition, the increased Kerr nonlinearity appears inside
reduced absorption windows. Thus, by properly adjusting the
intensities of driving fields, one could achieve the enhanced
Kerr nonlinearity accompanied by reduced absorption under
the condition of slow light levels.

Figure 4 shows the transmission coefficient of the probe
field propagating through the five-level atomic system. If all
the Rabi frequencies are the same and equal to the decay
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FIG. 2. (Color online) Linear and nonlinear susceptibility as well
as group index versus probe field detuning. (a) Linear absorp-
tion (dashed line) and linear dispersion (solid line), (b) nonlin-
ear absorption (dashed line) and Kerr nonlinearity (solid line),
and (c) group index. The parameters are γ14 = 0.8γ , γ12 = 0.1γ ,
γ23 = 0.1γ , γ43 = 0.4γ , γ35 = 0.02γ , �21 = �32 = �43 = �41 =
γ , �43 = �23 = �14 = �12 = 0, and φ = 0. All the parameters are
scaled with γ .
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FIG. 3. (Color online) Linear and nonlinear susceptibility as well
as group index versus probe field detuning. (a) Linear absorption
(dashed line) and linear dispersion (solid line), (b) nonlinear
absorption (dashed line) and Kerr nonlinearity (solid line), and
(c) group index. The parameters are fields �21 = 2γ , �41 = 1.1γ ,
�32 = γ , and �43 = 1.9γ . The other parameters are the same as in
Fig. 2.
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FIG. 4. (Color online) Transmission coefficient versus probe
field detuning for (a) �21 = �32 = �43 = �41 = γ and (b) �21 =
2γ , �41 = 1.1γ , �32 = γ , and �43 = 1.9γ . The other parameters
are the same as in Fig. 2.

rate �21 = �32 = �43 = �41 = γ , the medium has a low
transmission in the vicinity of the zero probe detuning and
there are another two transmission dips for nonzero detuning,
as one can see in Fig. 4(a). For nonequal Rabi frequen-
cies �21 = 2γ , �41 = 1.1γ , �32 = γ , and �43 = 1.9γ , the
number of transmission dips converts to 4 [see Fig. 4(b)].
Moreover, the transmission coefficient approaches unity at
zero detuning �p = 0. These results are in agreement with
the probe absorption spectra given in Figs. 2 and 3.

A comparison is also made in Fig. 5 between the Kerr-
nonlinear coefficients of the five-level KR5 system with that
of the existing four- and three-level cascade-type atomic
systems. Note that in the four-level system, level |2〉 is
neglected (�21 = �32 = 0) [see Fig. 1(b)], while for the
three-level cascade-type system, both atomic levels |2〉 and
|1〉 are neglected (�21 = �32 = �41 = 0) [see Fig. 1(c)]. It
is realized that the magnitude of Kerr nonlinearity for the
five-level KR5 system is larger than that of four- and three-level
systems. This indicates an advantage of employing such a
scheme in enhancing the Kerr nonlinearity rather than its
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FIG. 5. (Color online) Kerr-nonlinear indices in the case of the
five-level KR5 system (solid line), the four-level cascade system
(dashed line), and the three-level cascade system (dotted line). The
parameters are the same as in Fig. 3, except those for the four-level
case where �21 = �32 = 0, whereas for the three-level case one has
�21 = �32 = �41 = 0.

existing three- and four-level atomic counterparts. Moreover,
as mentioned earlier, another type of five-level atomic system
has recently been examined for exploring the Kerr-nonlinearity
enhancement [26]. In this type of five-level configuration, a
weak probe field drives the lower transition, while an intense
coupling beam couples simultaneous transitions between the
intermediate level and three upper closely spacing states.
Then the magnitude of Kerr nonlinearity for such a five-level
cascade-type scheme is compared with that of the four- and
three-level cascade-type systems. Although compared to the
existing four- and three-level schemes this type of five-level
configuration can exhibit a wider spectral region of enhanced
Kerr nonlinearity with more positive and negative peaks, its
maximal Kerr nonlinearity is the same as that of the existing
three- and four-level cascade systems.

In fact, both types of five-level KR5 system proposed
here and the cascade-type system proposed in Ref. [26] are
based on the ladder-type three-level system in which the upper
transition is driven by a strong field. However, in Ref. [26] the
single upper transition in the ladder-type system is replaced
by simultaneous transitions between an intermediate level and
three upper closely spacing states. In our proposal, the single
upper transition is replaced by multiple transitions driven
by four laser fields that form a diamond-shape closed-loop
structure. We found that by increasing the number of levels in
such a way that they form a consequently coupled cyclic chain
of four states coupled to the ground state [Figs. 1(a)–1(c)], it is
possible to realize higher orders of nonlinearity, while the same
magnitude of Kerr nonlinearity among the three systems was
observed in Ref. [26]. This shows an advantage of employing
such a five-level system in producing higher Kerr nonlinearity
over that considered in Ref. [26].

Consider next the effect of coupling field detunings on
the Kerr nonlinearity. Figure 6 shows the real (dispersion)

and imaginary (absorption) parts of linear and nonlinear
susceptibilities versus the relative phase between applied
fields. Illustrated in Figs. 6(a) and 6(b) is a situation where the
applied fields are in an exact resonance with the corresponding
transitions, i.e., �43 = �23 = �14 = �12 = 0. One can see
that the Kerr nonlinearity is accompanied by large linear
and nonlinear absorption. Furthermore, the linear dispersion
is negative, which corresponds to the superluminal light
propagation. Using the supposition that the fields �43 and
�32 are not in resonance with the corresponding atomic
transitions (�43 = �23 = 2γ ), we plot the first- and third-
order susceptibility spectra versus φ in Figs. 6(c) and 6(d).
Note that the multiphoton resonance condition � = 0 is
still kept. One can see that the giant Kerr nonlinearity is
accompanied by the reduced linear and nonlinear absorption
for all relative phases φ. Also, the linear dispersion is now
positive providing the slow light.

IV. PHASE CONTROL OF KERR NONLINEARITY

Expressions (7)–(11) and Fig. 6 show that the linear and
nonlinear susceptibilities can be controlled by the relative
phase of the applied fields. Now we provide an analytical
model to understand such phase control. Four driving fields
�43, �32, �21, and �41acting on the atom build a closed-loop
level scheme in which the relative phase φ between applied
fields affects linear and nonlinear optical properties of the
medium. Excluding in Eq. (1) the ground (or metastable)
state |5〉, the Hamiltonian of the atom-light interaction for
the remaining atomic four-level closed-loop level scheme of
diamond shape can be rewritten as

H4-level = −��

⎡
⎣|1〉 eiφ 〈4| +

3∑
j=1

|j + 1〉 〈j | + H.c.

⎤
⎦ .

(14)

In addition, the amplitudes of all Rabi frequencies in
Eq. (14) are chosen to be the same, i.e.,

�43 = �32 = �41 = �21 = �. (15)

The Hamiltonian (14) is equivalent to its counterpart
involving an infinite number of states

H0 = −��

∞∑
j=−∞

|j + 1〉 〈j | + H.c. (16)

as long as the coefficients cj entering any state vector | · · · 〉 =∑
j cj |j 〉 obey the boundary conditions

cj+4 = eiφcj . (17)

For φ = 0, Eq. (17) reduces to the usual periodic boundary
conditions. On the other hand, for φ = ±π , Eq. (17) represents
the twisted boundary conditions.

The Hamiltonian given by Eqs. (14)–(17) can be easily
diagonalized [38] and its eigenstates and corresponding
eigenenergies read

|n(r)〉 = 1

2

4∑
j=1

|j 〉eiqnj , En = −2�� cos qn, (18)
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FIG. 6. (Color online) (a) and (c) Linear and (b) and (d) nonlinear susceptibility versus relative phase φ for (a) �43 = �23 = �14 = �12 = 0
and (b) �43 = �23 = 2γ and �14 = �12 = 0. The parameters are �21 = 5γ , �41 = 3γ , �32 = γ , and �43 = 2γ . The other parameters are
the same as in Fig. 2.

where n=1,2,3,4. The dimensionless parameter qn takes a set
of values that depends on the relative phase φ,

qn = (n − 1)π

2
− φ

4
, n = 1,2,3,4. (19)

Let we now analyze the eigenenergies for different phase
φ by taking � = 2γ . For condition (i) φ = 0 (�43 = �32 =
�41 = �21 = �), Eq. (18) becomes En = −2�� sin ( nπ

2 ), so
the eigenenergies are

E3 = −E1 = 2��, E2 = E4 = 0. (20)

Three different eigenenergies shown in Fig. 1(d) can be
attributed to three peaks in the absorption profile in Figs. 7(a)
and 7(b). In this case, the interacting dark resonances will be
established.

For condition (ii) φ = π
2 (�43 = �32 = �41 = �21 = �)

we have En = −2�� sin ( nπ
2 − π

8 ), providing the following

eigenenergies:

E3 = −E1 = 4�γ cos
π

8
,

(21)
E4 = −E2 = 4�γ sin

π

8
.

Now four different eigenenergies are obtained. Thus, four
absorption peaks appear for φ = π/2, as one can see in Figs.
1(e), 7(c), and 7(d). In other words, the central peaks of linear
and nonlinear absorption profiles split and for φ = π/2 we
have four absorption peaks.
For condition (iii) φ = π (�43 = �32 = �41 = �21 = �) we
haveEn = −2�� sin ( nπ

2 − π
4 ), giving the eigenenergies

E1 = E2 = −
√

2��, E3 = E4 =
√

2��. (22)

It is easy to see that there is a twice degenerate ground level
(containing the states with n = 1and 2) and a twice degenerate
excited level (n = 3 and 4) separated by the energy |√2��|,
as shown in Fig. 1(f). Therefore, two different eigenenergies
are obtained, yielding two peaks in the absorption profile in
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FIG. 7. (Color online) Phase control of (a), (c), and (e) linear and (b), (d), and (f) nonlinear susceptibility for (a) and (b) φ = 0, (c) and (d)
φ = π/2, and (e) and (f) φ = π . Here �21 = �32 = �43 = �41 = 2γ and the other parameters are the same as in Fig. 2.

Figs. 7(e) and 7(f). Consequently, the double-dark-resonance
structure is not established for φ = π and just two side peaks
are formed in the absorption spectrum.

A three-dimensional plot of the steady-state linear and
nonlinear absorption spectra versus �p and φ can provide

a better perspective of this phenomenon, as shown in Fig. 8.
One can see that by changing the relative phase φ, the medium
can have three, four, and two absorption peaks. It should
be noted that in Fig. 7 the Kerr nonlinearity experiences a
large nonlinear absorption. Therefore, we find a wide range of
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FIG. 8. (Color online) Three-dimensional plot of phase control
of (a) linear and (b) nonlinear susceptibility Here the parameters are
the same as in Fig. 6.

tunability in the linear and nonlinear absorption and dispersion
just by adjusting the relative phase of the applied fields.

Using the above analytical model, now we can explain
the physical mechanism of the Kerr-nonlinearity enhancement
obtained in Figs. 2 and 3. Figure 2 is plotted for the parameters
satisfying condition (i) (�21 = �32 = �43 = �41 = γ and
φ = 0). Therefore, three absorption peaks observed in Fig. 2
reflect the eigenenergies given in Eq. (20). The central peaks
in both the linear and nonlinear absorption profiles separate
two reduced absorption windows and show a double-dark-
resonance structure, whereas two absorption peaks located on
both sides of the central frequency detuning �p = 0 represent
one photon transition [35]. In fact, in such a scheme there
is coherent population trapping (CPT), which may lead to
reduced absorption windows on the left- and right-hand sides
of �p = 0. Since an ideal CPT medium does not interact
with the light, it also cannot produce any nonlinear effects
[37]. When we change the coupling fields to �21 = 2γ ,
�41 = 1.1γ , �32 = γ , and �43 = 1.9γ (see the parameter
condition used in the plot of Fig. 3), the Rabi frequencies of
the applied fields exceed those in condition (i). Thus the CPT
is disturbed, leading to a strong nonlinear coupling between

the electromagnetic fields interacting with the atomic system.
In this case, the eigenenergies for the Hamiltonian (14) read
[35]

E1 = − (y + m1/2)
/2

2/2
, E2 = − (y − m1/2)

/2

2/2
,

(23)

E3 = (y − m1/2)
/2

2/2
, E4 = (y − m1/2)

/2

2/2
,

with

k = �2
43 − �2

32 + �2
41 − �2

21,

l = �2
43 + �2

32 + �2
41 + �2

21,

m = l2 − 4(�41�32 − �43�21)2,
(24)

n = �41
(
�2

43 − �2
32 + �2

21

) + �3
41 + 2�43�21�32,

s = �43
(
�2

41 − �2
21 + �2

32

) + �3
43 + 2�41�21�32,

w = �43�32 + �41�21.

Evidently, the four eigenenergies given in Eq. (23) cor-
respond to four absorption peaks in linear and nonlinear
susceptibilities. This condition was demonstrated in Fig. 3.

V. TIME-DEPENDENT KERR NONLINEARITY

In the following we discuss the temporal evolution of the
Kerr nonlinearity in the KR5 atomic system and investigate
the optical switching time in the nonlinear regime by using the
numerical result from the density-matrix equations of motion.

Figure 9 illustrates the transient behavior of the probe
linear absorption and dispersion for various values of the
detuning parameters�43 and �23. The selected parameters are
the same as in Fig. 5, unless�p = 0.1γ and φ = π . Figure 9
shows an optical switching process in which a weak Kerr
index with superluminal absorption switches to the EIT-based
slow light giant Kerr nonlinearity by changing�43 = �23from
0 to γ . According to Figs. 9(a) and 9(b), after a short
oscillatory behavior, the linear absorption and dispersion
curves reach the steady-state limit. However, when the laser
beams described by the Rabi frequencies �43 and �32 are
in resonance (�43 = �23 = 0), the steady-state value of the
linear absorption coefficient is positive, while the steady-state
value of the linear dispersion is negative. This condition
suggests a superluminal absorption. Similar curves are plotted
for the case of nonresonant detuning (�43 = �23 = γ ). With
an increase of time, the steady-state value of the linear
absorption is reduced and finally the EIT appears. Furthermore,
the steady-state linear dispersion changes its sign to a positive
value corresponding to the subluminal light propagation.

A temporal behavior of the Kerr nonlinearity is also
displayed in Fig. 9(c). It can be seen that the curves for
the Kerr-nonlinear coefficient exhibit a transient oscillatory
behavior for a short time and then reach a steady-state value.
Also, for �43 = �23 = γ the steady-state Kerr nonlinearity
is gradually enhanced compared to the case �43 = �23 = 0.
Therefore, by going out of resonance, the enhanced Kerr
nonlinearity accompanied by subluminal assistant EIT is
obtained.

Let us now analyze the phase-sensitive switching feature of
the Kerr nonlinearity in the pulsed regime for the KR5 atomic
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FIG. 9. (Color online) Switching process of the (a) linear absorp-
tion, (b) linear dispersion, and (c) Kerr nonlinearity for different
values of �43 and �23. Here �p = 0.1γ , φ = π , and the other
parameters are the same as in Fig. 5.

system. Figure 10 shows that the oscillation frequency of the
Kerr nonlinearity increases as the relative phase changes from
φ = π to φ = π/2. In a similar manner, the magnitude of the
steady-state value of the Kerr nonlinearity can be increased.

We now demonstrate that this system can be used as an
optical switch for nonlinear dispersion in which a weak Kerr
nonlinearity can be converted to a giant one. It can be seen from
Figs. 8(c) and 9 that the switching time needed to convert
a weak nonlinear dispersion into an enhanced one and vice
versa equals approximately 15/ γ . Considering the D1 line of
the 87Rb atom with the typical decay rate γ 
 36 MHz, we
can obtain a nonlinear switching time equal to approximately
416 nm.

Thus, we demonstrated that this KR5 medium can be
employed as an optical switch in which the propagation of
the laser pulse can be controlled by another laser field that is
useful for an optically controlled optical device. The results
presented may be useful for understanding the switching
feature of the EIT-based slow light Kerr nonlinearity, have
potential application in optical information processing and
transmission, and may be helpful for the realization of fast
optical nonlinearities and optically controlled optical devices.
A high-speed optical switch is an important technique for
quantum information networks [39,40].

VI. DOPPLER BROADENING AND KERR NONLINEARITY

At room or higher temperatures there is a broad distribution
of atomic velocities. Thus, the Doppler shift cannot be
neglected and must be taken into account [41,42]. The effect
of the Doppler broadening due to the atom’s thermal velocity
υ can be included by replacing �12, �14, �23, and �43 by
�12 − kυ, �14 − kυ, �23 − kυ, and �43 − kυ, respectively.
Here all the laser fields are assumed to copropagate in
the same direction k1 
 k2 
 k3 
 k4 
 kp = k, where kp,ki

(i = 1,2,3,4) are the wave vectors of the probe and driving
fields, respectively.

Using the Maxwell velocity distribution, we obtain

ϒ(υ) = (2π )−1/2w−1e−υ2/w2
, (25)
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FIG. 10. (Color online) Switching process of the Kerr nonlinear-
ity for different values of φ. Here �43 = �23 = γ and the other
parameters are the same as in Fig. 5.
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where w = ( 2kBT
m

)1/2 is the Doppler width. Relating the probe
susceptibility χ to the coherence term ρ35 and utilizing Eq. (4),
the linear and nonlinear susceptibilities of the probe field then
read

χ (1)(�p) =
∫ ∞

−∞
ϒ(υ)χ (1)(�p,υ)dυ, (26a)

χ (3)(�p) =
∫ ∞

−∞
ϒ(υ)χ (3)(�p,υ)dυ, (26b)

which gives the first- and third-order susceptibilities in the
Doppler-broadened atomic system. Now we can analyze the
behavior of the absorption and dispersion as well as the Kerr-
nonlinear coefficient inside the Doppler-broadened medium.
Figure 11 shows the effect of Doppler broadening on the linear
and nonlinear susceptibilities. The chosen parameters are the
same as those we used to plot Fig. 2.

In Figs. 11(a) and 11(b) we chose the Doppler width below
the natural linewidth of the probe transitionγ (kw = 0.1γ ).
Obviously, the linear susceptibility is very similar in shape to
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FIG. 11. (Color online) (a) Linear and (b) nonlinear suscepti-
bility probe field detuning �p including the Doppler broadening
kw = 0.1γ . The parameters are the same as in Fig. 2.

the case without the Doppler broadening [see Fig. 2(a)], while
a considerable change in shape is observed in the nonlinear
susceptibility so that the slope of Kerr nonlinearity becomes
positive around �p = 0. This indicates that, compared to the
linear response of the KR5 system, the nonlinear response
of the medium is more sensitive to the Doppler-broadening
effect. Moreover, although the Kerr nonlinearity in Fig. 11(b)
still experiences strong linear and nonlinear absorption, the
Kerr-nonlinearity index is greatly enhanced compared to the
nonbroadened case shown in Fig. 2. This result is completely
different from the Kerr-nonlinearity enhancement due to EIT,
which was presented earlier in this paper and in most of
the relevant studies (see, for instance, [19,21,23–26]). Thus,
we could achieve a large nonlinear Kerr coefficient for the
probe field while maintaining linear and nonlinear absorption.
The main advantage of this method over the EIT is that in
the present method there is no need to adjust the laser fields
to the strong intensities. However, the disadvantage is that the
linear and the nonlinear absorption do not cancel. It should
be noted that in order to obtain a Doppler-free arrangement in
the room temperature cell, one can adjust the laser direction.
However, the best way to eliminate the effect of Doppler
broadening is to employ a cold-atom sample.

VII. PRACTICAL OBSERVATION OF THE FIVE-LEVEL
SCHEME

A possible experimental realization of the proposed scheme
for the five-level KR5 structure can be implemented for the
87Rb atomic system. The ground level |5〉 can be assigned to
the 5S1/2 state. The level |3〉 can be attributed to the 5P3/2

state. Two intermediate levels |2〉 and |4〉 can be assigned to
either the fine structure of the 4D3/2 substate or the 4D5/2

substate, as long as the dipole transition selection rules on the
Fquantum number are satisfied (the same F quantum number
for the intermediate states). The top level |1〉 can be assigned
to the 6P3/2 state.

Another physically realistic model is the scheme suggested
with Kobrak and Rice to extend the theory of the stimulated
Raman adiabatic passage [32]. One can consider the case of
two-photon dissociation of the sodium dimer Na2, which was
examined experimentally by Shapiro et al. [43]. Here |5〉 is
chosen to be the υ = 0,J = 33 level of the sodium dimer
ground state 1�g to simulate a component of the thermal
population in a heat pipe [43]. The pump laser couples the
ground state to the level |3〉 that is formed by spin-orbit
coupling [44] the υ = 32,J = 32 level of A 1�u with the
υ = 33,J = 32 level of the triplet state b 3�u.

In practice, as shown by Xia et al. [45], the triplet and singlet
g-parity Rydberg states in a sodium dimer can be mixed by
the spin-orbit interaction to form a series of coupled pairs. The
triplet state is then excited to the continuum via the Stokes
pulse and from there coupled to the branch state b 3�u (υ =
93,J = 32) [see Fig. 1(a)]. In the original calculation made by
Shapiro et al., three triplet electronic states were included in
the continuum, corresponding to the photodissociation reac-
tions Na2 → Na(3p) + Na(3s), Na2 → Na(4s) + Na(3s), and
Na2 → Na(3d) + Na(3s). However, they mentioned that the
production of Na(4s) is negligible in all cases.
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VIII. CONCLUSION

The Kerr-nonlinearity behavior of a five-level quantum
system has been investigated theoretically. It is shown that
an enormous Kerr coefficient with reduced absorption can
be obtained under the condition of the subluminal light
propagation just by properly tuning of the applied fields. When
the multiphoton resonance condition is established, one can
achieve large subluminal Kerr nonlinearities with a negligible
absorption in a wide range of relative phases by adjusting the
detuning parameters. It is shown that the nonlinear dispersion
and absorption of our system involving the closed-loop atomic
transitions are strongly susceptible to the relative phase of the
applied fields. An analytical model is presented to elucidate

such phase control of the Kerr nonlinearity. We made a
comparison between the nonlinear Kerr coefficients for the
five-level KR5 scheme with that of the existing three- and
four-level cascade-type systems. We found that the magnitude
of Kerr nonlinearity is larger than that of the three- and
four-level counterparts. This means that increasing the number
of levels can lead the higher orders of nonlinearity. Finally, the
influence of the Doppler broadening on linear and nonlinear
susceptibilities was discussed.
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