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Integrability versus exact solvability in the quantum Rabi and Dicke models
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The Rabi model describes the simplest interaction between light and matter via a two-level quantum system
interacting with a bosonic field. We demonstrate that the fully quantized version of the Rabi model is integrable in
the Yang-Baxter sense at two parameter values. The model is argued to be not Yang-Baxter integrable in general.
This is in contrast to the claim that the quantum Rabi model is integrable based on a phenomenological criterion
of quantum integrability not presupposing the existence of a set of commuting operators. Similar Yang-Baxter
integrable points are identified for the generalized Rabi model and the fully quantized Dicke model. The integrable
points have particular implications for the level statistics of the Dicke model.
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Integrability is arguably the most powerful concept in the
mathematical description of physical systems. A classical
system is defined to be integrable when the number of
degrees of freedom is smaller than the number of independent
constants of the motion [1]. However, for quantum systems,
the definition of integrability is not so clear [2,3]. Among
the various definitions, the concept of Yang-Baxter integra-
bility [4–6] is particularly powerful and seems most appro-
priate for (1+1)-dimensional quantum systems. Solutions of
the Yang-Baxter relation along with associated monodromy
matrices allow the construction of integrable models and their
conserved charges [7], from which physical information can be
derived exactly. Indeed Yang-Baxter integrable (YBI) models
are synonymous with the term exactly solved models [8].
Nevertheless, not all exactly solved models are necessarily
YBI. Moreover, YBI is arguably not a necessary but sufficient
condition to guarantee integrability.

A general criterion of quantum integrability, inspired by
the classically integrable hydrogen atom and not requiring the
existence of a set of commuting operators, has been proposed
in the context of the quantum Rabi model [9]. The Rabi
model [10] describes a two-level quantum system interacting
with a bosonic field. It models the simplest interaction between
light and matter and is thus a fundamental model in quantum
physics. Applications include the interaction between light and
trapped ions or quantum dots [11] and between microwaves
and superconducting qubits [12]. The Rabi model is applicable
to both cavity [13] and circuit [14] QED.

Despite its simplicity, the fully quantized version of the
Rabi model was solved only recently and claimed to be
integrable [9]. Briefly stated, Braak’s criterion of quantum
integrability, involving f1 discrete and f2 continuous degrees
of freedom, is that integrability is equivalent to the existence
of f = f1 + f2 “quantum numbers” to classify eigenstates
uniquely. For the Rabi model f1 = f2 = 1, giving f = 2
which is the same dimension as the global label (parity) used
to uniquely label the eigenstates. The criterion demands that
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the number of values which the label tied to the discrete degree
of freedom can take equal the dimension of the corresponding
Hilbert space. This condition is satisfied for the Rabi model.

A natural question arises: If the quantum Rabi model is
integrable, is it YBI? Here we show that the quantum Rabi
model is YBI at two distinct parameter values. Significantly,
the Rabi model does not appear to be YBI in general. This
raises a question with regard to the utility of Braak’s criterion of
quantum integrability, which we further discuss here. We also
identify corresponding YBI points in the Dicke model [15],
which is the extension of the Rabi model to N qubits, a
model also of fundamental interest. For N = 2 the Dicke
model constitutes a simple model of the universal quantum
gate [16]. It may also be possible to realize the N = 3 Dicke
model within circuit QED [17]. Most recently an analog-digital
quantum simulation for all parameter regimes of the quantum
Rabi and Dicke models has been proposed using circuit
QED [18]. The Dicke model is also of interest for large N

where it exhibits a phase transition to a super-radiant state for
strong coupling [19–21].

The quantum Rabi model. The Hamiltonian of the fully
quantized version of the Rabi model (with � = 1) is

H = �sz + ω a†a + g sx(a + a†), (1)

where sx and sz are spin- 1
2 matrices for the two-level system

with level splitting �. a† (a) denote creation (destruction)
operators for a single bosonic mode with [a,a†] = 1 and
frequency ω. g is the coupling between the two systems. The
quantum Rabi model has Z2 symmetry (parity).

Using the representation of the bosonic operators in the
Bargmann space of analytic functions, the regular eigenvalues
of the quantum Rabi model were shown to be given in terms
of the zeros of a function G±(x) [9,22]. Simple poles of
G±(x) at x = 0,ω,2ω, . . . correspond to the eigenvalues of
the uncoupled bosonic modes. We will call models with
solutions of this type Braak solvable. The conditions proposed
by Braak are a type of sufficiency condition for determining
the regular solutions. They also include the exceptional
eigenvalues, which are the well known Juddian isolated exact
solutions [23]. Symmetric, antisymmetric, and asymmetric
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solutions for the eigenstates are given in terms of confluent
Heun functions [24,25], which involve an infinite number
of terms. The isolated exact solutions appear naturally as
truncations of the confluent Heun functions.

The rotating wave approximation was used to treat the fully
quantized version of the Rabi model (1) in the form

HJC = �sz + ω a†a + g (s+a + s−a†), (2)

with s± = sx ± isy . This is the Jaynes-Cummings (JC)
model [26]. The conditions of near resonance � ≈ ω and
weak coupling g � ω for the rotating wave approximation
apply in many experimental settings. The JC model is
YBI [27]. The excitation number operator M = a†a + sz and
the Casimir operator s2 = s+s− + sz(sz − 1) commute with
Hamiltonian (2), i.e., [HJC,M] = [HJC,s2] = 0.

Dicke model. We consider the Rabi model in the context
of the more general Dicke model [15], for which the radiation
mode couples to N two-level qubits. We write the Hamiltonian
in the form (� = 1)

HD = 2�Sz + ω a†a + g (S+ + S−)(a + a†), (3)

where now

Sz =
N∑

j=1

sz
j , Sx =

N∑
j=1

sx
j , S± =

N∑
j=1

s±
j . (4)

Apart from a harmless redefinition of the system parameters,
the Rabi Hamiltonian (1) follows for N = 1. The quantum
Rabi model with two qubits [28,29] and the N = 3 Dicke
model [30] have also been shown to be Braak solvable.
According to Braak’s integrability criterion, the Dicke model
is nonintegrable for all N � 2 [30].

Applying the rotating wave approximation to the Dicke
model leads to the Tavis-Cummings model [31], with Hamil-
tonian

HTC = �Sz + ω a†a + g (S+a + S−a†). (5)

For this model the operators M = a†a + Sz and S2 = S+S− +
Sz(Sz − 1) commute with HTC. The Tavis-Cummings model
reduces to the JC model for N = 1. It is YBI for general N

and can be solved by the algebraic Bethe ansatz [27].
We find that the Dicke model (3) is YBI for the two cases

(i) � = 0 and (ii) ω = 0. In both cases, there is an extra
conserved quantity C, i.e., [HR,C] = 0. For � = 0, C = S+ +
S−, while for ω = 0, C = a† + a. To establish Yang-Baxter
integrability, the key idea we introduce is an operator-valued
twist, which in this setting yields a “trivial” twist solution to
the Yang-Baxter relation. These solutions establish the YBI of
the model.

First consider the case � = 0. We construct the transfer
matrix operator τ (u) = tr T (u), where the monodromy matrix
T (u) = WSLa(u) is a combination of the spin operator-valued
“twist”

WS =
[

1 S+ + S−

S+ + S− −1

]
, (6)

and the bosonic L operator [32]

La(u) =
[

1 + ηu + η2Na ηa

ηa† 1

]
, (7)

where η is a free parameter and Na = a†a. The elements
of T (u) can then be shown to satisfy the intertwining
relation [27,32]

R12(u − v)T1(u)T2(v) = T2(v)T1(u)R12(u − v), (8)

with the (standard) R matrix

R12(u) =

⎡⎢⎣u + η 0 0 0
0 u η 0
0 η u 0
0 0 0 u + η

⎤⎥⎦, (9)

satisfying the Yang-Baxter relation

R12(u − v)R13(u)R23(v) = R23(v)R13(u)R12(u − v), (10)

which is the so-called masterkey to integrability [33]. It follows
that

τ (u) = η[u + ηNa + (S+ + S−)(a† + a)]

= η[u + g−1HD], (11)

where we have identified η = ω/g.
For the case ω = 0 the monodromy matrix is of the form

T (u) = WaLS(u) with the bosonic operator-valued twist

Wa =
[

1 + λ a + a+

a + a+ 1 − λ

]
, (12)

where λ = �/g and the spin L operator is [27,32]

LS(u) =
[
u + ηSz ηS−

ηS+ u − ηSz

]
, (13)

where η is a free parameter. T (u) defined in this way can
also be shown to satisfy the intertwining relation (8) with the
R-matrix (9). In this case an alternative factorized form of the
monodromy matrix is

T (u) = Wa

N∏
j=1

Ls
j (u), (14)

where the spin operator Ls
j (u) is defined in an obvious way

from the single spin term for each site j . In this case the
operator τ (u) = tr T (u) is a polynomial of degree N , with

τ (u) = 2uN + ηg−1uN−1HD + · · · . (15)

For the two YBI cases � = 0 and ω = 0 we have
thus obtained the commuting operators [τ (u),τ (v)] = 0. The
bosonic and spin operators La(u) and LS(u) appearing in the
monodromy matrices are standard forms, the new ingredients
in each case are the corresponding operator-valued twists WS

and Wa . The parameter value ω = 0 of the Dicke model (3) has
been identified as YBI using another approach. In particular,
a Bethe ansatz solution has been obtained from the elliptic
Gaudin model through a limiting procedure [34].

It is well known that the Rabi and Dicke models can be
solved by elementary means at the value � = 0, the degenerate
atomic limit. At this point the model can be solved, e.g.,
by using a coherent-state representation [35] or a polaron
transformation [36]. The value ω = 0 is also trivial since
a + a† is proportional to a position operator. Here we have
identified these values [37] as YBI points.
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We have been unable to find any solution which interpolates
between these two YBI cases. Indeed, we believe there is
no such solution, an argument for which can be made as
follows. For the Rabi model, recall that the essential extra
conserved quantity is C = sx for � = 0 and C = a† + a

for ω = 0. Consider a parametrization interpolating between
the integrable points such that � = r sin θ and ω = r cos θ

for some r . The desired more general quantity C must
satisfy [HR,C] = 0 and reduce to (i) C = sx for θ = 0 and
(ii) C = a† + a for θ = π

2 . First consider the limit θ → 0, it
suffices to write HR = H0 + r sin θ sz, where H0 is defined
in an obvious way and C = sx + f (θ )A for some arbitrary
function f (θ ) and operator A, with f (0) = 0. We know that
[H0,s

x] = 0 but the only operator A that can ensure [HR,C] =
0 is A = 0. Similarly consider HR = H̃0 + r cos θ a†a with
C = a† + a + g(θ )B for some arbitrary function g(θ ) and
operator B, with g(π

2 ) = 0. Again we are led to conclude
that the operator B = 0. Any other situation or combination
of operators would be highly unusual.

It should also be noted that attempts have been made to
include extra terms beyond the rotating wave approximation
in the JC model in order to preserve Yang-Baxter integrabil-
ity [38]. These attempts, although yielding interesting results,
were also unable to realize the quantum Rabi model.

Generalized Rabi model. Our approach using operator-
valued twists may be applied to other models. Consider the
generalized Rabi model

Hε = 2�sz + ω a†a + g (s+ + s−)(a + a†) + ε sx, (16)

where the additional term ε sx allows tunneling between
the two atomic states. It breaks the parity symmetry. This
model is relevant to the description of hybrid mechanical
systems [39,40] and is referred to as the driven Rabi model [3].
It is also Braak solvable [9], with eigenstates given in terms of
Heun functions [40].

The generalized Rabi model (16) is considered to be
nonintegrable [9]. The argument is that Hε has no discrete
symmetry and there is only one quantum number (energy)
corresponding to the sole conserved quantity. Since the number
of degrees of freedom exceeds one the model does not satisfy
Braak’s criterion of quantum integrability. It is thus claimed
to be the first example of a nonintegrable but exactly solvable
system [9]. However, one can also construct YBI points for
this model at the parameter values � = 0 and ω = 0. To do
this we need only extend the operator-valued twist matrices.

For the case � = 0, we define the monodromy matrix
T (u) = WsLa(u), where now

Ws =
[

1 2sx

2sx −1 + b sx

]
, (17)

with La(u) as defined in Eq. (7). Here we have the commuting
operator τ (u) = η[u + g−1Hε], with η = ω/g and b = εη/g.
Similarly for ω = 0, we take T (u) = WaLs(u), with

Wa =
[

1 + λ a + a+ + c

a + a+ + c 1 − λ

]
, (18)

and Ls(u) as defined in Eq. (13) with N = 1. Here τ (u) =
2u + ηg−1Hε , with λ = �/g and 2c = ε/g.

Discussion. To conclude, we have found two distinct param-
eter values, � = 0 and ω = 0, both at which the quantum Rabi
model (1) is YBI. The associated monodromy matrices and the
R-matrix (9) ensure YBI. The model does not appear to be YBI
in general. We have also demonstrated that at each of the pa-
rameter values � = 0 and ω = 0 the Dicke (3) and generalized
Rabi (16) models are YBI. This result may also be extended
to the Dicke version [35] of the generalized Rabi model (16).
The underlying R-matrix (9) is seen to be a common feature
of integrability for these and related [27,32] models.

The existence of YBI points has various implications for
these models. The result (15) following from the monodromy
matrix (14) for the value ω = 0 leads to the construction of
a series of higher order conserved quantities with increasing
N . The presence of these conserved quantities implies
level crossing, therefore the energy level statistics at the
Dicke model integrable point should follow Poissonian level
statistics as anticipated by the Berry-Tabor criterion [41].
Away from an integrable point the energy level statistics
should follow a Wigner-Dyson distribution. The quantum
Rabi model appears to obey neither Poisson or Wigner-Dyson
level statistics [3,42]. The situation for the Dicke model
integrable point ω = 0 appears analogous to the spin- 1

2
Heisenberg XXZ chain, for which the expected Poissonian
level statistics is not readily apparent for small chains. We
stress that for the Heisenberg chain the existence of a classical
limit is not necessary to ensure Poissonian level statistics. We
thus expect that Poisson level statistics should become more
apparent at or in the vicinity of the Dicke model integrable
point with increasing N . Level statistics have also been

FIG. 1. (Color online) Depiction of the relationship between
Yang-Baxter integrable (YBI) and Braak solvable (BS) models in
the context of the Rabi model. Each method of solvability fits within
the general framework of exactly solved (ES) models. Also indicated
are the Judd points (JP) which can be obtained from Braak’s solution
or via a variety of algebraic methods. According to our picture, the
Rabi model, although Braak solvable, does not in general fit within
the concept of Yang-Baxter integrability. The YBI and BS circles
have the degenerate atomic limit � = 0 in common, indicated by a
point in the figure. Also indicated is the other YBI point at ω = 0.
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investigated extensively for the Dicke model [20,43,44].
Interestingly, for large N the observed level statistics appears
to be Poissonian below the super-radiant phase transition
and Wigner-Dyson above the transition. The identification of
YBI points in these models should also be of relevance to the
connection between integrability and thermalization [3].

Our results bring into question the usefulness and validity
of Braak’s phenomenological criterion of quantum integra-
bility [9]. The Rabi model only appears to be YBI at two
points. If the Rabi model is not YBI in general then clearly
Braak’s integrability criterion does not fit with Yang-Baxter
integrability. We have also shown that the Dicke model and the
generalized Rabi model have YBI points, yet they are noninte-
grable models according to Braak’s integrability criterion. The
interplay between the notions of exact solvability, Yang-Baxter
integrability and Braak solvability is summarized in Fig. 1 in
the context of the Rabi model. Also indicated are the exact
isolated Judd points. Contrary to what might be expected, the
Judd points are not YBI points. This is because Yang-Baxter
integrability deals directly with the Hamiltonian of the entire
system, not with the two-dimensional subspace associated with
the Judd points. For given parameter values the system parame-
ters satisfy constraint conditions at the Judd points. These con-
straints are not shared by the regular part of the eigenspectrum,
which renders the corresponding Hamiltonian nonintegrable.

As already noted, the Rabi and generalized Rabi models
have been solved analytically [9,22,24,25,40,45]. For the
Rabi model, the part of the eigenspectrum corresponding
to the Juddian isolated exact solutions can also be derived
algebraically [46] using ideas [47] based on the notion of
quasiexact solvability [48]. The Rabi model has been called
a quasiexactly solved model [49,50]. Yet for all intents and
purposes, the Rabi model is an exactly solved model, albeit
not of the YBI kind. Although the term exactly solved model
is often synonymous with Yang-Baxter integrability, this is
not always the case, as indicated in Fig. 1. For YBI models,
the complete eigenspectrum can be described algebraically
in terms of finite polynomials, which is a feature, e.g., of
finite-sized systems solved in terms of the Bethe ansatz and
related T − Q relations [51]. The solutions of the Jaynes-
Cummings and the more general Tavis-Cummings models are
of this form [27]. That the analytic solution of the Rabi model
is not in general of this particular form lends further weight to
the Rabi model not being YBI in general.
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