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Discrete solitons in self-defocusing systems with PT -symmetric defects
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We construct families of discrete solitons (DSs) in an array of self-defocusing waveguides with an embedded
parity-time- (PT -) symmetric dimer, which is represented by a pair of waveguides carrying mutually balanced
gain and loss. Four types of states attached to the embedded defect are found, namely, staggered and unstaggered
bright localized modes and gray or antigray DSs. Their existence and stability regions expand with the increase
of the strength of the coupling between the dimer-forming sites. The existence of the gray and staggered bright
DSs is qualitatively explained by dint of the continuum limit. All the gray and antigray DSs are stable (some of
them are unstable if the dimer carries the nonlinear PT symmetry, represented by balanced nonlinear gain and
loss; in that case, the instability does not lead to a blowup, but rather creates oscillatory dynamical states). The
boundary between the gray and antigray DSs is predicted in an approximate analytical form.
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I. INTRODUCTION

Dynamics of discrete systems has been a subject of inten-
sive studies in diverse areas of physics, including dynamical
lattices and long molecules, optics, ultracold atomic gases,
lattice QCD, etc. [1–22]. In particular, it is well established that
optical discrete solitons (DSs) readily self-trap in nonlinear
waveguiding arrays [8,13]. In addition to their significance
to fundamental studies, DSs offer various possibilities for
all-optical data-processing applications; in particular, they can
implement intelligent functional operations, such as routing,
blocking, logic functions, and time-gating [23]. Therefore,
methods allowing one to control the formation, mobility, and
interactions of DSs have been a subject of many theoretical
and experimental studies.

It is well known too that light confinement can be realized
with the help of various defects. Linear photonic defects
can be created as localized structures in photonic crystals
[24], nanocavities [25], microresonators [26], and quantum-
dot settings [27]. In particular, defects have been designed
to control DSs in arrayed waveguides [28–33]. Nonlinear
defects in photonic arrays have also been elaborated, chiefly
theoretically [34–42].

Recently, attention has been drawn to defects formed by
parity-time- (PT -) symmetric dimers, i.e., pairs of cores
carrying mutually balanced gain and loss, embedded into
waveguide arrays [41–45] (related settings are represented
by gain cores embedded into dissipative lattices [46–48]),
as well as continuum counterparts of such systems, with the
embedded dimer (alias a PT -symmetric dipole) represented
by a combination of the δ function and its derivative, in
the real and imaginary parts, respectively [49]. These lattice
systems, which are governed by discrete nonlinear Schrödinger
(DNLS) equations corresponding to PT -symmetric non-
Hermitian Hamiltonians [4,11,50–55], give rise to entirely real
propagation spectra, provided that the strength of the gain and
loss terms does not exceed a critical level, past which the
PT symmetry suffers spontaneous breaking (a possibility of
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having unbreakable PT symmetry was recently reported in
a model incorporating self-defocusing nonlinearity with the
local strength growing fast enough from the center to periphery
[55]). Linear PT systems were realized experimentally in
optics, by coupling pumped and lossy waveguides [57–59].
The simplest version of PT -symmetric nonlinear systems was
elaborated theoretically in the form of dimers with the on-site
Kerr [60–63] or quadratic [64] terms. A nonlinear version of
the PT symmetry, represented by the balanced nonlinear gain
and loss, was introduced too [42,65].

Previous works on PT -symmetric dimers embedded into
lattices were dealing with the self-focusing nonlinearity or
linear lattices [42–44], while self-defocusing is also possible in
photonics [13,66]. In this work, we introduce the system with a
PT -symmetric dimer embedded into a one-dimensional array
of self-defocusing waveguides. The system is described by a
DNLS equation with a defect representing the dimer. As a gen-
eralization, we also briefly consider the dimer with the nonlin-
earPT symmetry. We find that the system supports stable stag-
gered and unstaggered localized modes (bright DSs pinned to
the defect), along with gray and antigray DSs (the latter means
a soliton featuring a local elevation on top of a flat background
[14,67]). Existence regions for them are found in a partly ana-
lytical form, using the continuum limit of the discrete systems.
The stability of the DSs is investigated by means of numerical
methods, viz., calculation of eigenvalues for small perturba-
tions, and direct simulations of the underlying DNLS equation.

The paper is structured as follows. The models are intro-
duced in Sec. II. Bright DSs (staggered and unstaggered ones)
and gray and antigray DSs are studied, respectively, in Secs. III
and IV (the latter section also includes the consideration of DSs
pinned to the defect with the nonlinear PT symmetry). The
paper is concluded by Sec. IV.

II. MODELS

A. System with linear PT symmetry

The lattice system with the defect carrying the linear
PT symmetry is based on the DNLS equation written

1050-2947/2015/91(5)/053821(9) 053821-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.053821


CHEN, HUANG, CHAI, ZHANG, LI, AND MALOMED PHYSICAL REVIEW A 91, 053821 (2015)

FIG. 1. (Color online) Schematic of the nonlinear waveguide
array with the defect represented by the embedded PT -symmetric
dimer.

as

i
dun

dz
= −(Cn−1,nun−1 + Cn,n+1un+1) + |un|2un + iκnun,

(1)

where un is the amplitude of light in the nth core of the arrayed
waveguide, z is the propagation distance, Cn,n+1 and κn are
the coupling constant and gain-loss coefficient, respectively.
As said above, the array features the self-defocusing on-site
nonlinearity and an embedded defect, which is formed by
the pair of sites with a tunable strength, Cd , of the coupling
between them, see Fig. 1. The two defect-forming sites carry
mutually balanced linear gain and loss, which is described by
κ and −κ (κ > 0).

Thus, coefficients Cn,n+1 and κn in Eq. (1) are defined as

Cn,n+1 =
{
Cd at n = −1,

C0 at n �= −1,
κn =

⎧⎨
⎩

κ at n = −1,

−κ at n = 0,

0 elsewhere,

(2)

where C0 is the intersite coupling constant outside of the
defect, and N is the size of the array. It is implied that Cd/C0 >

1 and Cd/C0 < 1 correspond to the distance between the
defect-forming sites which is, respectively, smaller or larger
than the separation between the sites outside of the defect.
Propagating modes are characterized by the total field power
(alias norm of the solution),

P =
N/2−1∑

n=−N/2

|un|2. (3)

Hereafter, we fix C0 = 1/2 by means of obvious rescaling,
and produce numerical results for the system of size N = 128,
with P , Cd, and κ treated as control parameters.

Stationary solutions to Eq. (1) with real propagation
constant −μ are looked for as

un(z) = Une
−iμz, (4)

where Un is the distribution of the local amplitudes. Stationary
solutions were found in the numerical form by means of
the imaginary-time-propagation method [68], while real-time
simulations of Eq. (1) were carried out using the four-step
Runge-Kutta algorithm with periodic boundary conditions.

Stability of the localized stationary modes was investigated
numerically by means of computing eigenvalues for small
perturbations, and the results were verified by means of direct
simulations of the perturbed evolution in the framework of
Eq. (1). The perturbed solution was taken as

un = e−iμz(Un + wne
iλz + v∗

ne
−iλ∗z),

where the asterisk stands for the complex conjugate. The
substitution of this expression into Eq. (1) and linearization
leads to the eigenvalue problem for the perturbation wave
number λ ≡ λr + iλi and the eigenmodes {wn,vn}:(

C − μ + 2|Un|2 + iκn U 2
n

−(U ∗
n )2 −C + μ − 2|Un|2 + iκn

) (
w

v

)

= λ

(
w

v

)
. (5)

Solution Un is stable if all eigenvalues λ are real.

B. Generalization for nonlinear PT symmetry

The lattice with the embedded dimer featuring nonlinear
PT symmetry is described by the following version of the
DNLS equation:

i
dun

dz
= −(Cn−1,nun−1 + Cn,n+1un+1) + (1 + iκn)|un|2un,

(6)

where coefficients Cn and κn are again defined as per Eq. (2).
In terms of the optical realization, the nonlinear gain may be
provided by a combination of the usual linear amplification
and saturable absorption, while the nonlinear loss is usually
induced by resonant two-photon absorption [66,69]. A more
general system, including linear and nonlinear PT -symmetric
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FIG. 2. (Color online) Typical example of a stable bright staggered soliton in the model based on Eq. (1), with (P,Cd/C0,κ) = (1.5,2,0.5).
(a) Real (blue) and imaginary (red) parts of the solution. (b) Intensity profile of the soliton. (c) Spectrum of stability eigenvalues (which
demonstrates that this soliton is stable). (d) Direct simulations of its perturbed evolution.
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FIG. 3. (Color online) Same as Fig. 2, but for an unstable staggered soliton, with (P,Cd/C0,κ) = (2,2,0.5).

terms, is possible too [42], but the corresponding analysis is
rather cumbersome.

III. BRIGHT MODES

A. Staggered bright discrete solitons

The standard staggering transformation is introduced by
replacing the lattice field in Eq. (1) by

un(t) ≡ (−1)nũ∗
n(t), (7)

where the asterisk stands for complex conjugate [16]. The
substitution reverses the sign of the nonlinearity in the
respective equation for ũn into self-focusing:

i
dũn

dz
= −(Cn−1,nũn−1 + Cn,n+1ũn+1) + (−1 + iκn)|ũn|2ũn,

(8)

hence it can support bright solitons pinned to the defect
carrying the gain and loss. This possibility may be clarified
in an analytical form by considering a continuum counterpart
of Eq. (8), with discrete coordinate n replaced by a continuous
one, x, and a local defect of the coupling constant represented
by the term εδ(x) |dũ(x)/dx|2 in the respective Hamiltonian
density, with ε ∼ Cd − C0, see Eq. (2), where δ(x) is the delta
function. With a localized shape of a bright soliton, ũsol(x − ξ ),
whose center is placed at x = ξ , this term gives rise to the
effective potential for the soliton,

U (ξ ) = ε

∣∣∣∣dũsol(ξ )

dξ

∣∣∣∣
2

. (9)

In particular, the usual bright-soliton shape, ũbright =
A sech (aξ ), with constants A and a, Eq. (9) yields

Ubright(ξ ) = εA2a2 sinh2 (aξ ) sech4 (aξ ) , (10)

which features a potential minimum at ξ = 0 for ε > 0 and
ε < 0, respectively. Thus, the defect is attractive at ε > 0 and
repulsive at ε < 0. Incidentally, this argument explains the fact,
reported in Ref. [44], that in the case of Cd < C0, the pinned
mode in the discrete system with the self-focusing nonlinearity
present solely at the two central sites carrying the gain and
loss, the pinned mode exists above a finite threshold value of
the total power (3). Indeed, in this case the defect repels the
solitary mode, which must be compensated for by the attraction
induced by the nonlinearity concentrated at the central sites,
while in the opposite case, Cd > C0, there is no threshold.

Typical examples of stable and unstable staggered DSs,
pinned to the PT -symmetric defect, are displayed in Figs. 2

and 3, respectively. These figures clearly show that the real and
imaginary parts of the wave field are indeed staggered (the real
and imaginary parts are, severally, odd and even with respect to
the midpoint between n = −1 and n = 0), while the intensity
profile (the squared absolute value of the field) does not
exhibit any staggering. Direct simulations demonstrate that the
unstable DS undergoes a blowup under the action of the defect.

The results for the bright DSs of this type are summarized
in stability charts in parameter planes of (κ,P ) and (κ,Cd/C0),
which are displayed in Fig. 4 [recall that P is the total power
defined by Eq. (3)]. The figure demonstrates that the pinned
bright DS gains stability with the increase of the intrinsic
coupling strength of the dimer, Cd , while the increase of the
the gain-loss coefficient κ naturally leads to destabilization.
Indeed, larger values of Cd make the pinning potential (9)
stronger and they also facilitate maintaining the balance be-
tween the gain and loss, while larger κ values make this harder.
It is also seen that there is no minimum (threshold) value of P

necessary for the existence of the staggered bright DSs.

FIG. 4. (Color online) Existence regions of stable and unstable
bright staggered solitons in the model based on Eq. (1) in the planes
(κ,P ) with (a) Cd/C0 = 2 and (b) Cd/C0 = 3. (c) Stability diagram
in the (κ,Cd/C0) plane with P = 1.5. The solitons are stable and
unstable, respectively, in red and yellow areas. No staggered bright
solitons have been found in white areas. (d) Dependence of μ(P ) for
the stagger solitons at fixed values of other parameters.
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FIG. 5. (Color online) Typical example of a bright unstaggered mode produced by Eq. (1) for (P,Cd/C0,κ) = (1,2,0.1). Panels have the
same meaning as in Fig. 2.

FIG. 6. (Color online) Existence area (red) of the unstaggered bright modes (which are all stable) in the plane of (a) (κ,Cd/C0) (here P = 1
is fixed), and (b) (P,Cd/C0) (here κ = 0 is fixed). In the white area, solutions are delocalized. (c) Dependencies μ(P ) for the modes.

FIG. 7. (Color online) Typical example of a stable gray soliton produced by Eq. (1) with (|UBG|2,Cd/C0,κ) = (1,1.1,0.5). Panels have the
same meaning as in Fig. 2.

FIG. 8. (Color online) Typical example of a stable antigray soliton produced by Eq. (1), with (|UBG|2,Cd/C0,κ) = (1,2.5,0.5). Panels have
the same meaning as in Fig. 2.
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B. Unstaggered bright modes

Uniform nonlinear waveguide arrays with self-defocusing
nonlinearity cannot support unstaggered bright DSs. However,
unstaggered localized modes may exist, being pinned to the
attractive defect. The numerical solution of Eq. (1) produces
such modes, see an example in Fig. 5. They all are stable, their
existence areas in the planes of (κ,Cd/C0) and (P,Cd/C0)
being displayed in Fig. 6. Similar to the staggered DS, the
increase of the intrinsic coupling constant of the dimer, Cd ,
helps to expand the existence area of the bright modes, which
starts from Cd/C0 = 1, see Fig. 6(b). Note also that as well as
the staggered modes considered above, the unstaggered ones
exhibit no finite existence threshold in terms of the total power,
as seen in Figs. 6(b) and 6(c).

In dependencies of the propagation constant on the total
power, displayed in Fig. 6(c), attaining the level of dμ/dP = 0
(designated by horizontal dashed lines) implies a transition
to delocalized states. Actually, these are antigray modes
considered below.

IV. GRAY AND ANTIGRAY DISCRETE SOLITONS

A. Comparison with the continuum-model counterpart

Gray DSs are solutions to Eq. (1) supported by the nonzero
background intensity |UBG|2, which, in turn, is linked to the
propagation constant by an obvious relation:

|UBG|2 = μ + 2C0. (11)

The interaction of gray solitons with the defect may be
estimated, in the continuum limit, by means of the effective
potential (9), where a dark-soliton solution should be substi-
tuted. For a typical shape of this solution, udark = A tanh (aξ ),
Eq. (9) yields

Udark(ξ ) = εA2a2sech4 (aξ ) . (12)

In contrast to its counterpart for the bright soliton, given by
Eq. (10), this potential features a maximum at ξ = 0 for ε > 0,
and a minimum for ε < 0, hence it may be expected to be
attractive in the latter case, which, as said above, corresponds
to Cd < C0. Indeed, at strengths of the gain and loss, κ , small
enough, stable gray solitons pinned to the defect tend to exist
at Cd/C0 < 1, as can be seen in Fig. 9(b).

As said above, antigray solitons feature elevation on top of
the finite background, rather than the dip characteristic of the
gray ones. The estimate based on using the effective potential
(9) is not relevant for them, since free antigray solitons do
not exist in the continuum limit. In fact, the numerical results
presented below reveal their existence, in the form pinned to
the defect in the discrete system, at Cd > C0 [see Fig. 9(b)],
which would correspond to ε > 0 in the continuum limit. On
the other hand, it is shown below that the existence of the
antigray solitons pinned to the defect can be explained by
means of another (strongly discrete) analytical approximation,
see Eqs. (14)–(17).

B. Numerical results

To find solutions of the gray and antigray types, we used
the imaginary-time-propagation method, fixing the total power
as P = 128, which is exactly equal to the total number of

FIG. 9. (Color online) (a) Grayness degree, which is defined in
Eq. (13), as a function of the dimer’s intrinsic coupling constant Cd .
The plot comprises both the gray and antigray discrete solitons. The
dashed line labels � = 1. (b) Existence regions of stable gray and
antigray discrete solitons (the gray and red areas, respectively) in
the (κ,P ) plane. In the white area, no soliton solutions were found.
Here we fix P = 128, which corresponds to the background intensity
|UBG|2 ≈ 1, see the text. The dashed blue curve in (b) depicts the
analytical approximation given by Eq. (17).

the lattice sites, N = 128. If we neglect a relatively small
effect of the soliton’s core and boundary conditions on P , the
corresponding background level is |UBG|2 ≈ P/N = 1, which
makes it nearly fixed for the gray and antigray DSs.

The numerical analysis has demonstrated that both the
gray and antigray DSs, pinned to the PT -dimer defect, are
completely stable whenever they exist. The gray DS, supported
by the finite background, has a dip at the center, with a nonzero
minimum value, while the antigray DS features a central hump
on top of the background. Typical examples of stable DSs of
both types are displayed in Figs. 7 and 8.

The solitons of these types are characterized by the
“grayness degree,”

� = |Un=−1|2 + |Un=0|2
2|UBG|2 , (13)

where |UBG|2 is the background intensity, given by Eq. (11).
Values � < 1 and � > 1 imply that the DS is gray or antigray,
respectively, while � ≡ 1 implies a flat state, which is a border
between them. Figure 9(a) displays � vs Cd/C0 at different
fixed values of κ .

Stability regions of the gray and antigray solitons in the
(κ,Cd/C0) plane are displayed in Fig. 9(b). This figure shows
that the boundary between them, � = 1 [see Eq. (13)], exactly
coincides with Cd/C0 = 1 when κ = 0 (the gain and loss are
absent), which is explained by the fact that the conservative
defect is attractive at Cd/C0 > 1, and repulsive at Cd/C0 < 1.
The same argument explains the observation that at κ > 0,
the increase of Cd/C0 leads to the expansion of the existence
region for the antigray DSs, and shrinkage of that for the gray
solitons.

C. Analytical approximation for the discrete system

The overall existence boundary for the DSs in Fig. 9(b) is
exactly κ = Cd . This feature is explained by the well-known
fact that the PT symmetry of the dimer is broken at κ > Cd

[56,61,63]. As shown in Ref. [44], the same boundary remains
relevant when the dimer is embedded into a linear lattice.
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FIG. 10. (Color online) Stability regions (yellow and red) of gray
and antigray solitons in the (κ,Cd/C0) plane, at |UBG|2 ≈ 1 (the
approximate equality is understood here in the same sense as before,
i.e., P = 128 for the system built of N = 128 sites). In dark and light
gray areas, respectively, unstable gray and antigray solitons have
been found. In the white area, no soliton solutions exist. The dashed
blue curve depicts the analytical approximation (17) for the boundary
between gray and antigray solitons.

The boundary between the gray and antigray DSs in Fig. 9
(b) can be predicted in an approximate analytical form. Indeed,
it follows from Eq. (13) that condition � = 1 implies that
|Un| ≡ |UBG|, which suggests to approximate the respective
solution by the ansatz

Un =
⎧⎨
⎩

|UBG|, at n < −1 and n > 0,

|UBG|e−iδ/2, at n = −1,

|UBG|e+iδ/2, at n = 0.

(14)

The substitution of this ansatz, along with relation (11), into
Eq. (1), and looking at it solely at the defect-carrying sites,
n = −1 and n = 0, leads to an equation for δ and κ ,

Cde
−iδ/2 + C0 − 2C0e

iδ/2 + iκeiδ/2 = 0, (15)

the solution of which is

δ = 2 arctan

(
κ

2C0 + Cd

)
, (16)

κ2 = 1

2

[√
C4

0 + 8C2
0C

2
d + 16C3

0Cd − (
7C2

0 − 2C2
d

)]
. (17)

In the limit of Cd → ∞, Eq. (17) simplifies to κ ≈ Cd .
The blue dashed curve in Fig. 9(a) displays relation (17),

demonstrating that it produces a reasonable, although not very
accurate, approximation.

D. Gray and antigray discrete solitons in the system with
nonlinear PT symmetry

For bright DS modes, both staggered and unstaggered ones,
the consideration of the model based on Eq. (6) with the defect
carrying the nonlinear PT symmetry (NPTS) produces results
which are not qualitatively different from those reported above
for its linear-PT -symmetry counterpart, therefore we do not
discuss them in detail here. However, new features appear in
the NPTS system for gray and antigray DSs: while, as shown
above, they are completely stable in the case of the dimer
with the linear PT symmetry, the NPTS version generates a
nontrivial boundary in the parameter space between stable and
unstable solitons of these types. These results are summarized
in Fig. 10.

The analytical result for the model with the linear PT -
symmetric dimer, represented by Eq. (17), can be easily
generalized for the NPTS system, replacing κ in those results
by κ|UBG|2, pursuant to Eqs. (6) and (2). In particular, for the
latter system with |UBG|2 = 1, which is represented by Fig. 10,
the boundary between the areas of gray and antigray DSs is
approximated by the same equation (17) as above, which is
shown by the blue dashed curve in Fig. 10.

As seen in Fig. 10, the increase of the dimer’s intrinsic
coupling constant Cd stabilizes the DSs, while the increase
of the gain-loss coefficient κ destabilizes them, as before.
However, the dynamics of unstable gray and antigray DSs
is different from the blowup, which was observed for unstable
staggered bright DSs [see Fig. 3(d)]: as shown in Figs. 11 and
12, the instability initiates internal oscillations in the solitons,
and intensive emission of waves propagating on top of the
stable background.

V. CONCLUSION

The objective of this work was to extend the variety of
dynamical lattices withPT -symmetric defects, by introducing
the system with the background defocusing nonlinearity. In
addition to the system with the defect in the form of the
dimer with the linear PT symmetry, a modification with the
nonlinear PT symmetry was considered too. The systems can
be realized as arrays of optical waveguides with evanescent
coupling. In comparison with the recently introduced model
with the PT -symmetric dimer embedded into a linear lattice
[44], the new system gives rise to new types of DSs, namely,

FIG. 11. (Color online) Typical example of an unstable gray soliton with (|UBG|2,Cd/C0,κ) = (1,1,0.5) in the model with the nonlinear
PT symmetry of the embedded dimer, based on Eq. (6). The panels have the same meaning as in Fig. 2.
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FIG. 12. (Color online) Same as Fig. 11, but for an unstable antigray soliton with (|UBG|2,Cd/C0,κ) = (1,2,0.5).

staggered and unstaggered bright ones, and gray and antigray
DSs, depending on the relative strength of the dimer’s intrinsic
coupling constant Cd . The existence of staggered bright
and (unstaggered) gray can be explained in a qualitative
form, with the help of the continuum limit. The boundary
between gray and antigray DSs has been predicted too, in
an approximate analytical form. Stability of the modes was
investigated through the computation of the growth rates for
small perturbations, and by means of direct simulations. The
existence and stability areas tend to expand with the increase
of Cd , and shrink with the increase of the gain-loss coefficient
κ . In particular, the bright unstaggered modes pinned to the
defect are completely stable. The gray and antigray DSs
are completely stable too in the system with the linear PT
symmetry of the defect, and have a boundary between stable
and unstable states in the case of the nonlinear PT symmetry.
In the latter case, unstable DSs do not blow up, which is typical
for unstable solitons in PT -symmetric systems; instead, they
develop oscillatory dynamics.

It may be interesting to consider DSs in the self-defocusing
lattice with a pair of defects of the same or opposite
signs (dimer-dimer, or dimer-antidimer), separated by some
distance. A challenging perspective for the extension of the
present analysis is to carry it out for the two-dimensional
variant of the models. In that case, the PT -symmetric defect
may be represented by a dimer or quadrimer, and gray and
antigray DSs will be, probably, replaced by vortices.
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B. A. Malomed, Nonlinear lattice dynamics of Bose-Einstein
condensates, Chaos 15, 015115 (2005).

[10] M. Sato, B. E. Hubbard, and A. J. Sievers, Nonlinear energy
localization and its manipulation in micromechanical oscillator
arrays, Rev. Mod. Phys. 78, 137 (2006).

[11] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H.
Musslimani, Beam dynamics in PT symmetric optical lattices,
Phys. Rev. Lett. 100, 103904 (2008).

[12] S. Flach and A. V. Gorbach, Discrete breather: Advances in
theory and applications, Phys. Rep. 467, 1 (2008).

[13] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto,
M. Segev, and Y. Silberberg, Discretesolitons in optics, Phys.
Rep. 463, 1 (2008).

[14] D. J. Frantzeskakis, Small-amplitude solitary structures for an
extended nonlinear Schrödinger equation, J. Phys. A: Math. Gen.
29, 3639 (1996).

[15] J. Wu, M. Feng, W. Pang, S. Fu, and Y. Li, The transmission of
quasi-discrete solitons in resonant waveguide arrays activated
by the electromagnetically induced transparency, J. Nonlinear
Opt. Phys. Mat. 20, 193 (2011).

[16] P. G. Kevrekidis, “The Discrete Nonlinear Schrödinger
Equation: Mathematical Analysis,” Numerical
Computations, and Physical Perspectives (Springer, Berlin,
2009).

[17] Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape
and mobility control in optical lattices, Prog. Optics 52, 63
(2009).

053821-7

http://dx.doi.org/10.1016/S0167-2789(96)00261-8
http://dx.doi.org/10.1016/S0167-2789(96)00261-8
http://dx.doi.org/10.1016/S0167-2789(96)00261-8
http://dx.doi.org/10.1016/S0167-2789(96)00261-8
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(97)00068-9
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/10.1119/1.1574043
http://dx.doi.org/10.1119/1.1574043
http://dx.doi.org/10.1119/1.1574043
http://dx.doi.org/10.1119/1.1574043
http://dx.doi.org/10.1016/S0375-9601(01)00218-3
http://dx.doi.org/10.1016/S0375-9601(01)00218-3
http://dx.doi.org/10.1016/S0375-9601(01)00218-3
http://dx.doi.org/10.1016/S0375-9601(01)00218-3
http://dx.doi.org/10.1103/PhysRevLett.86.2353
http://dx.doi.org/10.1103/PhysRevLett.86.2353
http://dx.doi.org/10.1103/PhysRevLett.86.2353
http://dx.doi.org/10.1103/PhysRevLett.86.2353
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609
http://dx.doi.org/10.1146/annurev.nucl.53.041002.110609
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1038/nature01936
http://dx.doi.org/10.1063/1.1858114
http://dx.doi.org/10.1063/1.1858114
http://dx.doi.org/10.1063/1.1858114
http://dx.doi.org/10.1063/1.1858114
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/RevModPhys.78.137
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1088/0305-4470/29/13/028
http://dx.doi.org/10.1088/0305-4470/29/13/028
http://dx.doi.org/10.1088/0305-4470/29/13/028
http://dx.doi.org/10.1088/0305-4470/29/13/028
http://dx.doi.org/10.1142/S0218863511006029
http://dx.doi.org/10.1142/S0218863511006029
http://dx.doi.org/10.1142/S0218863511006029
http://dx.doi.org/10.1142/S0218863511006029
http://dx.doi.org/10.1016/S0079-6638(08)00004-8
http://dx.doi.org/10.1016/S0079-6638(08)00004-8
http://dx.doi.org/10.1016/S0079-6638(08)00004-8
http://dx.doi.org/10.1016/S0079-6638(08)00004-8


CHEN, HUANG, CHAI, ZHANG, LI, AND MALOMED PHYSICAL REVIEW A 91, 053821 (2015)
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