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Coherent control of light transport in a dense and disordered atomic ensemble
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Light transport in a dense and disordered cold atomic ensemble, where the cooperation of atomic dipoles
essentially modifies their coupling with the radiation modes, offers an alternative approach to light-matter
interfacing protocols. Here, we show how the cooperativity and quasistatic dipole interaction affect the process
of light propagation under the conditions of electromagnetically induced transparency (EIT). We perform
comparative analysis of the self-consistent approach with ab initio microscopic calculations and emphasize
the role of the interatomic interaction in the dipoles’ dynamics. Our results show that in such a dense and strongly
disordered system the EIT-based light storage protocol stays relatively insensitive to configuration variations and

can be obtained with essentially fewer atoms than are normally needed for dilute systems.
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I. INTRODUCTION

Coherent control of light propagation through a cold
and optically deep atomic ensemble has been the basis for
a variety of remarkable light-matter interfacing protocols,
including single-photon or entanglement storage in Raman- or
ElT-based quantum memories with applications to quantum
information networks [1-8]. In these experiments, and in
most associated theoretical studies, relatively low densities
and dilute configurations are considered [9-11]. Interestingly,
with higher density (i.e., up to one atom in a volume of
radiation wavelength), the effective interface between light
and matter and reliable light storage can be obtained with
essentially fewer atoms than is achieved in dilute gases. In
the diffraction limit, for a given optical depth by, the minimal
number of required atoms scales indeed as N 2 b(z) /(nok3),
where n is the density of atoms and 4 = k™! is the inverse
wave number of the radiation field [12]. This estimate can
even lead to a smaller number of participating atoms if the
light is transversally confined into a nanophotonic waveguide,
e.g., in tapered nanofibers where the divergence associated
with Fraunhofer diffraction vanishes [13-16]. Such a one-
dimensional configuration is highly appealing due to its wide
range of potential applications [17,18].

However, for atomic systems in the limit of high density and
strong disorder, when noi® ~ 1, the cooperative dynamics and
static interatomic interactions essentially modify the scattering
process and can lead, for instance, to localization phenomena
in the light transport [12,19-21] and to super-radiance in
the light scattering [22,23]. These collective effects can also
be important when the transport is controlled by external
coherent fields. In this paper, we therefore investigate the
basic process of coherent Raman control of a signal pulse
entering such a medium. We present comparative analysis of
the problem for A-type atoms. Our detailed study is based
on the self-consistent macroscopic Maxwell description and
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on the alternative ab initio microscopic calculation of the
scattering process. Our results, confirmed by both calculation
schemes and based on atomic arrays with small numbers of
atoms, indicate that the transport stays relatively insensitive to
configuration variations.

II. SELF-CONSISTENT APPROACH

The energy-level diagram and excitation scheme are shown
in Fig. 1. We consider a dense ensemble of A-type atoms
with the minimal accessible number of quantum states, i.e.,
with angular momentum Fy = 1 in the ground state and F' =
0 in the excited state [24]. Initially, all the atoms populate
only one Zeeman sublevel, {Fy = 1,My = 1}. Two coherent
control modes are applied at the empty transitions and a weak
left-handed polarized probe propagates through the sample.
The presence of two control modes allows us to consider the
initial system as stable; otherwise with only one control field
we would have to consider repopulation dynamics and optical
anisotropy effects in a tripod configuration [25,26].

In the lowest order, the transfer of atoms into { Fy = 1,My =
—1,0} sublevels is negligible and the steady-state dynamics of
an atomic dipole in the ensemble, as derived in Ref. [20], can be
expressed by the following equation for its positive frequency
component d P (w):
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—iwdP(w) = —i[wo +—c

(+)
2(w — a)c)]d (@)

' 4
+ %dg |:5(+)(a)) + T”P(“(w)]

— i X (w)d (), 2.1)

where w( denotes the transition frequency, €2, denotes the Rabi
frequency for the control modes of frequency w., and dy =
|(d - e),,,| is the modulus of the transition matrix element be-
tween {(n = F =0,M =0} and {m = Fy = 1,M, = 1}. The
probe driving amplitude £ (w) is the macroscopic transverse
electric field at frequency w, considered at the point of the
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FIG. 1. (Color online) Excitation scheme of a dense and disor-
dered atomic ensemble in the presence of control modes. The atoms
have a total spin angular momentum Fy = 1 in the ground state and
F = 0 in the excited state. A weak probe beam with o_ polarization
propagates along the sample. The two control modes with equal Rabi
frequencies €2, address the empty adjacent transitions with orthogonal
polarizations o, and 7.

dipole’s location, and P™(w) is the local mesoscopically
averaged polarization. The presence of this last term in
Eq. (2.1) corresponds to the so-called Lorentz-Lorenz or local
field correction associated with the longitudinal (quasistatic)
interaction of the dipole with its local environment. Since in
the self-consistent model the proximate dipoles are indistin-
guishable in the excitation process, the averaged polarization
can be written as

PO (w) = nod P (w) = x(@)EP(w), (2.2)

where ny is the local density and x the macroscopic dielectric
susceptibility of the sample.

The radiation losses, given by the last term in Eq. (2.1), can
be expressed as follows:

O*d2 [ dk

T = Rz )] (2m)3
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It corresponds to the radiation damping created by the
transverse field emitted in the scattering process and resulting
in losses of the probe escaping the sample incoherently, i.e.,
out of its original propagation direction. The last term on
the right-hand side, Ap,mp, selects a diverging contribution
to the vacuum Lamb shift, which should be renormalized and
incorporated into a physical energy of the atomic transition.
The integral evaluated over the wave vector together with
the sum over the tensor indices / = x,y,z recover the spatial
components of the field emitted by the dipole and overlapping
with its own location. We now look for the expressions of y,
and y,(w).

For an infinite medium with anisotropic dielectric suscep-
tibility, responding only on a left-handed polarized mode, the
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tensor of the dielectric permittivity is given by

1 0 0
Ew)=|0 14+4rxw 0], 2.4)
0 0 1

where the columns and rows subsequently numerate o, o_,
and m polarizations, as shown in Fig. 1. Light can propagate
inside such a medium into two different modes w = w,.(k)
expressed by the following dispersion equation:

(k* — )|k — &*[1 + 47 x ()]

+ (K — k2)2m x ()} = 0. 2.5)

One root is the ordinary mode @ = w,(k) = c|k|, the same
as in vacuum, but another one is extraordinary and has an
anisotropic dependence w = w,(K).

The transverse electric field Green’s function D,(”f)(k,a))
responsible for light propagation in the anisotropic medium
has a quite cumbersome analytical structure. But its trace (sum
over | = m = x,y,z), which is only contributing in Eq. (2.3),
can be written in a relatively simple analytical form,

D (k,w)

_ 4mh w?
k? c2k? — w? —i0
w?[1 + 47 x ()]
+ .
c2k? — w?[1 + 4w x ()] + 2(k? — k2)27 x (w)

(2.6)

Evaluation of the integral leads to y, = y, where y is the
natural decay rate and

_ d§w3 [1 4+ 47 x(w) .| 2ax(w)
Ve(w) =4 hed (@) arcsin 1—{—2—71)((60) 2.7

We associate y, with radiation emission into the ordinary
mode [first denominator’s pole in Eq. (2.6)] and y, with
emission into the extraordinary mode [second denominator’s
pole in Eq. (2.6)]. The last value contains not only the density
correction of the decay rate, but also a cooperative correction
to the radiation Lamb shift. The key feature of this result is the
existence of two different modes in an anisotropic medium,
namely ordinary and extraordinary, with decay rates different
for the emission into each of them.

The above formulas finally enable us to obtain a closed
algebraic equation for the local dielectric susceptibility x (w).
This equation can be solved numerically and be further applied
for the description of the signal pulse transport through the
atomic sample. In particular, for a slab sample of length L filled
by the medium with dielectric constant €(w) = 1 + 47 x (),
the transmission amplitude at frequency w is given by

T - 2./ e(w)
“ T 2/e()cos Y(w) — il + e(w)] sin Y (w)’
where Y (w) = L /€(w)w/c. The transmission coefficient

|7.,|> can be calculated and compared with the counterpart
result of the microscopic calculations presented later in the

paper.

(2.8)
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FIG. 2. (Color online) Spectral dependency of the dielectric sus-
ceptibility for an atomic density n9i* = 1 and electromagnetically
induced transparency features: (a) real part x’ (dispersion) and (b)
imaginary part x” (absorption) as a function of the probe detuning
A = w — wy. The grey dashed lines correspond to the original atomic
Lorentzian profile and the green lines show how the cooperative and
local field effects modify the sample susceptibility, with a resonance
shift to the red. In the presence of the control modes with Rabi
frequency 2. = y, the susceptibility is strongly modified as given by
the thick black lines: a transparency window and a negative dispersion
appear. In this configuration, (c) the pulse propagation through an
atomic array consisting of only one hundred atoms is shown. The
solid line corresponds to the initial pulse while the dashed line shows
the pulse delay which achieves approximately 0.5 of the initial pulse
duration and the retrieval efficiency which can achieve more than
50% for the chosen parameters.

As a first result, Fig. 2 provides the spectral dependencies
of the dielectric susceptibility calculated in the self-consistent
approximation for an atomic density ngi* = 1. The plots show
how the original single-atom resonance profile is modified
by the interatomic interactions via static longitudinal and
radiation transverse fields. The resonance point is first shifted
to the red wing due to the local field correction and the spectral
profile also differs from its original Lorentzian shape. With
control fields with €, = y tuned at resonance, the suscep-
tibility exhibits typical signatures of the electromagnetically
induced transparency (EIT), i.e., the transparency window and
reduced group velocity. In the considered case the overall
resonance coupling strength, expressed by the transmission
amplitude (2.8), can attain the level required for effective pulse
delay under the EIT protocol, for an atomic array consisting
of only one hundred atoms. This is shown in Fig. 2(c), where
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the transport of a Gaussian pulse through such a short atomic
array practically without losses is displayed. We now turn to
the microscopic approach.

III. MICROSCOPIC APPROACH

In ab initio microscopic quantum theory the scattering
process is described by the standard 7 -matrix formalism [27],
which has been adjusted for the calculation of light scattering
in an ensemble of atomic dipoles in Refs. [12,20,28]. Let us
consider a macroscopic target consisting of atoms randomly
but homogeneously distributed in a cubic box scaled by
a length L. Then the scattering of a plane-wave mode of
frequency w is described by the following total cross section:

VZ a)/z Z
Qo(@) = = 3 / Tyen . gek(Ei +i0)d’
h2c* (2m) pre

2y }
7 Im Tgex g ex(E; + i0),
where Tyen gex(E; +i0) are the T-matrix components for
transition from the initial to any final state. The initial state
with energy E; is specified by quantum numbers for collective
atomic state g (assuming all the atoms are in the spin
oriented state), by the mode wave vector k || z and by its
polarization e — o_, i.e., left-handed polarized. In the final
state superscribed by a prime sign the atomic state g’ can be
any of the accessible ground states of the collective atomic
subsystem. The sum expands over all the allowed output
scattering channels and the frequency of outgoing photons
' = w for either Rayleigh or elastic Raman-type transitions
shown in Fig. 1. The quantization volume V is internal and
finally a vanishing parameter of the theory. It should not be
confused with the target volume V = L3. The second line of
Eq. (3.1), known as the optical theorem, links the total cross
section with the elastic scattering amplitude in the forward
direction. This makes possible the calculation of the total cross
section even for an extremely high number of output scattering
channels g’. The spectral dependence Qq(w) describes the
microscopic and configuration-dependent spectral behavior of
the scattering process.

For the system of atomic dipoles the 7' matrix can be
expressed by the resolvent operator (many-particle Green’s
function) as follows:

3.1)

—iK'ry+ik
Tg’e/k’,gek(E) = L(de)nm“e ey ke

2rhvo'o & s
— > ey,
b,a=1

X (oo my_ynmy .. |R(E)| .. mg_1,n,mgy, .. )

(3.2)

where the resolvent Ié(E) =PH-—-E)'Pis projected by
the operator P onto a field vacuum state and onto a set of
atomic states with a single optical excitation between the states
m and n. H is the total system Hamiltonian in the dipole
gauge [29]. Indices a and b numerate the atoms and indicate
their locations and occupation states. As in the previous section
we assume that the excited atomic level has only one state n,
but the atoms can be repopulated among all the ground-state
Zeeman sublevels m in the interaction process. The resolvent
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can be calculated numerically as shown in Refs. [12,20] and
the presence of the control field can be incorporated into its
self-energy part via a similar term as in the right-hand side of
Eq. (2.1).

The basic theory and supplementary details of the mi-
croscopic calculation scheme can be found in Refs. [12,20].
Generally for a large atomic ensemble consisting of N atoms
with degenerate ground state the exact resolvent operator is
defined in a Hilbert subspace of large dimension, which is
exponentially rising up with N as d,Nd}~'. Here d, and
d, are the degeneracies of the ground and excited states,
respectively. This makes the dimension of the Hilbert subspace
for macroscopic N > 1 tremendously large for a degenerate
system when d, # 1 asin our case. Nevertheless, by evaluating
the total cross section via the optical theorem (3.1) we need to
know only the diagonal elements of the 7 matrix associated
with elastic forward scattering. As a consequence, for the
resolvent operator it is necessary to only access a limited
set of its matrix elements such as defined in the subspace
where N — 1 atoms are in the same ground state and a single
excitation is shared among any of N atoms of the ensemble. In
the Feynman diagram expansion the resolvent is expressed by
an N-particle Green’s function obeying the collective Dyson
equation [12]. The irreducible diagrams form the so-called
self-energy part X (E) and finally the inverse resolvent operator
can be expressed as follows:

R™YWE)=E — hwy — Z(E). (3.3)
While calculating the self-energy matrix we apply the standard
pole or “on-shell” approximation, similar to the Wigner-
Weisskopf approach for single-atom spontaneous emission,
and substitute in it £ = hawy, i.e., the undressed energy of the
excited state with the assumption for the ground-state energy
E, =0: X(E) — X(hwy).

The cooperative contribution to the self-energy part basi-
cally consists of the vacuum photon propagators linking the
transition currents of any atomic pairs in the ensemble and we
redirect the reader to Ref. [12], where the collective Dyson
equation as well as the self-energy operator are discussed. The
formalism is applicable for the conditions fulfilling the dipole
gauge approximation, i.e., for densities up to ngx* ~ O(1) and
not higher. Then, as shown in Ref. [12], the matrix element of
the self-energy operator responsible for the coupling of atoms
a and b is given by

1

B0 () = = i DD (Rap.w0),  (3.4)

where the causal-type Green’s function of the microscopic
displacement field fo))(R,a)) is taken at the distance of
interatomic separation R = Rg,,.

Such a relatively simple structure of the self-energy part
allows us to select a sequence of diagrams, which gives the
main contribution into the diagram expansion of the resolvent
operator, and then to keep only these diagrams in the entire
calculation scheme. The basic principle can be explained in
the lowest order of the diagram expansion. As an example, in

the second order of the Ié(E ) expansion in the series of the
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self-energy part we select the following contribution:

m' n

® a
m” o = m g (3.5)
n m
L2 C

where a,b,c = 1...N are any of the atoms in the ensemble.
Having in mind application of the optical theorem and consid-
ering this contribution to the elastic scattering channel all the
ground-state quantum numbers should coincide; i.e., m” =
m’ = m. For large N — oo because of statistical enhance-
ment, such types of diagram contributions, where different
wavy lines link only different atomic lines, will dominate
in the main sequence of perturbation theory expansion for
the resolvent operator. For contributions of this type we have
to keep only the swapping components (n,m — m,n) of the
self-energy operator for each interacting pair.

Let us now specify another diagram also contributing in the
second order of the perturbation theory:

n - m" 0 a
\ ‘f 3.6)
m' 6 n m b

This diagram shows us an example of recurrent coupling and
virtual repopulation between two neighboring atoms. For this
diagram to contribute to an elastic Rayleigh channel, we have
m' = m but m” # m. Diagram (3.6), as well as similar graphs
appearing in higher orders, can be added into any inner part of
the main diagram sequence starting by (3.5) and expanded up
to higher orders. As a consequence the elastic channel becomes
coupled with other Raman-type scattering channels, which
are elastic in terms of conserving energy but have different
magnetic numbers, and for the sake of simplicity in definitions
we further address them as inelastic.

From a more physical point of view, the recurrent virtual
processes are responsible for cooperative corrections to a
single atomic excitation from both the static longitudinal
and radiation transverse fields modified by the presence of
proximal neighbors. For intermediate densities, noid ~ 1, it
would be sufficient to keep such recurrent coupling only
for the atoms separated by a distance of a few X. This can
essentially reduce the number of inelastic scattering channels
coupled with the elastic one and, as a consequence, the
subspace dimension for the resolvent operator as well as the
number of equations to be solved, which would scale now as
d,N d;’l. Here “n — 17 corresponds to the effective number
of the proximate neighbors, which mainly contributes in the
recurrent diagrams responsible for “dressing” of any randomly
selected atomic excitation in the ensemble. In the calculations
this number is varied such that we can verify that the entire
calculation scheme with increasing “n” becomes rapidly self-
converging and in the limit of n >> 1y it approaches the exact
result.
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IV. RESULTS

We now investigate how the effect of disorder, associated
with the dense random distribution of atomic scatterers, can
affect the result of the self-consistent description and make
the absorption profile potentially sensitive to a specific atomic
configuration.

The transmission coefficient |7,,|?, defined by Eq. (2.8),
and the spectral profile of the scattering cross section Qg(w),
given by Eq. (3.2), are different quantities. Nevertheless,
in the classical theory of diffraction, in accordance with
Babinet’s principle, the light scattered by a highly absorbing
macroscopic sample has its scattering cross section equal to
2A, where A is the geometrical cross area of the object. In
the vicinity of the absorption resonance we can thus expect
the approximate relation 2A[1 — |7, |*] ~ Qo(w), which can
be used to test the validity of the self-consistent macroscopic
description via a round of microscopic calculations. In the
spectral domain where the sample becomes partially trans-
parent both calculation schemes approach the same limit of
weak light scattering on a collection of independent pointlike
atomic dipoles. In this limit we have Qo(w) = No(w), where
N = ngV is the number of scatterers and o (w) is the cross
section of light scattering on a single atom. In the case
of weak interaction the latter quantity also contributes to
the susceptibility 47k Imy (w) = noo (w) such that we get an
asymptotic relation between both calculation approaches.

The spectral behavior of the scattering cross section Qg(w)
is shown in Fig. 3 for an ensemble consisting of 50 atoms with
a density nox> ~ 1 and for a number of proximate neighbors
contributing in the recurrent coupling up to five. The plots,

presented for different “n,” show the self-convergency of

o0
(=}

D
(=}
T

Total cross section, units of (A/27)*
o~
[=]

Aly

FIG. 3. (Color online) Total cross section for a single photon
scattering on an ensemble consisting of 50 atoms randomly distributed
with a density ngx® ~ 1. The microscopic calculations have been
performed for a particular configuration and for different numbers
“n” of proximate neighbors involved in the recurrent coupling, as
described in the text. The inset shows the microscopic verification of
EIT interaction with control pulses calculated for the same parameters
as used in Fig. 2. The self-consistent (SC, dotted line) estimate of the
cross section spectrum (black dotted line) is scaled in accordance
with Babinet’s principle and only the part of maximal absorption is
shown; see text.
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our calculation scheme with increasing “n.” The calculations
were done for a particular configuration and the spectrum
reproduces a randomly created quasienergy resonance struc-
ture of the resolvent operator for the chosen configuration.
The absorption profile is realistically reproducible by the
self-consistent calculation scheme and variations in the atomic
configuration only slightly affect the spectral behavior of the
cross section near the central resonance. The EIT phenomenon
can be involved in the microscopic calculation scheme by
adding the coupling with the control mode, contributed to
the first line of Eq. (2.1), as a self-energy part to the atomic
propagators of unoccupied states. Then the transparency
window, shown in the inset and calculated for the same
parameters as in Fig. 2, is also a little sensitive to a particular
atomic configuration.

As a reference dependence we have shown here a fragment
of the transmission spectrum calculated in the self-consistent
approximation near the resonance point and applied Babinet’s
principle for the total cross-section estimate at resonance. Both
calculation schemes are in agreement in their general behavior
and the microscopic result has a clear signature of the local field
correction being slightly asymmetric to the red wing. The fact
that the microscopic cross section is a bit larger at the point of
the maximum indicates that the macroscopic description is not
so straightforwardly applicable to a system of mesoscopic size.
The discrepancy between micro- and macroscopic estimates
of the cross section can be explained as the sample size L =
3/50 % hits the region & < L < A, so it is not large enough to
follow the Fraunhofer diffraction and Babinet’s benchmark.
Unfortunately it is demanding so far to extend the applied
algorithm here to a macroscopic object consisting of a larger
number of atoms at high density and overcoming the conditions
L > X as it was done in Ref. [20] for V-type two-level atoms.

By considering the evolution from a highly dense to a more
dilute configuration we can justify the validity of the ab initio
microscopic and self-consistent macroscopic approaches and
compromise them in accordance with the principles described
in the beginning of this section. In Fig. 4 we present our
calculations performed for an atomic ensemble consisting of
N = 500 atoms with a fixed number n = 4, i.e., keeping only
three proximal neighbors. The upper bounding curve (gray)
indicates the cross section in the very dilute limit when the
total cross section is directly given by the sum of individual
cross sections such that Q¢(w) = No(w). The calculations,
performed for different densities nex® = 0.0025,0.025,0.25,
show how the total scattering cross section reduces from
the dilute limit to the dependent scattering regime. At the
intermediate densities for a sample of macroscopic size (L >
A), a good agreement is obtained between both calculation
approaches. Babinet’s benchmark, shown with dotted curves,
faithfully fits the results of microscopic calculations for the
densities ngi* = 0.025,0.25.

V. CONCLUSION

In conclusion, we have shown that in a dense and disordered
atomic ensemble effective slow-light transport can be obtained
in an atomic array with a relatively small number of atoms
compared with dilute systems. However, the effect of disorder,
cooperative scattering, and static interaction could be expected
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FIG. 4. (Color online) These graphs show how the self-consistent
model fits the results of ab initio microscopic calculations in the case
of a macroscopic limit. All the graphs reproduce the calculations of
the total cross section for a single photon scattering on an ensemble
consisting of 500 atoms randomly distributed with different densities.
The ab initio calculations are performed for the densities nox® =
0.25 (black), ngx® = 0.025 (blue dashed line), and nox* = 0.0025
(green dash-dotted line) and for a representative number of proximal
neighborsn — 1 = 3. The self-consistent estimate of the cross-section
spectra, shown in dotted curves with the same colors for noid =
0.25,0.025, are scaled in accordance with Babinet’s principle. The
upper bounding curve (gray) indicates the cross section for the upper
dilute limit when the total cross section is directly given by the sum
of individual cross sections such that Qy(w) = N o(w).
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to randomize the transmission spectrum. Interestingly, our
results obtained with the ab initio microscopic approach reveal
actually that the total scattering cross section has only a slight
signature of the configuration dependence. The scattering
spectra demonstrate indeed a tendency to self-averaging and
smooth behavior near the main resonance peak, which is
in turn reliably reproducible by the self-consistent model.
As a consequence this allows effective coherent control of
a signal pulse under the regime of EIT with a fixed set of
external parameters, such as Rabi frequency and control mode
detuning, irrespective of any random realizations of the atomic
configuration. Extension of this study to a one-dimensional
array, such as obtained with atoms trapped along an optical
nanofiber where disorder can manifest due to a limited filling
factor, is in progress.
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