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Optomechanical signature of a frictionless flow of superfluid light
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We propose an experimental setup that should make it possible to reveal the frictionless flow of a superfluid
of light from the suppression of the drag force that it exerts on a material obstacle. In the paraxial-propagation
geometry considered here, the photon-fluid dynamics is described by a wave equation analogous to the Gross-
Pitaevskii equation of dilute Bose-Einstein condensates and the obstacle consists in a solid dielectric slab
immersed into a nonlinear optical liquid. By means of an ab initio calculation of the electromagnetic force
experienced by the obstacle, we anticipate that superfluidity is detectable in state-of-the-art experiments from the
disappearance of the optomechanical deformation of the obstacle.
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I. INTRODUCTION

Superfluidity, the capability of a fluid to flow without fric-
tion along a pipe or past an obstacle [1], is undoubtedly among
the most striking phenomena occurring in low-temperature
liquids or gases. Since its first discovery in 4He [2,3], it has
been observed in several other systems such as 3He [4] and
bosonic and fermionic ultracold atomic vapors [5,6].

Following pioneering theoretical works [7–15], superflu-
idity has been experimentally demonstrated [16] also in the
completely different optical context of the so-called quantum
fluids of light. In suitable optical devices, a many-photon light
beam can in fact behave collectively as a quantum fluid [17]:
Effective photon-photon interactions are mediated by the Kerr
optical nonlinearity of the underlying medium, while photon
confinement in a microcavity configuration or diffraction in a
paraxial-propagation geometry provides a mass to the photon.

A transparent way to probe the superfluid properties of the
photon fluid is to introduce a spatially localized defect into
its flow and look at the perturbation that this latter generates
into the fluid. Depending on the relative value of the flow
speed compared to the sound speed, a full crossover has been
revealed from a low-velocity superfluid regime, in which the
flow remains practically unaffected by the presence of
the obstacle [16], to a large-velocity regime characterized
by the Cherenkov emission of Bogoliubov-like linear waves in
the fluid and/or by the hydrodynamic nucleation of nonlinear
excitations such as quantized vortices [18,19] or dark solitons
[20,21].

While the drop of the drag force experienced by the obstacle
is among the main signatures of superfluidity in material fluids
[22–27], so far all experiments on quantum fluids of light have
focused only on the density and current disturbances induced
by the obstacle in the flowing photon fluid [16–21]. In the wake
of works on the classical [28,29] and quantum [30] drag force
in material fluids, calculations of the drag force in fluids of light
have been theoretically carried out by several authors [31–34]
but no concrete experimental setup to effectively measure it
appears to have been proposed. The purpose of this work is
to fill this gap and propose a configuration where the drag
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force generated by a flowing photon fluid on an obstacle may
actually be measured.

As compared to the planar-microcavity architecture used
in the superfluid-light experiments of Refs. [16–21], the
paraxial-propagation geometry, based on a bulk nonlinear
optical medium and originally proposed in Ref. [7], appears
most promising in view of this objective. We specifically
consider the case of a monochromatic coherent electromag-
netic wave propagating through a bulk Kerr nonlinear optical
medium. Within the well-known [35,36] reformulation of the
paraxial propagation of light in terms of the Gross-Pitaevskii
equation for the order parameter of a dilute Bose-Einstein
condensate [5,6], superfluidity is apparent as a suppression of
scattering from regions characterized by spatial modulations
of the refractive index [7,15]. A first experiment to characterize
the Bogoliubov dispersion of sound waves on top of a fluid of
light in a paraxial-propagation geometry was recently reported
in Ref. [37].

While typical defects in microcavity devices are rigidly
bound to the semiconductor host material [16–21], the prop-
agating geometry makes it possible to consider situations
with movable and/or deformable obstacles, such as dielectric
plates or rods immersed in a liquid-state nonlinear dielectric.
This condition is essential to have an observable mechanical
displacement and/or a deformation of the obstacle in response
to the radiation pressure. According to our predictions, the
transition to a superfluid state is in fact signaled by a sudden
drop of the drag force corresponding to the radiation pressure
and, therefore, of the optomechanical deformation of the
obstacle. While the present work is focused on the classical
contribution that dominates the drag force at the mean-field
level, a full quantum theory of light propagation [38] is needed
to properly investigate the quantum drag force that is antici-
pated to arise from the scattering of quantum fluctuations [30].

The article is structured as follows. In Sec. II, we introduce
the physical system under consideration and we review the
theoretical formalism used to describe light propagation in the
investigated nonlinear medium and scattering on the obstacle.
The signatures of superfluidity in the intensity patterns of light
are discussed in Sec. III in both a one-dimensional geometry
with a plate-shaped obstacle and a two-dimensional geometry
with a rod-shaped one. The theoretical framework to calculate
the electromagnetic force exerted by the fluid of light on the
obstacle is presented in Sec. IV. Some quantitative predictions
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FIG. 1. (Color online) Sketch of the considered experimental
setup, viewed from above.

for the actual magnitude of the mechanical deformation that
one may realistically expect in an experiment are discussed in
Sec. V. Conclusions are finally drawn in Sec. VI.

II. PHYSICAL SYSTEM AND THEORETICAL MODEL

A sketch of the physical system considered in this work is
shown in Fig. 1. A solid and transparent object of dielectric
susceptibility χs is immersed into a large vessel filled with a
nonlinear optical liquid of linear susceptibility χ� and Kerr-
nonlinearity coefficient χ (3). Both the solid object and the
liquid are devoid of free charges and nonmagnetic. The front
(at z = 0) (x,y) face of the object is mechanically clamped
to the tank while the rest (extending for a length Lz in the z

direction) is free to move in the liquid bath. The coordinate
origin corresponds to the center of the clamped face and the y

axis to the vertical direction.
In the following, we shall consider two geometrical shapes

for the obstacle. An effectively one-dimensional dynamics for
the photon fluid is obtained with a plate of thickness Lx in the
x direction and very large (approximately infinite) size in the
y direction, so that the light-field amplitude does not depend
on y. On the other hand, a full two-dimensional dynamics
is recovered using a rod-shaped obstacle. To simplify the
calculation of the electromagnetic force, we will consider a rod
with a rectangular cross section of sides Lx and Ly , typically
such that Ly � Lx .

The system is illuminated by a wide monochromatic-plane-
wave laser beam incident along a direction close to the z axis.
Within the framework of the well-known paraxial and slowly-
varying-envelope approximations (see, e.g., Refs. [35,36], but
also Ref. [15]), we can expand the electric field E(x,t) =
Re[E(x) ei(βz−ωt)] [where x = (x,y,z)] of the laser wave as
the product of a slowly varying spatial envelope E(x) and
a rapidly varying carrier of pulsation ω and wave number
β = (1 + χ�)1/2 ω/c in the positive-z direction, c denoting the
free-space speed of light.

Neglecting the polarization degrees of freedom, this
yields a propagation equation for the (scalar) envelope
E(x) of the electric field in a form closely analogous
to the Gross-Pitaevskii equation of dilute Bose-Einstein
condensates [5,6],

i
∂E
∂z

= − 1

2 β

(
∂2E
∂x2

+ ∂2E
∂y2

)
+ V (x) E + g |E |2 E, (1)

where the longitudinal coordinate z plays the role of time (in
this respect, we will frequently use the adjectives “stationary”
or “steady” to designate something which does not depend on
z) and the effective photon mass equals β. In Eq. (1),

V (x) � −β (χs − χ�)

2 (1 + χ�)
�(Lx/2 − |x|) �(Ly/2 − |y|), (2)

where � denotes the Heaviside step function, is the external
potential arising from the refractive-index difference between
the obstacle (“s”) and the liquid (“�”), and

g = − β χ (3)

2 (1 + χ�)
(3)

is the photon-photon contact-interaction constant, proportional
to the Kerr coefficient χ (3) of the liquid bath. In Eq. (2), we
have assumed that the shape of the obstacle does not depend on
z. This is accurate provided the deformation of the obstacle in
response to the optomechanical force that it undergoes is small
with respect to its transverse size (and therefore negligible
at the level of the optical-field dynamics). The validity of
this assumption will be checked a posteriori in Sec. V. In
what follows, we will furthermore restrict our attention to the
case of a self-defocusing Kerr nonlinearity (χ (3) < 0), which
corresponds to repulsive photon-photon interactions (g > 0)
and prevents the occurrence of dynamical instabilities in the
fluid of light [15].

The initial condition (i.e., at z = 0) is fixed by the transverse
profile of the incident beam, which we take slightly tilted by
a positive angle θ = arctan(c k0/ω) � c k0/ω away from the z

axis, as illustrated in Fig. 1. This gives a small wave number
k0 > 0 to the photons in the x direction,

E(x,y,z = 0) = E(x,y) eik0x, (4)

and is similar to what has been proposed in Ref. [7] to
study vorticity generation in a nonlinear-propagating-optics
configuration. The overall envelope E(x,y) in Eq. (4) is
supposed to have a very wide top-hat shape, so that it can
be approximately considered uniform, E(x,y) = E0 = const,
in the region of interest. In the absence of any obstacle, the
field then has a plane-wave evolution in the z direction:

E(x,y,z) = E0 eik0x e−i	z, (5)

where the wave number 	 = k2
0/(2 β) + g |E0|2 corresponds

to the chemical potential in the theory of weakly interacting
Bose gases [5,6].

III. LIGHT SUPERFLUIDITY

As a first step, we need to calculate the evolution of the
transverse field during the propagation along the z axis. In
particular, we shall concentrate on the stationary field profiles
that the incident beam of light assumes after long propagation
distances. Unless otherwise specified, we shall restrict our
attention to very wide incident beams moving in the positive-x
direction and neglect all effects stemming from the edges of
the beam waist.

First, in Sec. III A, we investigate a one-dimensional con-
figuration where superfluidity affects the nonlinear tunneling
across a plate [located at x = 0, which separates the upstream
region (x < 0) from the downstream one (x > 0)]. Then, in
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FIG. 2. (Color online) One-dimensional plate geometry. Upper left panel: Domain of existence of the stationary (z-independent) solutions
in the (V0/s∞,M∞ = v∞/s∞) plane (gray-shaded area); the red tags indicate the parameters used for plotting the intensity patterns (a)–(d) in
the upper right of the figure (the vertical dashed line indicates the position of the δ-peak obstacle). Lower panels: Nonmonotonic behavior—at
a fixed asymptotic photon-fluid velocity v∞ = k∞/β—of the radiation pressure (17) and (18) as a function of the far-downstream intensity I∞,
normalized to the critical Landau intensity Icrit = β v2

∞/g = k2
∞/(β g), in the two regimes V0 ≶ 0 (χs ≷ χ�); in each case, the white region

indicates the window in which Eq. (6) does not admit a stable stationary solution.

Sec. III B, we address a two-dimensional geometry where
superfluidity is studied in terms of the scattering of the photon
fluid on a spatially localized obstacle. From a hydrodynamic
perspective, this latter configuration aims at providing an
idealized, yet reasonably realistic, model of the interaction of
a flowing fluid of light with the rough surface of its container.

A. One-dimensional plate geometry

In the case where Ly = ∞ (corresponding to a plate of
infinite size in the y direction), the optical field does not depend
on y and the evolution equation (1) becomes one dimensional.
In this case, analytical insight into the stationary solutions is
available and the main remaining difficulty concerns how these
latter can be actually reached in a realistic experiment.

1. Stationary intensity profiles

In the presence of the plate (χs �= χ�), the scattering on
the susceptibility jump |χs − χ�| is responsible for a complex
evolution which, for suitable incident parameters, eventually
tends to a stationary solution satisfying the z-independent
equation

(
k2
∞

2 β
+ g I∞

)
E = − 1

2 β

d2E
dx2

+ V0 δ(x) E + g |E |2 E, (6)

with a purely outgoing plane wave of wave number k∞ > 0
and constant intensity I∞ = |E∞|2 as boundary condition in

the positive- and large-x region. The δ approximation for the
square potential (2) in Eq. (6), where

V0 = −β Lx (χs − χ�)

2 (1 + χ�)
, (7)

is accurate provided Lx is much smaller than both 1/k∞ and
the asymptotic healing length ξ∞ = 1/(β g I∞)1/2.

Under this approximation, analytical solutions to the
nonlinear equation (6), as well as formulas explicitly detailing
their domain of existence as a function of V0, k∞, and I∞, are
available in the literature [28,39,40]. A review of these results
is reported in the Appendix. As shown in Fig. 2, three different
regimes can be identified, depending on the sign of V0 and on
the value of the so-called Mach number

M∞ = v∞
s∞

, (8)

where v∞ = k∞/β denotes the velocity of the fluid of light
and s∞ = (g I∞/β)1/2 = 1/(β ξ∞) the speed of sound [15]
far downstream from the obstacle (x � ξ∞). At a given
asymptotic flow speed v∞, the Mach number M∞ can
be written in terms of the light intensity I∞ as M∞ =
(Icrit/I∞)1/2, where Icrit = β v2

∞/g = k2
∞/(β g) is the critical

intensity for superfluidity, as defined in the so-called Landau
criterion [17,41]. Even if the link to superfluidity is rarely made
in explicit terms, nonlinear-tunneling experiments similar to
the one we are proposing have been recently performed by
several groups [42–44].

For low flow speeds and/or high intensities (that is, for small
Mach number M∞ = v∞/s∞), the obstacle produces a
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localized perturbation in the intensity profile I(x) = |E(x)|2
[Figs. 2(b) and 2(d)]; this latter exponentially recovers its
unperturbed value I∞ on both sides away from the plate. Most
remarkably, the light intensity remains in this case symmetric
with respect to the origin. This regime corresponds to the
superfluid behavior first demonstrated in Ref. [16].

For high flow speeds and/or low intensities (that is, for
large Mach number M∞ = v∞/s∞), a periodic intensity
modulation due to the interference of the incident and reflected
waves appears in the negative-x region. In the case of a
weakly perturbing obstacle (|V0|/s∞ � 1), this modulation
can be interpreted as the result of a Cherenkov radiation of
Bogoliubov excitations by the obstacle (see, e.g., Ref. [45]).
For strongly disturbing obstacles instead, it is altered by the
nonlinearity and takes the form of a cnoidal wave [46,47].
Examples of such patterns are shown in Figs. 2(a) and 2(c).

In between these two regimes [corresponding to the white
domain of the (V0/s∞,M∞) plane shown in the upper left
panel of Fig. 2], the flow is z dependent and so can no longer
be described by a stationary solution of Eq. (6). In that case,
a train of solitons can for instance be periodically emitted by
the defect [40]; this regime is the one-dimensional analog of
the vortex phase experimentally observed in Refs. [18,19].
When V0 < 0, i.e., when χs > χ�, superfluidity extends up to
M∞ = 1 (v∞ = s∞), i.e., up to the Landau prediction [41] for
Bose-Einstein condensates. When V0 > 0, i.e., when χs < χ�,
superfluidity is instead lost at a lower M∞.

2. Reaching the stationary state

Even though it is in principle possible to design an incident
light profile with the exact shape of the stationary state, it could
be experimentally much more convenient to start with a wide
intensity spot and let the steady state be spontaneously reached
after some propagation distance z. In the one-dimensional
configuration studied in this section, the choice of a suitable
shape for the incident beam is a nontrivial task and must
be specifically designed in the different considered cases.
We present in Fig. 3 two specific examples obtained from
a numerical integration of the one-dimensional version of
Eq. (1).

The superfluid regime shown in Fig. 3(b.3), for which
v∞ < s∞, can be created by using a wide incident spot
with a top-hat profile of in-plane wave number k0 and peak
intensity I0 [and, correspondingly, velocity v0 = k0/β, speed
of sound s0 = (g I0/β)1/2, and healing length ξ0 = 1/(β s0)]
encompassing an attractive obstacle (V0 < 0, i.e., χs > χ�)
[Fig. 3(b.1)]. In that case, after a transient emission of
elementary excitations [Fig. 3(b.2)], the asymptotic parameters
k∞ and I∞ exactly match the incident ones.

The (nonlinear) Bogoliubov-Cherenkov regime shown in
Fig. 3(a.3), for which v∞ > s∞, can be obtained by de-
signing a wide incident spot localized upstream from the
obstacle [Fig. 3(a.1)]: Scattering on this latter [Fig. 3(a.2)]
automatically generates the desired stationary pattern of
Fig. 3(a.3). Note that, in order to avoid forming the transonic-
interface configuration described in Ref. [48], k0 must be cho-
sen sufficiently large. In contrast to the previous case, here the
asymptotic momentum and intensity are not straightforwardly
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FIG. 3. (Color online) One-dimensional plate geometry. Snap-
shots of the normalized intensity profile I(x,z)/I0 at different
propagation distances z, from the incident spot [panels (a.1) and
(b.1)] towards the stationary state [panels (a.3) and (b.3)] showing
a (nonlinear) Bogoliubov-Cherenkov modulation [column (a), M0 =
v0/s0 = 2.2] or a superfluid behavior [column (b), M0 = 0.5]. The
vertical dashed line at the origin (x = 0) indicates the position of the
δ-peak obstacle. The propagation distance z is such that k2

0 z/β = 0
[panels (a.1) and (b.1)], 25 [panels (a.2) and (b.2)], and 125 [panels
(a.3) and (b.3)].

related to the incident ones, but can be, of course, easily
measured from the light emerging from the system.

B. Two-dimensional rod geometry

The situation is in some manner simpler in the fully
two-dimensional case where the obstacle has, e.g., the shape of
a rod oriented in the z direction. Examples of stationary-field
configurations after a long z propagation are displayed in
Figs. 4(a)–4(c) for a constant incident wave number k0 in
the positive-x direction but different values of the incident
light intensity I0. Specifically, we focus on the case of a
rod with a rectangular cross section [49] such that Ly � Lx ,
which will facilitate the analysis of the electromagnetic force
in the next section. As a most remarkable feature of the
two-dimensional case, it is worth stressing how, in contrast
to the one-dimensional case, the intensity and the speed of the
fluid of light far downstream from the obstacle recover their
unperturbed incident values [15]: I∞ = I0 [the asymptotic
sound speeds s∞ = (g I∞/β)1/2 and s0 = (g I0/β)1/2 are
consequently equal] and v∞ = v0 (the asymptotic Mach
numbers M∞ = v∞/s∞ and M0 = v0/s0 are then identical).

As usual, a superfluid behavior is numerically found in
the high-intensity regime (I0 � Icrit), where the flow speed
is lower than the speed of sound, v0 � s0 (or, equivalently,
v∞ � s∞): The only effect of the obstacle is to generate a local-
ized perturbation in the fluid profile [Fig. 4(c)]. In the opposite
limit (I0 � Icrit), that is, when v0 � s0 (or, equivalently,
v∞ � s∞), Bogoliubov-Cherenkov waves upstream from the
obstacle are a clear signature of a superfluidity breakdown
[Fig. 4(a)]. In between, superfluidity can be broken by a
different mechanism [50] due to the quasiperiodic nucleation
of vortex pairs [Fig. 4(b)], as experimentally observed in
planar-microcavity polariton fluids [18,19] and in propagating
nonlinear optics [51].
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FIG. 4. (Color online) Two-dimensional rod geometry. Panels (a)–(c): Stationary (that is, z-independent) light-intensity profiles I(x,y)
(normalized to the incident intensity I0) in the deeply nonsuperfluid regime [(a), M0 = 2.98], in the vortex-nucleation regime [(b), M0 = 0.75],
and in the superfluid regime [(c), M0 = 0.25]; the transverse cross section of the rod-shaped obstacle is indicated by the dashed rectangle;
propagation distance: z/λ = 9 × 104 (λ = 2π/β is the wavelength of the laser in the liquid). Panel (d): Behavior—at a fixed far-upstream
velocity v0 = k0/β—of the electromagnetic force Ftot (defined in the first paragraph of Sec. IV B) as a function of the input intensity
I0 normalized to the critical Landau intensity Icrit = β v2

0/g = k2
0/(β g) (as v0,k0 = v∞,k∞ in the two-dimensional rod configuration, this

corresponds to the same normalization as the one used in the lowest panels of Fig. 2); the points (vertical error bars) correspond to the average
(standard deviation) of the force over the propagation-distance window z/λ ∈ [4.5 × 104,9 × 104] and the blue straight line indicates the
linear behavior of the radiation force in the low-I0 regime. Obstacle’s amplitude: (χs − χ�)/(1 + χ�) = 5 × 10−5; obstacle’s size: Lx/λ = 40,
Ly/λ = 200.

IV. ELECTROMAGNETIC FORCE

The intensity profiles discussed in the previous section con-
stitute the starting point of the calculation of the force exerted
by the fluid of light on the dielectric obstacle. As this latter and
the surrounding liquid are made of neutral and nonmagnetic
dielectrics, we can make use of the theory of electromagnetic
forces induced by the light field on the oscillating dipoles
of matter. Our treatment of these forces is based on recent
works by Barnett and Loudon [52,53]. To estimate the actual
deformation of the obstacle, the electromagnetic forces will
then be inserted into the mechanical equations describing the
static equilibrium of the full system, composed of the solid
dielectric obstacle and the surrounding liquid: In addition to
the direct bulk electromagnetic force, the obstacle actually also
experiences the mechanical pressure exerted by the dielectric
liquid on its surface. Our choice of a rod-shaped geometry
with a rectangular cross section aims at reducing as much as
possible the complexity of the mechanical calculation.

Following Refs. [52,53], the general expression of the elec-
tromagnetic force density experienced by a generic dielectric

is [we write down (x1,x2,x3) = (x,y,z)]

f(x,t) =
∑

j∈{1,2,3}
Pj

∂E
∂xj

+ ∂P
∂t

× B, (9)

where E(x,t) and B(x,t) are the electric and magnetic fields
of the light wave and P(x,t) is the polarization density of the
medium, including both linear and nonlinear contributions. In
our case, the polarization densities of the solid obstacle and
the liquid bath are respectively given by

Ps(x,t) = ε0 χs E (10a)

and P�(x,t) = ε0 (χ� + χ (3) |E|2) E, (10b)

where ε0 denotes the permittivity of free space. Taking advan-
tage of the Maxwell-Faraday equation to express B as a func-
tion of E in Eq. (9), simple algebraic manipulations [52,53]
in the case of a monochromatic light field of pulsation ω—we
set E(x,t) = Re[Ẽ(x) e−iωt ] and P(x,t) = Re[P̃(x) e−iωt ]; in
our work (see Sec. II), one has Ẽ(x) = E(x) eiβz—lead to the
following expression for the ith (i ∈ {1,2,3}) component of
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the time-averaged electromagnetic force density:

f̄i(x) =
∫ 2π/ω

0
fi(x,t)

dt

2π/ω

= 1

2

∑
j∈{1,2,3}

Re

(
P̃ ∗

j

∂Ẽj

∂xi

)
. (11)

Given the symmetry of our setup with respect to the y = 0
plane, we can focus our attention on the x component
of the electromagnetic force. Within the assumed paraxial-
propagation regime, we can approximate the light-wave
polarization to be everywhere parallel to the y axis [54].

Integrating Eq. (11) over a thin volume of the obstacle of
transverse sizes dy and dz encompassing its thickness in the x

direction, we get to an electromagnetic pressure acting on the
solid obstacle at position (y,z) given by

Ps(y,z) = 1

2

∫ Lx/2

−Lx/2
Re

[
P̃ ∗

s (x)
∂Ẽ

∂x
(x)

]
dx

= ε0 χs

4

∫ Lx/2

−Lx/2

∂

∂x
|Ẽ(x)|2 dx

= ε0 χs

4
[I(Lx/2,y,z) − I(−Lx/2,y,z)], (12)

where I(x) = |Ẽ(x)|2 = |E(x)|2 is the electric-field intensity.
Of course, a similar electromagnetic force acts also on the

surrounding liquid. Assuming the liquid to be incompressible,
this electromagnetic force results only in a spatial variation of
the local liquid pressure ��(x) according to the hydrostatic-
equilibrium condition

f̄�(x) = ∇��(x). (13)

Assuming that the liquid pressure recovers the atmospheric
pressure in the dark region outside the laser field and recalling
that χ� and χ (3) are assumed to be spatially homogeneous,
the liquid-pressure difference between the two interfaces
solid/liquid parallel to the (y,z) plane at (x = ∓Lx/2,y,z)
reads

���(y,z) = ��(−Lx/2,y,z) − ��(Lx/2,y,z)

= ε0

4

[
χ� + χ (3)

2
I(−Lx/2,y,z)

]

× I(−Lx/2,y,z) − (Lx ←→ −Lx). (14)

Since the obstacle is subject to the direct bulk electromag-
netic force (12) and the indirect liquid-pressure effect (14), the
total force per unit area acting on the obstacle can be written
in terms of the light intensity profile I(±Lx/2,y,z) in the
following way:

Ptot(y,z) =Ps(y,z) + ���(y,z)

= ε0

4

[
χs − χ� − χ (3)

2
I(Lx/2,y,z)

]

× I(Lx/2,y,z) − (Lx ←→ −Lx). (15)

This quantity can straightforwardly be extracted from the
calculations exposed in the previous section.

A. One-dimensional plate geometry

In a one-dimensional thin-plate geometry well in the
stationary state, we can neglect the (y,z) dependence and
further simplify the expression (15) making use of the estimate

I(Lx/2) − I(−Lx/2) � Lx

2

[
dI

dx
(0+) + dI

dx
(0−)

]
, (16)

valid in the thin-plate approximation (Lx � ξ∞). Using the
well-known analytical solutions of Eq. (6) (see the Appendix
for details) and neglecting the (small) nonlinear correction, the
resulting force per unit surface Ptot experienced by the plate
is, in the nonsuperfluid regime,

Ptot = ε0 (β Lx)2 (χs − χ�)2

4 (1 + χ�)
I∞. (17)

On the other hand, in the superfluid regime, I(x) is symmetric
with respect to x = 0 and, consequently, the force is identically
zero,

Ptot = 0. (18)

This behavior of the electromagnetic pressure extends to
the one-dimensional strong-obstacle case the perturbative
predictions of Ref. [29]. It was also fully established in
Ref. [28] for an obstacle of arbitrary amplitude on the basis of
the calculation of the stress tensor of the nonlinear fluid. In the
paraxial-propagation regime considered in this work, it is also
possible to get the results (17) and (18) for the z-independent
electromagnetic pressure experienced by the plate from the
stress tensor of the stationary Gross-Pitaevskii-like wave
equation (6) [55]. However, such a procedure is less direct
than the one based on the physical expression (9)–(11) of the
radiation force density and that is why we considered the latter
to calculate the electromagnetic pressure experienced by the
obstacle.

This physics is summarized in the lowest panels of Fig. 2,
where the radiation pressure (17) and (18) is plotted as a
function of the far-downstream light intensity I∞—at a fixed
value of the asymptotic photon-flow velocity v∞ = k∞/β. In
the low-I∞ regime, the electromagnetic force grows linearly
with the intensity, as expected for a standard linear optical
process. It is interesting to note that our expression for the
force per unit area recovers in the χ� → 0 and χ (3) → 0 limits
the elementary result for the radiation pressure experienced
by a solid dielectric slab immersed in vacuum. In the
intermediate-I∞ window (in white), there is no dynamically
stable stationary solution. As the electromagnetic field does
not tend to a steady state in this region of the flow parameters
and as the force is strongly sensitive to the initial conditions,
we chose not to plot it. For large I∞, one finds instead the
remarkable result that the electromagnetic pressure completely
vanishes: Superfluidity hinders any reflection and the fluid of
light is able to freely tunnel across the plate-shaped obstacle
in a frictionless way, that is, without exerting any mechanical
force on it.

B. Two-dimensional rod geometry

In the two-dimensional configuration, there are not simple
analytical techniques available (except linear-response theory
but this latter is limited by the fact that the susceptibility
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jump |χs − χ�| has to be small) and we have to rely on a
numerical integration of the Gross-Pitaevskii equation (1).
The force per unit z length Ftot that is plotted in Fig. 4(d)
is evaluated by inserting into the expression (15) numerically
calculated intensity profiles like those shown in Figs. 4(a)–4(c)
and then by integrating over y. For the sake of simplicity, we
focus our attention on the behavior of the fluid after long
propagation distances z, i.e., when all transients due to the
entrance in the nonlinear medium have gone away [15]. In
the plot of the force Ftot shown in Fig. 4(d), the flow velocity
v0 = k0/β is kept constant while the input light intensity I0 is
varied.

As expected, in the low-I0 regime, Ftot grows linearly with
the light intensity, while it vanishes in the high-I0 regime:
Despite the idealized rodlike shape of the obstacle, it turns
out that our conclusion is fully general and the dramatic
suppression of the mechanical force appears to be a generic
signature of a frictionless flow of the superfluid of light around
a solid defect. Note that the intensity reduction at the defect
position can be very significant even in a superfluid regime,
which supports the physical interpretation of light superfluidity
in terms of a reduced friction by the container walls.

In between these two limiting intensity regimes, there
is an intermediate window where the fluid does not get
to a stationary state, but shows a complicated z-dependent
evolution with a quasiperiodic nucleation of vortex pairs. The
error bars in Fig. 4(d) indicate the oscillation range of the
(z-dependent) force that we have found in the numerics. As
a consequence of the relatively large obstacle strength and
thickness away from the perturbative regime, nucleation of
vortices appears in our simulations to extend down to low
Mach numbers, i.e., for intensities I0 well above the Landau
critical intensity Icrit [50].

To conclude, it is worth stressing that all these conclusions
are based on a mean-field description of the flowing fluid
of light in terms of a classical Gross-Pitaevskii-like wave
equation which is expected to give accurate predictions in
standard nonlinear media well in the weakly interacting
regime. Corrections to this picture due to quantum fluctuations,
as anticipated in Ref. [30], will be the subject of future work.

V. MECHANICAL DEFORMATION

A direct way to experimentally measure the electro-
magnetic force acting on the obstacle is to look at the
resulting deformation, which, in our configuration, consists
in a bending of the material in the x direction, as sketched
in Fig. 1. The magnitude of the displacement ζ (y,z) may be
straightforwardly calculated using the theory of elasticity. For
the sake of simplicity, we shall restrict attention to the case of
a laterally wide rod in the y direction, so that we can neglect
the effect of the edges and approximate the system as infinite
along the y axis and subject to an electromagnetic pressure
P tot(z) uniformly distributed in this direction; moreover, since
Ly corresponds to the height of the plate, supposing Ly large
makes it possible to neglect the effect of the y-directed weight
and buoyancy forces on the plate deformation. Under this
approximation, a one-dimensional treatment of elasticity is
possible in terms of a y-independent displacement field ζ

which, assuming |ζ | � Lx � Lz, satisfies [56]

D
d4ζ

dz4
(z) = P tot(z), (19)

where D = E L3
x/[12 (1 − σ 2)] is the so-called flexural rigid-

ity, written in terms of the Young’s modulus E and of the
Poisson’s ratio σ of the material. The differential equation (19)
has to be supplemented by the boundary conditions ζ = ∂zζ =
0 at z = 0 and ∂z,zζ = ∂z,z,zζ = 0 at z = Lz [56]. Restricting
our attention to the case of a stationary (i.e., z-independent)
pressure P tot, we obtain the following expression for the
displacement ζ (z):

ζ (z) = L4
z

2 D

(
1

12

z4

L4
z

− 1

3

z3

L3
z

+ 1

2

z2

L2
z

)
P tot. (20)

To assess the experimental feasibility of our proposal,
it is essential to estimate the order of magnitude of the
displacement that can be obtained for realistic parameters.
Within the two-dimensional configuration of Fig. 4, one
notices that the intensity right upstream from the obstacle is
much larger than the downstream one and that it is just a few
times larger than the incident intensity I0. As a consequence,
a semiquantitative estimate of the force is straightforwardly
obtained by replacing I(−Lx/2,y,z) and I(Lx/2,y,z) with
I0 and 0, respectively, in Eq. (15).

In the specific case of a solution of ethanol doped with
iodine as nonlinear optical liquid, an optical intensity in the
1 kW/cm2 range is required to have a nonlinear refractive-
index shift �5.5 × 10−5. Considering the obstacle made
of fused silica, the quite large refractive-index contrast to
the surrounding liquid, χs − χ� � 0.3 [57], makes the total
pressure (15) experienced by the obstacle to be of the order of
1 nN/mm2. Using the mechanical constants of fused silica at
room temperature, this corresponds to a deformation ζ (Lz) of
the order of a fraction of a micron for an obstacle Lx = 1 μm
thick and Lz = 1 mm long. The fact that such a value is
smaller than the obstacle thickness Lx justifies a posteriori
our hypothesis of a z-independent obstacle. On the other hand,
such a value is well within the sensitivity range of state-of-
the-art small-displacement measurements (see, e.g., [58] and
references therein).

The disappearance of the deformation when the superfluid
regime is entered will provide a clear signature of the
frictionless flow of the fluid of light, i.e., from a purely
optical standpoint, of the suppressed reflection on the plate. Of
course, observation of superfluidity in a medium with a lower
nonlinear susceptibility χ (3) would require a larger optical
power, but the mechanical force would be correspondingly
higher. On the other hand, the deformation effect would be
strongly suppressed if a nonlinear medium in the solid instead
of in the liquid state was used: In this case, the mechanical
rigidity of the host matrix would in fact add up to that of the
obstacle.

VI. CONCLUSION

In this paper, we have proposed an experiment that could
demonstrate the occurrence of a frictionless flow of superfluid
light through and/or around a solid dielectric obstacle. For
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an obstacle that is not bound to a solid-state matrix, the
electromagnetic force induced by the laser light results in
the mechanical deformation of the obstacle. The behavior
of this optical analog of the drag force as a function of the
light intensity at a given flow speed (i.e., at a given angle
of incidence) is strongly nonmonotonic: At low intensities,
light is partially scattered by the obstacle and the deformation
grows from zero linearly with the intensity; at high intensities,
the deformation completely disappears, indicating a superfluid
flow of photons through the obstacle (in a one-dimensional
geometry with a plate-shaped obstacle) or around it (in a
two-dimensional configuration with a rod-shaped obstacle).
Using realistic parameters, we have checked that the actual
strength of the deformation falls within the capability of state-
of-the-art small-displacement measurements. An experiment
along these lines would provide a crucial contribution to the
understanding of the hydrodynamic properties of fluids of
light, demonstrating that, in the optical case also, superfluidity
is indeed associated with a drop in the drag force exerted by
the fluid on obstacles stymying its flow.

ACKNOWLEDGMENTS

We are grateful to Giuseppe C. La Rocca for his valuable
input on the radiative forces and acknowledge Daniele Faccio
and Fernando R. Manzano for stimulating discussions on
experimental issues. This work was supported by the ERC
through the QGBE grant and by the Autonomous Province of
Trento, partly through the project “On Silicon Chip Quantum
Optics for Quantum Computing and Secure Communications”
(“SiQuro”).

APPENDIX: ANALYTICAL SOLUTIONS OF EQ. (6)

1. Hydrodynamic formulation

The Madelung representation, which consists in writing
the unknown of the stationary (i.e., z-independent) one-
dimensional Gross-Pitaevskii equation (6) as

E(x) =
√
I(x) eiϕ(x) (A1)

makes it possible to rewrite Eq. (6) in the form of a
system of coupled hydrodynamiclike equations verified by
the laser-beam intensity I(x) = |E(x)|2 and the velocity
potential ϕ(x)/β = ∫ x

v(x ′) dx ′ [where v(x) is the local speed
of the light flow], namely,

d

dx

(
I dϕ

dx

)
= 0 and (A2a)

M2
∞

2
+ 1 = −ξ 2

∞
4

1

I
d2I
dx2

+ ξ 2
∞
8

1

I2

(
dI
dx

)2

+ I
I∞

+ ξ 2
∞
2

(
dϕ

dx

)2

+ V0

g I∞
δ(x), (A2b)

where M∞ = v∞/s∞ = k∞ ξ∞ is the Mach number of the
light flow far downstream (x � ξ∞) from the δ-peak obstacle.
In this region, I(x) � I∞ and ϕ(x) � k∞ x, in such a way
that, according to Eq. (A2a), ∂xϕ(x) = k∞ I∞/I(x), which,

substituted into Eq. (A2b), yields

ξ 2
∞
4

1

I
d2I
dx2

− ξ 2
∞
8

1

I2

(
dI
dx

)2

+ M2
∞

2

(
1 − I2

∞
I2

)
+ 1 − I

I∞

= V0

g I∞
δ(x) = 0 for all x �= 0, (A3)

from which one gets, after integrating over a small-length
interval containing the origin,

dI
dx

(0+) − dI
dx

(0−) = 4 V0

s∞ ξ∞
I(0). (A4)

The problem defined by Eqs. (A3) and (A4) admits different
solutions depending on the value of M∞ ≶ 1 and on the sign
of V0 = −β Lx (χs − χ�)/[2 (1 + χ�)].

2. Solution for M∞ < 1 and V0 < 0

When M∞ < 1 and V0 < 0 (χs > χ�), the intensity profile
of the laser beam is given by

I(x ≷ 0)

I∞
= M2

∞ + (1 − M2
∞) tanh−2

(√
1 − M2∞

x ± x0

ξ∞

)
,

(A5)

where x0 > 0 is determined by means of the matching
condition (A4), which reads here

V0

s∞
= (1 − M2

∞)3/2 coth(
√

1 − M2∞ x0/ξ∞)

M2∞ − cosh2(
√

1 − M2∞ x0/ξ∞)
. (A6)

For any V0/s∞ < 0, there exists a solution x0 (and only one) to
Eq. (A6), which means that, at a given Mach number M∞ < 1,
one can always find an intensity profile [given by Eq. (A5)]
verifying both Eqs. (A3) and (A4), whatever the value of
V0/s∞ < 0 [28,40].

3. Solution for M∞ < 1 and V0 > 0

When M∞ < 1 and V0 > 0 (χs < χ�), one gets

I(x ≷ 0)

I∞
= M2

∞ + (1 − M2
∞) tanh2

(√
1 − M2∞

x ± x0

ξ∞

)
,

(A7)

where x0 > 0 is once more deduced from Eq. (A4), i.e., here,
from

V0

s∞
= (1 − M2

∞)3/2 tanh(
√

1 − M2∞ x0/ξ∞)

M2∞ + sinh2(
√

1 − M2∞ x0/ξ∞)
. (A8)

Equation (A8) admits two distinct solutions x−
0 and x+

0 (with
x−

0 < x+
0 ), and so there exist a priori two possible intensity

patterns (A7), provided that [28,39,40]

V0

s∞
<

2
√

2 (1 − M2
∞)

√√
8 M2∞ + 1 − 2 M2∞ − 1√

8 M2∞ + 1 + 4 M2∞ − 1
. (A9)

According to Ref. [39], the x0 ∈ {x−
0 ,x+

0 } which gives rise to a
stable flow of light is x0 = x+

0 . The inequality (A9) defines, at
a given M∞ < 1, the maximum value that V0/s∞ > 0 can
reach so that (A7) still is a solution of the problem (A3)
and (A4).
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4. Solution for M∞ > 1 and V0 ≶ 0

In the case where M∞ > 1, the radiation condition (see,
e.g., Ref. [59]) imposes the requirement that I(x) identically
equals I∞ in the positive-x region, which implies that
∂xI(0+) = 0 and, according to the matching equation (A4),
that
dI
dx

(0−) = − 4 V0

s∞ ξ∞
I∞ ≷ 0 if V0 ≶ 0 (χs ≷ χ�). (A10)

In the negative-x region, an infinite-range cnoidal wave is
generated, the intensity profile of which can be expressed as
(see, e.g., Ref. [47])

I(x)

I∞
= ν1 + (ν2 − ν1) sn2

(√
ν3 − ν1

x − x0

ξ∞

∣∣∣∣m
)

, (A11)

where sn(·|·) is the Jacobi sine elliptic function, the parameter
x0 > 0 is determined so that I(x) satisfies Eq. (A10), ν1, ν2,
and ν3 (with ν1 < ν2 < ν3) are the real solutions of the third-
order polynomial equation [60]

ν3 − (M2
∞ + 2) ν2 +

(
2 M2

∞ + 4 V 2
0

s2∞
+ 1

)
ν − M2

∞ = 0,

(A12)

and m = (ν2 − ν1)/(ν3 − ν1). The νi’s (i ∈ {1,2,3}) are real,
and so the solution (A11) exists, as long as the discriminant
of Eq. (A12) stays positive, which yields, at a given M∞ > 1,
the following constraint on V0/s∞ [28,33,40]:∣∣∣∣ V0

s∞

∣∣∣∣ <

√
M∞ (M2∞ + 8)3/2 + M4∞ − 20 M2∞ − 8

4
√

2
. (A13)
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PIERRE-ÉLIE LARRÉ AND IACOPO CARUSOTTO PHYSICAL REVIEW A 91, 053809 (2015)

[47] A. M. Kamchatnov, Nonlinear Periodic Waves and Their Mod-
ulations: An Introductory Course (World Scientific, Singapore,
2000).

[48] A. M. Kamchatnov and N. Pavloff, Phys. Rev. A 85, 033603
(2012).

[49] To facilitate the numerical integration of the partial differential
equation (1), the discontinuity of the whole electric suscep-
tibility and of the whole nonlinear coupling constant at the
edges has been smoothed out according to an exponential
law.

[50] T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69, 1644
(1992).

[51] W. Wan, A. Avidan, and J. W. Fleischer, in Frontiers in Optics
(Optical Society of America, Washington, DC, 2008), p. FThD4.

[52] S. M. Barnett and R. Loudon, J. Phys. B: At. Mol. Opt. Phys.
39, S671 (2006).

[53] R. Loudon and S. M. Barnett, Opt. Express 14, 11855 (2006).
[54] Note how this choice of polarization guarantees that the electric

field is continuous at the interfaces solid/liquid parallel to the
(y,z) plane. Even though discontinuities of the optical field at
the interfaces solid/liquid parallel to the (x,z) plane go beyond
the paraxial and slowly-varying-envelope approximations, they
do not contribute to the x component of the electromagnetic
force.

[55] In the z-independent one-dimensional plate geometry, the elec-
tromagnetic pressure experienced by the plate may be expressed
as Ptot = σ (x < 0) − σ (x > 0), where σ (x) denotes the stress
tensor of the flowing fluid of light described by the stationary
equation (6). It may be constructed from the Lagrangian den-
sity L(x) = N {−|∂xE |2/(2 β) − [V0 δ(x) − 	] |E |2 − g |E |4/2}
[where N = β/(2 μ0 ω2), μ0 is the vacuum permeability, and
	 = k2

∞/(2 β) + g I∞], from which (6) can be derived [38],
as σ (x) = −∂L/∂(∂xE) ∂xE − ∂L/∂(∂xE∗) ∂xE∗ + L; see, e.g.,
S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge
University Press, Cambridge, 1995).

[56] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Course
of Theoretical Physics, Vol. 7 (Pergamon Press, Oxford,
1986).

[57] Note that a weaker refractive-index contrast might be useful
to suppress the spurious waves created at the beginning of the
propagation [15].

[58] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.
Phys. 86, 1391 (2014).

[59] H. Lamb, Hydrodynamics (Cambridge University Press,
Cambridge, 1997).

[60] See, e.g., Eq. (86) of Ref. [33], but notice that in this latter
equation, the coefficient of the quadratic term has the wrong
sign.

053809-10

http://dx.doi.org/10.1103/PhysRevA.85.033603
http://dx.doi.org/10.1103/PhysRevA.85.033603
http://dx.doi.org/10.1103/PhysRevA.85.033603
http://dx.doi.org/10.1103/PhysRevA.85.033603
http://dx.doi.org/10.1103/PhysRevLett.69.1644
http://dx.doi.org/10.1103/PhysRevLett.69.1644
http://dx.doi.org/10.1103/PhysRevLett.69.1644
http://dx.doi.org/10.1103/PhysRevLett.69.1644
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1088/0953-4075/39/15/S14
http://dx.doi.org/10.1364/OE.14.011855
http://dx.doi.org/10.1364/OE.14.011855
http://dx.doi.org/10.1364/OE.14.011855
http://dx.doi.org/10.1364/OE.14.011855
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391



