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Dynamics of semiconductor lasers with two-dimensional distributed feedback
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We develop a nonlinear model of a laser exploiting two-dimensional (2D) distributed feedback (2D DFL). This
feedback mechanism can be realized in a 2D Bragg resonator formed by a dielectric structure with the thickness
having double-periodical sinusoidal or chessboard modulation. A 2D Bragg resonator is shown to possess high
selectivity over both the longitudinal and the transverse coordinates and to have fundamental modes in the center
of the forbidden band gap. Within the semiclassical approach, we study the nonlinear dynamics of 2D DFL and
demonstrate spatial synchronization of radiation from an extended active medium. Specific features of 2D DFL op-
eration with active medium amplifying modes of TM and TE (quantum-well lasers) polarization are also discussed.
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I. INTRODUCTION

Two-dimensional (2D) distributed feedback can be consid-
ered an effective method for generation of spatially coherent
radiation from a broad class of sources based both on principles
of classical [1–3] and quantum electronics [4–10]. In the
case of a spatially extended active medium, a 2D feedback
mechanism gives rise to transverse energy fluxes which
synchronize radiation from different parts of this medium.
For realization of 2D feedback, one can use 2D Bragg
resonators. In the microwave frequency band such resonator
can be a planar metallic waveguide with shallow double-
periodic corrugation of side walls. In optics, similar structures
can correspond to a dielectric film with a thickness having
double-periodic modulation (Fig. 1). Substantial progress has
been achieved recently in the experimental realization of the
planar and coaxial free electron masers (FEMs) exploiting
2D feedback driven by large-size sheet and tubular electron
beams [11–14]. In these experiments, narrow-band generation
at frequencies close to those of the fundamental modes of 2D
Bragg resonators was observed for the oversize factor (ratio of
beam width to the wavelength) of about 20–30.

In this paper, we study the possibility of implementing
2D feedback in semiconductor lasers. These lasers combine
high energy efficiencies with compact dimensions and can
reach up to the 1 W output power level in continuous-wave
regimes. Typically, an active region of a semiconductor laser
is an epitaxially grown multilayer planar-shaped structure
which is sufficiently large in two dimensions to provide
high gain, while the third dimension is generally used for
electric contacts and heat dissipation. Those structures often
include Bragg grating layers [15–17] used for improvement
of frequency stability. However, traditional one-dimensional
(single-periodic) gratings are unable to solve the laser beam
quality problem completely because they are unable to
synchronize radiation in the case of large transverse size
of the active medium. As a result, radiation quality suffers
from multimode operation. In many practical realizations, the
direction patterns are wide and irregular, laser beams have
shorter coherence distances, and focusing spots significantly

*baryshev@appl.sci-nnov.ru

exceed diffraction limits [18,19]. Various complex gratings
for improving beam quality were proposed, including circular,
curved, and angled Bragg structures [20–25].

As an alternative method, we consider in the present paper
a possibility of spatial synchronization of laser radiation
by implementing 2D distributed feedback. In semiconductor
lasers, 2D feedback can be realized by 2D Bragg resonators,
i.e., dielectric films with double-periodic modulation of thick-
ness providing coupling between modes of planar dielectric
waveguides. Most types of active media amplify waves
regardless of their polarization. Nevertheless, in the case of
commonly used heterostructures where the active layer is a 2D
quantum well, gain of TM modes is typically weak [26,27].
In this case, predominant amplification of TE modes takes
place. However, coupling of TE waves of a planar dielectric
waveguide is not possible in a 2D Bragg resonator (see Sec. II).
Thus, to arrange 2D distributed feedback in quantum-well
lasers one should employ coupling of TE and TM modes.
In this case, two partial wave beams of the TE type can be
amplified by the active medium while two other partial wave
beams of the TM type propagate in the transverse direction and
synchronize radiation of the whole active medium via coupling
with TE modes.

The paper is organized as follows. In Sec. II, based on the
coupled-wave method, we describe selective properties of a
2D Bragg resonator formed by double-corrugated dielectric
film. Our consideration includes coupling of both TM and TE
modes. In Sec. III, in the frame of the semiclassical approach,
we study nonlinear dynamics of a laser with 2D distributed
feedback (2D DFL). Specific features of laser operation with
all four partial waves amplified by active media and with only
two of them experiencing amplification while two others are
responsible for spatial synchronization (quantum-well lasers)
are studied. The scalability features of the 2D DFL are
discussed to demonstrate a possibility of increasing the output
power with increasing dimensions of active medium while
keeping the synchronization regime intact.

II. EIGENMODES OF A DIELECTRIC 2D BRAGG
RESONATOR

A 2D Bragg resonator formed by a planar dielectric
structure with a thickness having double-periodic modulation
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FIG. 1. (a) Scheme of a 2D DFL. (b) A close-up of the chessboard
grating. (c) Diagram illustrating the coupling of the partial modes on
the 2D Bragg grating. Here �k±

x = ±h�x0, �k±
z = ±h�z0, �K± = h̄�x0 ±

h̄�z0; �x0 and �z0 are the unit vectors directed in the x and z directions,
correspondingly.

is shown in Figs. 1(a) and 1(b). In the idealized case the
modulation can be sinusoidal:

b(x,z) = b0 + b1[cos(h̄xx + h̄zz) + cos(h̄xx − h̄zz)], (1)

where b0 is the mean thickness of a dielectric layer, b1 is
the modulation amplitude, h̄x,z = 2π/dx,z, and dx and dz are
the periods over the x and z coordinates, correspondingly.
For simplicity, we consider the structure characterized by a
dielectric permittivity ε located in an optically transparent
background medium with dielectric permittivity equal to 1,
though the consideration can be readily generalized on more
complicated situations. This structure provides coupling and
mutual scattering of the four partial wave beams [see Fig. 1(c)]
given by vector potential

�A = Re
[(�a1(y)C+

z e−ihzz + �a∗
1 (y)C−

z eihzz + �a2(y)N0C
+
x e−ihxx

+ �a∗
2 (y)N0C

−
x eihxx

)
eiωt

]
, (2)

where �a1,2(y) denote the transverse profiles of the modes of
planar dielectric waveguide propagating correspondingly in
±z and ±x directions; C±

x,z(x,z,t) are the slowly varying com-
plex amplitudes of the partial waves. We put |�a1,2(y = 0)| = 1;
N0 = (

∫ ∞
−∞ ε(y)|�a2(y)|2dy/

∫ ∞
−∞ ε(y)|�a1(y)|2dy)1/2 is a nor-

malizing coefficient. Effective coupling takes place when
Bragg resonance conditions,

hx ≈ h̄x, hz ≈ h̄z, (3)

are satisfied. In terms of the photonic band-gap structures’
symmetry points, we operate in the vicinity of the M point
[28] in the reciprocal space of two-dimensional lattice, where
four partial wave beams are coupled.

Note that for practical applications, similarly to the case
of 2D Bragg resonators formed by planar metallic waveguide
with shallow corrugation of side walls [11–14], it is sufficient
to substitute the sine modulation (1) by a chessboard function
[see Fig 1(a)]:

b (x,z) = b0 + b1f (x)f (z),

f (ξ ) =
{

1, 2qπ/h̄ξ < ξ < (2q + 1)π/h̄ξ

−1, (2q − 1)π/h̄ξ < ξ < 2qπ/h̄ξ , q = 1,2 . . .
.

(4)

For small modulation depth b1, we use an approach
described in Ref. [29]. We introduce modes of the regular
dielectric waveguide (at b1 = 0) and then derive coupling
equations where the coupling coefficients α12 between two
modes arising due to nonzero perturbation �ε(x,y,z) are
proportional to

α12 ∼
∫

�ε �E1 �E2dxdydz, (5)

where �E1 and �E2 are electric fields of those modes.
Eigenwaves of regular planar dielectric waveguides possess

either TE or TM polarization. In the case of a one-dimensional
(1D) Bragg structure, the coupling between waves of both
polarizations takes place. That is not the case for 2D Bragg
structures studied here, where the Bragg condition is satisfied
for the mutual scattering between partial waves Cx and Cz

propagating in mutually orthogonal directions.
We assume that the thickness of the dielectric layer

b0 is limited by the condition of kb0
√

(ε − 1) < π under
which, in the frequency range specified by the active medium
amplification band, there is only one propagating TM wave
and one propagating TE wave.

Nonzero vector potential components of TM-polarized
partial waves can be presented in the form [29]

aTM
1y (y) = aTM

2y (y) = cos gTMy,
(6)

aTM
1z (y) = aTM

2x (y) = −igTM

h
sin gTMy,

at |y| < ly/2,

aTM
1y (y) = aTM

2y (y) = gTM

pTM
sin

(
gTMb0

2

)
e−pTE|y|,

(7)

aTM
1z (y) = aTM

2z (y) = −igTM

h
sin

(
gTMb0

2

)
e−pTE|y|,

at |y| > ly/2. Here k = ω/c, gTM = √
εk2 − h2, and pTM =√

h2 − k2 are the transverse wave numbers inside and outside
the dielectric which for a given ε, k, and b0 can be found from
the characteristic equation for the symmetric TM waves of a
dielectric waveguide:

pTM =
√

(ε − 1)k2 − g2
TM = gTM

ε
tan

(
gTMb0

2

)
. (8)

TE-polarized fields are given by vector potential

aTE
1x (y) = aTE

2z (y) = i cos gTEy, (9)
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at |y| < ly/2,

aTE
1x (y) = aTE

2z (y) = −igTE

h
sin

(
gTEb0

2

)
e−pTE|y|, (10)

at |y| > ly/2. Transverse wave numbers gTE =
√
εk2 − h2 and

pTE = √
h2 − k2 can be found from the characteristic equation√

(ε − 1)k2 − g2
TE = gTE tan

(
gTEb0

2

)
. (11)

Comparing (6) and (7), and (9) and (10), one can see that
�aTE

1 �aTE
2 = 0, while �aTM

1 �aTM
2 = �aTM

1y �aTM
2y �= 0 and �aTE

1 �aTM
2 =

�aTE
1x �aTM

2x �= 0. The same applies to the electric fields of those
waves. According to (5), this means that coupling of TE-
polarized waves does not take place. The most effective
coupling exists between TM modes, while in the considered
case of single-mode waveguide when gTM 	 h the coupling
coefficient of TE-TM modes is much smaller by a factor
of gTM

h
.

Equations for coupling between four TM waves as well as
for coupling between two TE and two TM waves are presented
below. We show that in both of these cases, interaction can
be described by a set of equations taking similar form; the
difference between the two cases amounts to a difference in
the coefficients and normalizations.

A. Coupling of four TM-polarized waves

In this case, all partial waves at the same frequency have the
same wave number over the y axis, hx = hz = h, leading to
h̄x = h̄z = h̄. Thus, in this case periods of dielectric layer
modulation in the x and z directions must be the same
to provide coupling between those modes. Mutual coupling
and scattering of four partial wave beams C+

z �aTM
1 ,C+

x �aTM
2 ,

C−
z �aTM∗

1 ,C−
x �aTM∗

2 given by (2), (6), and (7) on a 2D Bragg
structure under the geometrical optics approximation can be
described by the system of equations [10]:

∂C±
z

∂z
∓ iδC±

z ± iα(C+
x + C−

x ) = 0,

(12)
∂C±

x

∂x
∓ iδC±

x ± iα(C+
z + C−

z ) = 0.

Here δ = h(ω) − h̄ is the deviation from the frequency of the
exact Bragg resonance and α is the coupling coefficient, which
by implementing a method developed in [10], can be presented
in the form

α = νb1h

4

(ε − h2/k2)(1 + 1/ε2)

(h2/ε2k2 + h2/k2 − 1)b0 + 2(h2 − k2)−1/2 ,

(13)

where ν = 1 for the case of a sinusoidal (1) and ν = 16/π2

for the case of a chessboard (4) modulation patterns.
Obviously, the coupled-wave theory presented in this paper

is valid for weak coupling, α 	 h. We should emphasize
that by choosing corrugation patterns given by (1) or (4), we
deliberately excluded direct coupling of counterpropagating
partial waves C±

x → C∓
x , C±

z → C∓
z . Note also that Eq. (12)

is written in the geometric optics approximation valid at large

Fresnel parameters,

l2
x

/
λlz � 1, l2

z

/
λlx � 1, (14)

when diffraction effects for every wave beam can be neglected.

B. Coupling of two TE- and two TM-polarized waves

Wave numbers of TE and TM waves are different for a given
thickness b0 of the dielectric waveguide at the same frequency.
Accordingly, grid constants h̄x and h̄z have to be different to
enable the mutual scattering of the waves [Fig. 1(c)]. However,
the system of equations describing the coupling between the
four waves C+

z �aTE
1 ,C+

x �aTM
2 ,C−

z �aTE∗
1 ,C−

x �aTM∗
2 given by (2),

(6), and (7), and (9) and (10), can still be reduced to the
form (12), where δ = (ω − ω̄)/vg is the Bragg resonance
detuning, coordinates x̃ = xr−1, z̃ = zr , and amplitudes C̃±

x =
C±

x r−1/2, C̃±
z = C±

z r1/2 should be used instead of x, z, and
C±

x,z. Here we introduce the notation

r = √
vgx/vgz, vg = √

vgxvgz, (15)

where vgx and vgz are the group velocities of the lowest TM and
TE waves of the regular dielectric waveguide. The coupling
coefficient can be presented in the form [10]

α = νb1√
bTEbTM

√
ε − 1(ε2 + 1)

8
√

ε

(
gTEpTE√

h3
z

)

×
⎛
⎝ pTM√

hx

(
g2

TM + ε2p2
TM

)
⎞
⎠ , (16)

where

bTE = b0 + 2√
h2

z − k̄2
,

(17)
bTM = b0 + 2√

h2
x − k̄2

(
h2

x/εk̄
2 + h2

x/k̄
2 − 1

) ,

are the effective waveguide thicknesses for TE and TM modes.
It should be noted that for the same modulation amplitude the
coupling coefficient given by (16) is much smaller than the
one given by (13) for the case of TM modes coupling.

C. Normal waves of an unbounded 2D Bragg structure

Presenting a solution of Eq. (12) in the form ∼ ei(�xx+�zz),
one obtains the dispersion equation for the normal waves of an
unbounded 2D Bragg structure near the Bragg resonance (3),(

δ2 − �2
x

)(
δ2 − �2

z

) − 4α2δ2 = 0. (18)

At δ > 0, the dispersion characteristics δ(�x,�z) plotted
in Fig. 2 are represented by two sheets (at δ < 0, the solution
is mirror symmetric to that shown in the figure). Sheet “1”
intersects the vertical axis at the point δ/α = 2 (its mirror
counterpart intersects this axis at δ/α = −2). These points
correspond to the extrema of the function δ(�x,�z) at which
the minima of the group velocities of normal waves are
achieved. Two sets of the high-Q eigenmodes of the 2D
Bragg resonator are located near these points as shown below.
These modes are similar to those of a conventional 1D Bragg
resonator. A specific feature of a 2D Bragg structure consists in

053806-3



GINZBURG, BARYSHEV, SERGEEV, AND MALKIN PHYSICAL REVIEW A 91, 053806 (2015)

FIG. 2. Dispersion characteristics of the normal waves of 2D
Bragg structures at δ > 0.

the presence of the sheet “2” which intersects the vertical axis
at the point δ = 0. Not only the normal wave group velocity, but
also its derivatives tend to zero in the vicinity of �x = �z = 0
for this sheet leading to formation of a third set of high-Q
modes there.

D. Eigenmodes of a 2D Bragg resonator (analytical approach)

Next, we find the eigenmode spectrum of 2D Bragg
structure in the proximity of the Bragg resonance (3) for a
corrugation area on the dielectric film with finite sizes of
lx , lz along corresponding axis. To find those eigenmodes,
one should apply the boundary conditions at the edges of the
modulation area. In assumption that the external energy fluxes
are absent, these conditions acquire the form

C+
z |z=0 = 0, C−

z |z=lz = 0, C+
x |x=0 = 0, C−

x |x=lx = 0.

(19)

To solve the boundary problem defined by Eqs. (12)
and (19), we introduce functions Fz = (C+

z + C−
z ) and Fx =

(C+
x + C−

x ) and rewrite Eqn. (12) in the form

∂2Fz

∂z2
+ δ2Fz = −2αδFx,

(20)
∂2Fx

∂x2
+ δ2Fx = −2αδFz,

with boundary conditions (19) taking the following form:(
∂Fz

∂z
∓ iδFz

)∣∣∣∣
z=lz/2±lz/2

= 0,

(21)(
∂Fx

∂x
∓ iδFx

)∣∣∣∣
x=lx/2±lx/2

= 0.

First, we find eigenfunctions fξ (ξ ) of the operator

Tξ = d2

dξ 2
, (22)

with boundary conditions .( ∂fξ

∂ξ
∓ iδfξ )|z=lξ /2±lξ /2 = 0 corre-

sponding to an eigenvalue �2
ξ , Tξfξ (ξ ) = �2

ξ fξ (ξ ), in the form

fξ (ξ ) = (δ + �ξ ) exp[i�ξ (ξ + lξ /2)]

− (δ − �ξ ) exp[−i�ξ (ξ − lξ /2)]. (23)

The eigenvalue satisfies the characteristic equation:

exp(2i�ξ lξ ) = (δ − �ξ )2

(δ + �ξ )2 . (24)

Then, using expression (23), we find the solutions of
Eq. (20) after the variables separation, i.e., seeking Fx,z as

Fz (x,z) ∼ Fx (x,z) ∼ fx (x) fz (z) . (25)

Substituting (25) into (20), we obtain from the condition of
a nontrivial solution [compare to (18)]:(

δ2 − �2
x

) (
δ2 − �2

z

) = 4α2δ2. (26)

Eigenvalues �2
x and �2

z of the Tx and Tz operators, corre-
spondingly, can be found from the characteristic equations:

exp (2i�zlz) = (δ − �z)2

(δ + �z)2 ,

(27)

exp (2i�xlx) = (δ − �x)2

(δ + �x)2 .

Joint solution δ(α,lx,lz), �x(α,lx,lz), �z(α,lx,lz) of the
algebraic equations (26) and (27) determines the discrete
spectrum of complex resonator eigenfrequencies δ and the
structure of eigenmodes.

To find the spatial structures of partial waves for a given
eigenmode, we substitute (25) and (23) into (12). Integrating
it with boundary conditions (19), we obtain

C±
z = 2iα(δ ± �z) exp(±i�zlz/2) sin [�z(z ± lz/2)]fx(x),

C±
x = 2iα(δ ± �x) exp(±i�xlx/2) sin [�x(x ± lx/2)]fz(z).

(28)

Under conditions of strong coupling of waves αlx,z � 1,
solutions of (26) and (27) which determine the eigenvalues
(eigenfrequencies) of the boundary problem (12) and (19) can
be given in the explicit form [9]:

δn,m = ± π2mn

2α lzlx
+ i

π2

2α2 lzlx

(
n2

lz
+ m2

lx

)
, (29a)

δn,m = ±
[

2α + π2

4α

(
n2

l2
z

+ m2

l2
x

)]
+ i

π2

2α2

(
n2

l3
z

+ m2

l3
x

)
,

(29b)

where n = 0,1,2 . . . and m = 0,1,2 . . . are the subscripts of
modes along the longitudinal and transverse coordinates.

Frequencies and Q factors of eigenmodes are determined,
respectively, by the real and imaginary parts of the eigenvalue
δn,m:

ωn,m = ch̄ + cReδn,m, (30a)

Qn,m = h̄
/

2Imδn,m. (30b)
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FIG. 3. Eigenmode spectrum of 2D Bragg resonators.

According to (29), 2D Bragg resonators possess high
selectivity with respect to both the longitudinal (n) and the
transverse (m) mode subscripts. Resonator eigenmodes (Fig. 3)
are located in the vicinity of the precise Bragg frequency,

ω ≈ ch̄, (31a)

as well as in the vicinity of edges of the Bragg reflection zone
(Bragg stop zone),

ω ≈ ch̄ ± 2α. (31b)

Eigenmodes given by (31b) are similar to those of 1D
Bragg resonators and are associated with the sheet 1 of
the normal waves’ dispersion characteristics (in Fig. 2). A
specific feature of 2D Bragg resonators is the existence of
high-Q eigenmodes (31a) in the middle of the Bragg reflection
zone without any corrugation defects. Those eigenmodes
are associated with the sheet “2” of the normal waves
dispersion characteristics. Maximum-Q eigenmodes are those
with subscripts {n = 0, m = 1} and {n = 1, m = 0} (Fig. 3).
These eigenmodes are degenerate with respect to the frequency
which coincides with the Bragg frequency in the considered
geometric optics approximation. In the case of lx = lz, those
modes are also degenerate with respect to the Q factor. To
remove this degeneracy, a rectangular-shaped structure can
be used instead of a square-shaped one. The mode with the
subscripts {n = 1, m = 0} has the highest Q factor at lz > lx ,

Q1,0 = h̄k2α2lz
2lx

π2
. (32)

Field structures of partial waves of the fundamental eigen-
mode for lz = 2lx are presented in Fig. 4.

FIG. 4. Spatial distributions of the partial waves forming the
fundamental eigenmode at αlz = 2, lz = 2lx .

FIG. 5. Dependence of fundamental mode decrement on the
resonator dimensions at lz = 2lx ; dashed line shows analytical
dependence in the approximation of αlz � 1.

To define more exactly the value of the fundamental mode
Q factor at relatively small values of αlx,z we solved Eqs. (26)
and (27) numerically using the particle swarm optimization
(PSO) method [30]. Results presented in Fig. 5 demonstrate
that relation (28) yields good approximation for the Q factor
at αlz > 2, lz = 2lx .

Relations (2), (6)–(8), (13), (23), (28), and (29) give a fully
analytical description of the highest quality TM-TM eigen-
modes of dielectric films with corrugation that are oversized
in lateral dimensions (1); relations (2), (9)–(11), (16), (23),
(28) and (29) describe TE-TM eigenmodes in those structures.

It is important to emphasize that within the framework of
assumptions being used (geometrical optics), ratios of the
Q-factors of different eigenmodes are independent of the
dimensions lz, lx of the Bragg structure. It means that the
system sustains its selectivity at increasing those dimensions
if we ignore such factors as Ohmic losses. One should also
note that the existence of modes in the middle of the Bragg
resonance band in the absence of periodicity defects is a
specific feature of the 2D Bragg structures, which distinguishes
them both from 1D (single-periodic) prototypes [15–17] and
2D photonic crystals [31,32], where periodicity defects are
typically required to produce modes.

III. NONLINEAR DYNAMICS

Next, we consider a thin layer of active medium located in
the middle of the waveguide (y = 0) with the thickness being
small in the scale of inhomogeneity of the lowest waveguide
mode. The spatiotemporal dynamics of 2D DFL will be
described in the framework of the semiclassical approach
based on Maxwell-Bloch equations [33].

[
� − ε (x,z)

c2

∂2

∂t2

]
A = −4π

c
P,

∂2P

∂t2
+ 1

T2

∂P

∂t
+

(
1

4T2
2 + ω0

2

)
P = −2ω0|μ|2

�c
Aρ, (33)

∂ρ

∂t
+ ρ − ρe

T1
− D�ρ = 2

�ω0c
A

∂P

∂t
.

Here ρe is an equilibrium value of population inversion, μ is
the dipole moment, T1 and T2 are the relaxation time constants,
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ω0 is the transition frequency, and D is the diffusion coefficient
of the nonequilibrium carriers.

In time domain, coupled-wave equation (12), taking into
account partial waves amplification by an active medium,
acquires the form(

± ∂

∂Z
+ ∂

∂τ

)
Ĉ±

z + iα̂(Ĉ+
x + Ĉ−

x ) = P̂ ±
z ,

(34)(
± ∂

∂X
+ ∂

∂τ

)
Ĉ±

x + iα̂(Ĉ+
z + Ĉ−

z ) = qP̂ ±
x .

In Eq. (34), we introduced the following normal-
ized variables and parameters: X̂ = xr−1/lz, Ẑ = zr/lz,
τ̂ = vgt/lz, Ĉ±

x = C±
x ( beffω0

πρe�cvgbρr
)1/2, Ĉ±

z = C±
z ( beffω0r

πρe�cvgbρ
)1/2;

P̂ ±
z = P ±

z ( πbρ lz
ρe�ω0cvgbTEr

)1/2, P ±
z are the corresponding compo-

nents of polarization induced in the active medium.
Next, we consider two cases:
(a) all four partial TM waves are amplified equally by the

active medium: q = 1, beff = bTM;
(b) only TE-polarized waves Ĉ±

z are amplified: q = 0,
beff = bTE.

The first case corresponds to the coupling of four TM modes
being amplified by a semiconductor active medium while the
second case describes coupling of TE and TM modes in a
quantum-well laser with only TE modes being amplified.

Taking into account the field presentation (2) as a sum of
four partial waves we put down the polarization and population
inversion in the following form [33]:

P = Re
[
i
(
P +

z eih̄z + P −
z e−ih̄z

+ qP +
x eih̄x + qP −

x e−ih̄x
)
eiω0t

]
,

ρ = ρ0 + Re
(
ρ2ze

2ih̄z + qρ2xe
2ih̄x + qρz−xe

2ih̄(z−x)

+ qρz+xe
2ih̄(z+x)). (35)

Here P ±
x,z, ρ0, ρ2z, ρ2x , ρz−x , ρz+x are the slowly varying

amplitudes, ρ0 is the average population inversion, and ρ2z,
ρ2x , ρz−x , ρz+x correspond to the inversion gratings induced by
the standing electromagnetic waves due to the effect of spatial
hole burning. Components of population inversion satisfy the
following equations:

∂ρ̂0

∂τ
+ (ρ̂0 − 1)

T̂1
= −(Ĉ+

z P̂ +
z

∗ + Ĉ−
z P̂ −

z

∗ + qĈ+
x P̂ +

x

∗

+qĈ−
x P̂ −

x

∗),

∂ρ̂2z

∂τ
+ ρ̂2z

T̂D

= −(Ĉ+
z P̂ −

z

∗ + Ĉ−
z P̂ +

z

∗),

∂ρ̂2x

∂τ
+ ρ̂2x

T̂D

= −q(Ĉ+
x P̂ −

x

∗ + Ĉ−
x P̂ +

x

∗),

∂ρ̂z+x

∂τ
+ ρ̂z+x

T̂D

= −q(Ĉ+
z P̂ −

x

∗

+Ĉ−
z

∗
P̂ +

x + Ĉ+
x P̂ −

z

∗ + Ĉ−
x

∗
P̂ +

z ),

∂ρ̂z−x

∂τ
+ ρ̂z−x

T̂D

= −q(Ĉ+
z P̂ +

x

∗ + Ĉ−
z

∗
P̂ −

x

+Ĉ+
x

∗
P̂ +

z + Ĉ−
x P̂ −

z

∗),. (36)

where T̂1 = vgT1

lz
, T̂D = vg

lz(T1
−1+Dh2)

, ρ̂ = ρ

ρe
.

Assuming that the transverse relaxation time T2 is small
comparing to other time values we apply the balance approx-
imation [33] which gives the following expressions for the
components of polarization:

P̂ +
z = β(2Ĉ+

z ρ̂0 + Ĉ−
z ρ̂2z + qĈ+

x ρ̂z−x + qĈ−
x ρ̂z+x),

P̂ −
z = β(2Ĉ−

z ρ̂0 + Ĉ+
z ρ̂∗

2z + qĈ+
x ρ̂∗

z+x + qĈ−
x ρ̂∗

z−x),
(37)

P̂ +
x = qβ(2Ĉ+

x ρ̂0 + Ĉ−
x ρ̂2x + Ĉ+

z ρ̂∗
z−x + Ĉ−

z ρ̂z+x),

P̂ −
x = qβ(2Ĉ−

x ρ̂0 + Ĉ+
x ρ̂∗

2z + Ĉ+
z ρ̂∗

z+x + Ĉ−
z ρ̂z−x),

where β = πρe|μ|2bρlzT2c/2�ω0b
eff describes normalized

pump intensity and in fact defines the linear gain of active
medium [see Eq.(44)]. Boundary conditions for Eqs. (33) and
(36) coincide with (19):

Ĉ−
z |Z=1 = 0, Ĉ+

z |Z=0 = 0, Ĉ−
x |X=Lx

= 0, Ĉ+
x |X=0 = 0,

(38)
where Lx = lx/lz.

The total output power can be defined in the following way:

S = ρe�ω0bρvgr lz

4
Ŝ, (39)

where

Ŝ = r−1
∫ Lx

0
(|Ĉ+

z (X,Lz)|2 + |Ĉ−
z (X,0)|2)dX

+ r

∫ 1

0
(|Ĉ+

x (Lx,Z)|2 + |Ĉ−
x (0,Z)|2)dZ.

In normalized variables, the energy balance relation in the
steady-state lasing regime can be presented as follows:

Ŝ + 〈ρ̂0〉 Lx

T̂1
= Lx

T̂1
, (40)

where 〈ρ0〉 = ∫ 1
0

∫ Lx

0 ρ̂0dXdZ/Lx is the average population
inversion which determines laser efficiency:

η = 1 − 〈ρ̂0〉
T̂1

. (41)

Note that Eq. (40) expresses balance between laser radiation
power and spontaneous relaxation and includes no other kind
of losses.

We studied the nonlinear dynamics by solving numerically
Eqs. (34) and (36) with boundary conditions (38). For initial
conditions, we took noise distribution of the electromagnetic
field with a small amplitude c0 	 1:

Ĉ±
x,z(X,Z,τ = 0) = c0e

−iϕ±
x,z(X,Z), (42)

where ϕ+
x (X,Z), ϕ−

x (X,Z),ϕ+
z (X,Z), ϕ−

z (X,Z) are evenly
distributed functions completely random at every simulation
point.

A. Simulation results for the case of TM-TM wave coupling

In this case, all four partial waves are amplified indiscrimi-
nately (q = 1) regardless of directions of their propagation. To
describe the self-excitation condition, we linearize Eqs. (34)
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and (36) as

±∂Ĉ±
z

∂Z
+ ∂Ĉ±

z

∂τ
− 2βĈ±

z = iα̂(Ĉ+
x + Ĉ−

x ),
(43)

±∂Ĉ±
x

∂X
+ ∂Ĉ±

x

∂τ
− 2βĈ±

x = iα̂(Ĉ+
z + Ĉ−

z ).

In the case of α̂ � 1, the self-excitation conditions for the
different modes can be written in the form

Im
cδn,m

αω0
= 2β, (44)

where the mode decrements are determined by relations (29).
The self-excitation threshold is realized for the fundamental
mode and can be presented in the form

4βα̂2Lx/π
2 = 1. (45)

Imprecision of the strong coupling approximation solution
(29) when compared to direct numerical solution of Eqs. (25)
and (26) at lower coupling values is demonstrated in Fig. 5,
which shows that the analytical solution (45) correctly esti-
mates the self-excitation threshold at α̂ > 3.

For simulation of the laser excitation process we take
α̂ = 2, at which the most uniform field distribution across the
resonator is achieved. We neglect the effect of nonequilibrium
carrier diffusion assuming D = 0 for now, which is correct
for many types of laser media where the laser transition takes
place between loosely coupled atom energy levels.

In the case of a moderate threshold excess, a stationary
lasing regime takes place (Fig. 6). Increasing the pump
intensity leads to laser power and efficiency increase until
at a certain gain level the steady-state regime is replaced by a
self-modulation lasing regime. Figure 7 presents amplitude
profiles of the partial waves at different moments of time
inside the 2D active medium demonstrating the stages of
the steady-state lasing regime establishment. During the first
stage τ < 1, the field distributions are completely random with
the scale of inhomogeneity corresponding to the initial random
conditions (42). After a few passes of partial waves across
the resonator τ < 3, the inhomogeneity scale of the amplitude
profile becomes comparable to the geometric dimensions of the
structure. Taking into account similar behavior of instant phase
distribution, it can be interpreted as spatial synchronization.

FIG. 6. Time dependencies of the normalized output power.
Establishment of the steady-state and self-modulation regimes at (1)
β = 1, (2) β = 2, (3) β = 6; α̂ = 2, T̂1 = T̂D = 1.

FIG. 7. Evolution of partial wave spatial distributions during the
establishment of the steady-state lasing regime; α̂ = 2, β = 1, T̂1 =
T̂D = 1.

The next stage (up to τ ≈ 4) is the stage of selection of the
fundamental mode when amplitude profiles get closer to the
profile of fundamental modes shown in Fig. 4. Note that at
that moment the amplitudes of partial waves are low (far from
saturation) and interaction is still linear. Then the amplitudes
grow and the interaction reaches the nonlinear stage, at
which the field profiles transform from the fundamental mode
profiles to the stationary lasing regime distributions (τ > 18).
In the simulated case of a relatively small threshold excess
β = 1, steady-state field distributions are closer to those of
the fundamental mode (Fig. 4). However, at larger threshold
excess values (β = 2), a significant distortion of the field
distributions occurs (Fig. 8). This is caused by development
of spatial inhomogeneity of population inversion. Spectrum
analysis shows that the generation frequency in the steady-state
lasing regime is close to the Bragg frequency.

A certain scaling law follows from stationary solutions of
Eqs. (34) and (36). If we decrease the normalized relaxation
time of the population inversion T̂1, the amplitude profiles
of the partial waves in the steady-state lasing regime do
not change. At the same time, the wave amplitudes and the
normalized output power increase proportionally (Fig. 9):

∣∣Ĉ±
x,z

∣∣√T̂1 = const,
∣∣P̂ ±

x,z

∣∣√T̂1 = const, ŜT̂1 = const.
(46)

In physical variables, it means that if the sizes lx,z of the
active region are increased while the equilibrium population
inversion ρe (for example, by decreasing the pump power
density) and the coupling coefficient α are proportionally
decreased so that

lx,zρe = const and lx,zα = const, (47)
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FIG. 8. Spatial distributions of the partial waves and population
inversion components in the steady-state regime at α̂ = 2, β = 2,
T̂1 = T̂D = 1.

the amplitude distribution of the partial waves in the stationary
lasing regime will not change but the total output power will
increase proportionally:

S/lx,z = const. (48)

Simulations of the lasing dynamics with the help of
Eqs. (34) and (36) show that the stationary regime establishes
in the entire range of T̂1 values admissible from the point
of view of computational resources. Meanwhile transient
processes change with varying T̂1 because they depend on the
ratio between the relaxation time T̂1 and the lifetime of photons
in the resonator Tp = 1/Imδ10. At T̂1 � Tp, on the initial stage

FIG. 9. Time dependencies of normalized output power at (1)
T̂1 = 4, (2) T̂1 = 1, (3) T̂1 = 0.25; α̂ = 2, β = 2, T̂D = 1.

FIG. 10. Dependences of the self-modulation threshold βsm (a)
and laser efficiency (b) from the diffusion time T̂D; α̂ = 2, T̂1 = 1.
Dashed and solid lines in (b) show dependencies at constant β = 3
and at β = βsm(T̂D) pump intensities, respectively.

of transient process, a pulse with the peak power significantly
exceeding the output power in the stationary lasing regime is
generated (Fig. 9).

Note that if we increase the threshold excess β significantly,
i.e., increase pump intensity or the Bragg resonator quality,
periodic and then stochastic self-modulation regimes will take
place (curve 3 in Fig. 6).

Note that all of the above analysis was made under
assumption of no significant diffusion of population inversion.
However, nonequilibrium carriers in semiconductor laser
media usually travel freely along quantum wells. This results
in significant diffusion which counters the effect of spatial
hole burning by reducing or, in the case of Dh̄2

z � T̂ −1
1 ,

by completely removing dynamic gratings ρ2z,2x and ρz±x

[see Eq. (36)]. This increases the self-modulation threshold
βsm at which the single-mode steady-state regime transforms
into a multimode regime [Fig. 10(a)]. As a result, countering
spatial hole burning improves laser efficiency in two ways as
shown in Fig. 10(b): firstly, by increasing radiation power at
a constant pump level β = const and secondly, by allowing
higher pump intensity β < βsm(T̂D) with greater efficiency
while maintaining the steady-state lasing regime.

B. Simulation results for the case of TM-TE wave coupling

In the case when only TE-polarized partial waves (Ĉ±
z ) are

amplified in the active medium (q = 0), the laser’s dynamics
are quite similar to the case described above. On the linear

FIG. 11. Time dependencies of the normalized output power in
cases where all four or only TE-polarized (C±

z ) partial waves are
amplified; β = 3; α̂ = 2, T̂1 = T̂D = 1.
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FIG. 12. Spatial distributions of the partial waves and the average
population inversion in the steady-state regime in cases where only
TE-polarized (C±

z ) partial waves are amplified; β = 2; α̂ = 2, T̂1 =
T̂D = 1.

stages the most noticeable differences are the increased self-
excitation threshold and the decreased increment. This can
result in a much longer linear stage and less power output
in the stationary lasing regime when operating too close to
the threshold (Fig. 11). Partial wave field distributions in
the stationary lasing regime are presented in Fig. 12, and
in this case they are similar to the field distributions in the
fundamental mode of a 2D Bragg resonator. However, in the
case of TM-TM wave coupling, steady-state distributions are
quite different (see Fig. 8). Components ρz−x and ρz+x of
the inversion produce additional coupling between the partial
waves on the nonlinear stage of the interaction and change
the stationary regime amplitude distributions. With only two
of the partial waves amplified, both population inversion and
electromagnetic field distributions get simplified. The self-
modulation regime threshold is also increased which allows
achieving higher power output and efficiency in the stationary
lasing regime by using higher pump intensity.

Simulation results allow us to estimate the output power
and some other parameters of 1 µm 2D DFB lasers. According
to the analysis given above, for an active region with a length
of lz = 2 mm and a width of lx = 0.5 mm, respectively, and
for a linear gain value of 15 cm−1 (typical for InGaP-GaAs
heterolasers), the output power would achieve about S = 1 W

in the steady-state regime. Transverse structure of heterolasers
should include about b0 = 600-nm-thick GaAs waveguide
layer with about 2b1 = 35-nm-deep corrugation of its surface
to produce enough coupling for the partial TE and TM
waves.

IV. CONCLUSION

In this paper, we use a coupled-wave method to describe
eigenmodes of 2D Bragg resonators formed by double-
periodically corrugated dielectric layer. The analysis considers
eigenmodes composed of both TM and TE waveguide modes.
In fact, we have obtained the analytical expressions for the
highest-quality modes of corrugated dielectric films, oversized
in lateral dimensions. We have shown that 2D Bragg resonators
possess high selectivity over both the longitudinal and the
transverse indices with the fundamental mode being in the
middle of the stop band. Note that a 2D Bragg resonator
in terms of photonic band-gap structures corresponds to a
photonic crystal without side reflections operating near the
“M” symmetry point in the reciprocal space [28]. Thus
according to our analysis, a structure with periodicity given
by (1) or (4) provides the existence of high-Q eigenmodes
near the M point without any periodicity defects.

Nonlinear dynamics of 2D distributed feedback lasers based
on 2D Bragg resonators was studied using a semiclassical
approach in the case of all partial waves amplified equally
as well as in the case of quantum-well lasers where only TE
waveguide modes are amplified. Scalability features of 2D
distributed feedback lasers are discussed to demonstrate possi-
bility of dramatic increasing of output power by increasing size
of active medium while still maintaining the synchronization
regime.

Note also that in this paper we study only static 2D Bragg
grating based on modulation of the effective refraction index.
However, there is an alternative way of producing distributed
feedback, namely, a periodic gain modulation. Apparently, this
method is also applicable to 2D DFB lasers. Dynamic 2D gain
grating can be achieved by illuminating the active layer with
two couples of pumping wave beams with orthogonal wave
vectors directed as the grating vectors in Fig. 1.
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