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Reflection of resonant light from a plane surface of an ensemble of motionless point scatters:
Quantum microscopic approach
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On the basis of general theoretical results developed previously in [JETP 112, 246 (2011)], we analyze the
reflection of quasiresonant light from a plane surface of dense and disordered ensemble of motionless point
scatters. Angle distribution of the scattered light is calculated both for s and p polarizations of the probe radiation.
The ratio between coherent and incoherent (diffuse) components of scattered light is calculated. We analyze
the contributions of scatters located at different distances from the surface and determine on this background the
thickness of surface layer responsible for reflected beam generation. The inhomogeneity of dipole-dipole
interaction near the surface is discussed. We study also dependence of total reflected light power on the incidence
angle and compare the results of the microscopic approach with predictions of the Fresnel reflection theory. The
calculations are performed for different densities of scatters and different frequencies of a probe radiation.
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I. INTRODUCTION

The vast majority of experimental optical detection meth-
ods are based on analysis of radiation scattered from the
investigated medium. Among these methods ones based on
measurements of a coherent component of scattered radiation
have a range of advantages. Reflection of light from resonant
media has even formed a special area of optics (see [1–16], and
references therein). Among a great variety of resonant media
the disordered ensembles of pointlike scatters in which motion
can be neglected take a special place. The physical model
of motionless scatterers is commonly used for a description
of the interaction between impurity centers in solids and
electromagnetic radiation. It also can be used for a description
of cold atomic ensembles prepared in a special atomic trap.

Dense ensembles, in which the average interatomic distance
and the mean free path of the photon are comparable with
the wave length of resonant radiation, have attracted a
special interest recently. It is connected with both exciting
physical properties of such systems as its widespread practical
application in quantum metrology, frequency standardization,
and quantum information science [17–25].

The interaction of resonant light with dense ensemble has a
range of important features which are usually neglected in the
case of dilute ensembles. If the average interatomic distance
is comparable with resonant wavelength the atoms cannot be
considered as independent scatters of electromagnetic waves
(hereafter we will associate point scatters with atoms for
brevity). In this case we deal with so-called cooperative scatter-
ing [26,27]. Interatomic dipole-dipole interaction significantly
influences the optical characteristics of a medium. Collective
effects cause density-dependent shifts of atomic transition as
well as distortion of spectral line shape [28,29]. The real part
of dielectric permittivity of dense atomic ensemble can be
negative in some spectral area [30,31].

Modification of optical characteristics caused by dipole-
dipole interaction manifests itself differently for spatial areas
inside the medium and near its surface. The atoms located
in the subsurface layer interact predominantly with atoms
situated at one side of them, inside the ensemble. The surface

layer is generated. Its width depends on density of the sample
and is about 1.5–2 inverse wave numbers [32]. This subsurface
region significantly influences both the incoherent scattering
and coherent reflection.

The goal of this paper is to study the reflection of quasireso-
nant light from the plane boundary between vacuum and dense
ensemble of point scatters. We analyze the influences of the
features of dipole-dipole interaction caused by the subsurface
spatial inhomogeneity on the properties of reflection.

Inhomogeneity of the optical properties and spatial disorder
of atoms in the ensemble restrict the classical description
using Fresnel equations which require the mean free path of
photon and the wavelength of probe radiation much greater
than the average interatomic distance. In this paper we use
the consequent quantum microscopic approach [26]. This
approach allows us to obtain both coherent and incoherent
(diffuse) components of scattered light. Note that nearly all
previous applications of the method developed in [26] were
devoted to analysis of incoherent scattering of the light from
random media, particularly for study of multiple recurrent
scattering. This analysis requires calculation of the average
intensity of scattered light. In the present paper for the first
time we use this approach for description of coherent mirror
scattering from random media. We calculate the mean electric
field of the light scattered by disordered media with a sharp
boundary as a sum of individual contributions of all atoms.
Such an approach allows us to analyze the partial contributions
of the layers of the medium located at different distances
from the surface and analyze the properties of reflected wave
depending on density of the atoms, frequency of the probe
light, its polarization, and on angle of incidence.

II. BASIC ASSUMPTIONS AND APPROACH

The calculation of resonant reflection in this paper will
be made on the basis of a microscopic quantum approach
developed in [26]. This approach is based on the nonstationary
Schrödinger equation for the wave function of the joint system
consisting of N motionless atoms and electromagnetic field.
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All atoms are assumed to be identical and have a ground state
J = 0 separated by the frequency ω0 from an excited J = 1
state. The excited state has the Zeeman structure so there are
three sublevels for each atom which differ by the value of
angular momentum projection m = −1,0,1. Such a structure
of atomic levels allows us to describe the effects connected
with the vector nature of the electromagnetic field in the case
of the dense medium correctly. Note that the standard two-
level scalar model does not have this advantage. For a detailed
comparison of these models, see [33,34]. The Hamiltonian
of the joined system H can be presented as a sum of two
operators H0 + V . Here H0 is the sum of the Hamiltonians of
the free atoms and the free field, and V is the operator of their
interaction. The wave function is found as an expansion in a
set of eigenstates {|l〉} of the operator H0.

The key simplification of the approach is in the restriction
of the total number of states |l〉 taken into account. We consider
only the vacuum state ψg′ (all atoms are in the ground state and
there is no photon), the onefold excited atomic states ψem

a
(one

atom is excited and there is no photon), the onefold excited
states of the field subsystem ψg (there is one photon and there
are no excited atoms), and the nonresonant states ψem

a em′
b

with
two excited atoms and one photon in the field subsystem. The
complex index em

a used here contains information about both
the number of excited atom a and the Zeeman sublevel which
is populated.

In the rotating wave approximation it is enough to take
into account only the states ψem

a
and ψg . States without

excitation both in atomic and field subsystem ψg′ allow us
to describe coherent states of the weak probe radiation [35].
Nonresonant states with two excited atoms and one photon
ψem

a em′
b

are necessary for a correct description of the dipole-
dipole interaction at short interatomic distances.

The amplitude of state ψg′ does not change during the
evolution of the system, because transitions to this state from
other states taken into account are impossible. The transition
from ψg′ to any other state is also impossible. The total set
of equations for the other quantum amplitudes bem

a
, bg , and

bem
a em′

b
is infinite because of the infinite number of field modes.

From this infinite set of equations we can pick out the finite
subset of 3N algebraic equations for the Fourier component of
amplitudes of onefold atomic excitation bem

a
. Its formal solution

can be written as follows:

bem
a

(ω) =
∑
b,m′

Rem
a em′

b
(ω)b0

em′
b

(ω). (2.1)

The matrix Rem
a em′

b
is the resolvent of the considered system

projected on the onefold atomic excited states. This matrix
describes the multiple photon exchange among atoms and
it depends both on the spatial location of atoms and on the
frequency of probe light (see [26,31]). The vector b0

em′
b

(ω)

describes the interaction of atoms with external radiation
which is assumed to be a plane monochromatic wave. This
vector depends on the direction of probe light and its
polarization.

b0
em′
b

(ω) =−dem′
b ;gb

e/�E0 exp(ik0rb). (2.2)

In this equation dem′
b ;gb

is the dipole matrix element for
transition from the ground g to the excited m′ state of atom b,

E0 is an amplitude of probe radiation, k0 and e are its wave
vector and unit polarization vector, rb is the radius vector of
the atom b.

The microscopic approach allows us to consider an atomic
ensemble with arbitrary shape and spatial distribution of
atomic density. In this paper we will consider a sample in the
form of a rectangular parallelepiped with random but uniform
on average spatial distribution of atoms. The edge lengths of
the parallelepiped are lx , ly , and lz. The quantization axis z is
directed perpendicular to the front surface of an ensemble,
the axis x along the projection of the wave vector of the
probe light on this surface. The angle between the direction of
probe light propagation and the axis z is θ0. The polarization
of light is assumed to be linear. We will analyze two types
of linear polarization: parallel to the plane of incidence
(p polarization) and perpendicular to this plane (s polarization).
The polarization vectors corresponding to these polarizations
ep and es can be presented in the basis of unit cyclic vectors e−1,
e0, and e+1 using standard relations [36]. The advantage of this
basis is that the dipole moment projections are given by simple
equations de−1

b ;gb
e−1 = de0

b ;gb
e0 = de+1

b ;gb
e+1 =

√
3�c3γ0/4ω3

0
(γ0 is the natural linewidth).

Describing the polarization properties of scattered light we
will use the frame of reference connected with the direction
of scattered light (with the z′ axis along the wave vector).
It is connected with typical arrangement of polarization
measurement when polarization analyzers are oriented in
accordance with the direction of detected radiation. So long as
our paper is devoted mainly on the investigation of coherent
scattering we will further restrict ourselves to the case when
both incident and scattered waves have the same type of
polarization (s or p).

Numerical calculation of the amplitudes bem
a

(ω) on the basis
of (2.1) and (2.2) allows us to obtain amplitudes of other
quantum states bg and bem

a em′
b

. Thus we can obtain the wave
function and any physical observable, particularly electric field
strength of scattered light and light intensity (see [26] for
detail). It gives us opportunity to compare the results obtained
in the framework of the quantum microscopic approach with
Fresnel equations.

The angular distribution of scattered light power contains
a speckle component because of light interference from a big
number of randomly distributed point scatters. In experiments
the radiation averaged over an area of a photodetector and
integrated over a definite time interval is measured. Therefore
in our calculations we perform multiple averaging of results
over random spatial configurations of atoms by the Monte
Carlo method. To analyze the coherent component of scattered
light we average the electric field strength and then we
calculate intensity of this component. To calculate total light
intensity we average light intensity itself. Note also that
this averaging allows taking into account partly the residual
thermal motion in cold atomic ensembles.

III. RESULTS AND DISCUSSION

A. Angular distribution of scattered light

We start with analysis of angular distribution of light
scattered by the optically dense plate. Figure 1 shows the

053822-2



REFLECTION OF RESONANT LIGHT FROM A PLANE . . . PHYSICAL REVIEW A 91, 053822 (2015)

FIG. 1. (Color online) Angle distribution of the scattered light
power. (a) ϕsc = 0, (b) θsc = π − θ0. 1, s polarization; 2, p polariza-
tion; 3, s-coherent component; 4, p-coherent component.

power of light scattered in a unit spherical angle as a function
of both the polar angle [Fig. 1(a)] and the azimuthal angle
[Fig. 1(b)]. The calculation is performed for atomic ensemble
with lx = 110, ly = 55, lz = 6.53 (hereafter in this paper we
use the inverse wave number of resonant light k−1

0 as a unit
of length, k−1

0 = λ0/2π ). The probe radiation is assumed to
be exactly resonant with free atom transition, its frequency
detuning is equal to zero 	 = ω − ω0 = 0, and the angle
of incidence is θ0 = 17.5°. As the computational difficulty
increases rapidly with the number of atoms the atomic density
is chosen not very big n = 0.05 which corresponds to the
mean free path of photon lph = 1.63. However, as it was
shown in [31] the collective effects caused by the dipole-dipole
interaction play a significant role for such density.

Under considered conditions the reflection of light takes
place not only from the front surface of the ensemble but
from the side surfaces as well. To eliminate the influence
of reflection from side surfaces we take into account only
secondary radiation from atoms located sufficiently far from
the sides, approximately 60% of the total number of atoms. In
experiment such elimination can be performed by means of a
diaphragm.

Figure 1(a) shows that the maximum of the scattered light
power obtained in the frame of the microscopic approach
corresponds to a well-known reflection law (θsc = π − θ0,
ϕsc = 0). Besides the main peak we observe weak satellite

peaks caused by diffraction from the rectangular front surface
and a small contribution caused by diffuse scattering. The
height and width of the main peaks in Figs. 1(a) and 1(b)
are determined by the sizes lx and ly , respectively. As we have
lx > ly the main peak of θ distribution [Fig. 1(a)] is more
narrow than the one of ϕ distribution [Fig. 1(b)].

For comparison we performed similar calculations for
different sizes of atomic ensemble. The height of the main
peak increased with size but its width decreased so that the
total intensity of reflected light was proportional to the area
lx ly .

In Fig. 1 we included the results of calculation of total
scattered light power and its coherent component. The ratio of
the coherent component to total power exceeds 0.85 even for
relatively small atomic density n = 0.05. It confirms the fact
that cooperative effects play a significant role for this density.

Note that there are several physically different cooperative
effects which can take place under light interaction with
dense and cold atomic ensembles. Such phenomena as super-
radiance, lasing in disordered media, and Anderson local-
ization have attracted great attention recently. The physical
effect studied in the present work has a bit different nature
than all phenomena mentioned above. In our case collective
effect does not assume multiple scattering. It is determined
by interference of secondary radiation emitted by different
atoms located in the subsurface layer of the cloud. Similar
interference causes coherent Rayleigh forward scattering in
which the cross section is proportional to the squared number
of atoms in the ensemble. In our case intensity of reflected
light is proportional to the squared amplitude of electric field
and consequently to the squared number of atoms in the
mentioned subsurface layer. In the next subsection we will
analyze formation of the reflected beam in more detail.

B. Microscopic analysis of reflected beam generation

Let us analyze now how the atoms located at different
distances from the surface influence the reflected signal
generation. Our approach allows us to calculate the reflected
signal taking into account only the finite size layer near the
front surface. Figure 2(a) shows corresponding results for
three layers with the depth d = 0.5lph,lph,2lph (lph is the mean
free path of the photon obtained in [37]) as well as for the whole
ensemble with depth 7lph. In the case of the first and the second
layers the power of reflected light exceeds the total reflected
signal. For the third layer the result is less than one for a whole
ensemble. Such behavior can be explained by the interference
of the electromagnetic waves scattered by different atoms.
When we consider relatively thin layers the phase increment on
its thickness is small so the interference is constructive and the
power of the reflected signal increases with the depth of layer.
If thickness of the layer becomes comparable with wavelength
the dephasing of electromagnetic waves scattered by different
atoms becomes important and the destructive influence of the
interference has to be taken into account. It looks like an
interference of light in transparent thin films. But in our case
we deal with resonant atomic ensembles and the absorption is
very important. Under considered conditions the mean free
path of the photon is approximately equal to a quarter of
the resonant light wavelength. Atoms located sufficiently far
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FIG. 2. (Color online) (a) Angle distribution of light scattered
by subsurface layers. s polarization, ϕsc = 0; depth of the layer:
1, 0.5lph; 2, lph; 3, 2lph; 4, 7lph. (b) Maximum of the function
P (θsc,ϕsc) depending on the depth of the layer near the front
surface; s polarization. For both figures n = 0.05,	 = 0,θ0 = 17.5°,
lx = 102,ly = 51,lz = 11.42.

from the front surface do not influence the coherent scattering,
i.e., the reflection. This can be seen in Fig. 2(b). We observe
saturation in the dependence of reflected light power on the
depth of layer. The curve in Fig. 2(b) flattens out at depth of
the layers greater than (3.5–4)lph. For bigger density the mean
free path of the photon is smaller and the saturation is observed
for smaller depth.

Note, however, that attenuation of the curve shown in the
Fig. 2(b) is essentially slower than can be expected if we
suggest wave damping taking into account its propagation
in two directions—toward scattered atoms and from them
outside the medium. Figure 2(b) shows the total contribution
of atoms located inside the layer with thickness d. From
this contribution we can calculate the partial contribution of
atoms located in a thin layer situated at the arbitrary depth l.
Corresponding analysis shows that this partial contribution
decreases approximately exponentially exp(−αl/ cos θ0) (the
deviation from exponential dependence connects with the
boundary effects mentioned above). The index of exponential
attenuation α is close to the inverse mean free path of the
photon in the considered medium α ≈ 1/lph. So this index is
two times smaller as compared with its expected value if we
consider light propagation in two directions. This discrepancy

connects with the fact that inside the atomic ensemble there
is no coherent wave propagating in the “backward” direction
(of course, if the medium is semi-infinite or if scattering from
the far edge can be neglected). The reflected coherent light
beam exists only outside the atomic ensemble and this beam is
a result of collective scattering by all atoms of the ensemble.
Figure 2 demonstrates that the determinative contribution to
the reflection signal is given by the subsurface layer with the
depth comparable with wavelength.

C. Comparison with Fresnel equations

In this subsection we consider the dependence of the
reflection coefficient on the angle of incidence and show
that under considered conditions such dependence cannot be
described by Fresnel equations.

Comparing our results with Fresnel theory we have to take
into account that the angular size of the reflected light cone in
our case is finite even for the plane incident wave because
of the finite sizes of the front surface of the atomic sample.
For this reason it is natural to determine the reflectivity R as
the ratio of the light power in the main maximum of angular
distribution P (see Fig. 1) to the total power of light scattered
in all directions P0.

P can be obtained as an integral of the angular distribution
of scattered light P (θsc,ϕsc) over the reflected light cone �c,

P =
∫

�c

P (θsc,ϕsc)d�. (3.1)

P0 can be obtained using the optical theorem.
Figure 3 shows the dependence of reflectivity on the angle

of incidence. Two couples of curves are shown. The first one
is calculated on the basis of the microscopic approach and the
second couple of curves is obtained from Fresnel equations.
Dielectric permittivity required for the corresponding calcula-
tion was calculated by the method described in [30,37].

Figure 3 demonstrates that for the atomic density n = 0.05
we have a good agreement between the quantum microscopic
approach and Fresnel equations for p polarization. However
for s polarizations there is noticeable quantitative disagreement

FIG. 3. (Color online) Dependence of reflectivity on the angle of
incidence. 1 and 2, s polarization; 3 and 4, p polarization; 1 and 3,
microscopic approach; 2 and 4, Fresnel equations. The parameters of
the ensemble are the same as in Fig. 1.
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FIG. 4. (Color online) Reflection coefficient depending on the
angle of incidence. n = 0.5, 	 = γ0 (a); 	 = −γ0 (b); 1 and 2,
s polarization; 3 and 4, p polarization; 1 and 3, microscopic approach;
2 and 4, Fresnel equations.

between these two approaches. The situation changes more
dramatically for bigger densities.

Figure 4 shows the angular dependence of reflectivity for
the atomic density n = 0.5. Resonant dipole-dipole interaction
is so strong for this density that it causes a negative real part of
the dielectric permittivity in some spectral area [30,31,37].
For example, for the probe light with detuning 	 = γ0

the dielectric permittivity is equal to ε = −0.125 + 1.542i.
The mean free path of the photon for these parameters is
lph = 0.55. Curves in the Fig. 4(a) are calculated for this
case. For comparison we add the plot corresponding to the
negative detuning 	 = −γ0 (ε = 1.80 + 1.40i). The mean
free path of the photon for this detuning is lph = 1.03.
Note that the dielectric permittivity was calculated in [37]
for spatially homogeneous (on average) atomic ensembles by
the analysis of light propagation sufficiently far from their
boundaries.

From Fig. 4 it is clearly seen that results obtained in the
frame of the microscopic approach differs essentially from
predictions of Fresnel equations for both polarization channels
as well as for both considered detunings 	 = γ0 and 	 = −γ0.

In our opinion there are two main reasons for such
a discrepancy. First of all Fresnel equations require that
averaged interatomic separations should be much less than

light wavelength and the photon mean free path in considered
medium. In our case it is not so. Both the wavelength and
mean free path of the photon are comparable with interatomic
separations. The second important peculiarity of considered
physical conditions is the essential role of boundary effects. As
we showed in the previous subsection under resonant reflection
the main contribution into the reflected signal is given by the
surface layer in which depth is about several mean free paths of
the photon. But just in this spatial domain the inhomogeneity
in optical properties of a medium caused by the features of
resonant dipole-dipole interaction is very essential [32]. Atoms
located in the surface layer responsible for the reflected signal
are in different physical condition as compared with atoms
located inside the medium.

At the end of this section note that the important feature of
the quantum microscopic approach used in this work is that the
resolvent matrix (2.1) is determined numerically so it does not
allow us to consider atomic ensemble with a very large number
of atoms. The calculations described in this paper were made
for 2000–7000 atoms. In this regard, to make sure that observed
results are not caused by the small size of the cloud we repeated
for comparison our calculations for different sizes of the front
surface of the atomic ensemble. We increased the area of the
front surface from 1.2 to 1.6 times and the difference in the
reflection coefficient was at the level of computational error
caused by statistical error of Monte Carlo averaging mainly.

IV. CONCLUSION

In this paper we analyze the reflection of quasiresonant
light from a plane surface of dense and disordered ensemble
of motionless point scatters like impurity centers in solid.
The calculation is performed on the basis of the quantum
microscopic approach. Solving the nonstationary Schrödinger
equation for the joint system consisting of atoms and a weak
electromagnetic field we calculate angular and polarization
characteristics of light scattered by an ensemble in the form
of a rectangular parallelepiped with big optical depth. The
ratio between coherent and incoherent (diffuse) components
of scattered light is also studied.

The microscopic approach allows us to analyze the influ-
ence of scatters located at different distances from the surface.
This analysis shows that the main contribution into reflected
light comes from the surface layer in which depth is determined
by several mean free paths of the photon in the considered
medium. It proves that the inhomogeneity of dipole-dipole
interaction near the surface essentially influences the coherent
reflection.

We studied the dependence of total reflected light power
on the incidence angle for both s and p polarizations. The
calculations are performed for different densities of scatters
and different frequencies of a probe radiation. The reflec-
tion coefficient obtained in the framework of the quantum
microscopic approach is compared with Fresnel equations.
It is shown that a disagreement between two approaches
increases with atomic density. This discrepancy is explained by
subsurface violation in the spatial homogeneity of the medium
and by the fact that for resonant light the mean free path of the
photon is comparable with the average interatomic distance.
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It is shown that an important parameter here is k0lph. A
disagreement between two approaches increases with decrease
of the value k0lph.

We expect that observed disagreement between the quan-
tum microscopic approach and Fresnel equations (in the case
of resonant light) will be especially important for the case of
light reflection from thin films. If the thickness of the film
is comparable with the resonant wavelength we can consider
the whole volume of the medium as the subsurface area. The
approach employed in the present work can be successfully
used for this case even for films with inhomogeneous spatial
distribution of atomic density. Furthermore, our approach
allows one to describe the light scattering by nanoclusters
with a small number of atoms.

In our opinion, microscopic analysis of resonant reflection
performed here will be useful for further improvement of
optical detection methods based on coherent scattering of
resonant light.
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