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We re-examine the properties of the states produced by nondegenerate coherently stimulated parametric
down-conversion wherein the signal and idler modes are seeded with coherent states of light and where the
nonlinear crystal is driven by a strong classical field as described by the parametric approximation. The states
produced are the two-mode squeezed coherent states defined with a specific ordering of operators, namely, the
displacement operators of the two modes acting on the double vacuum state followed by the action of the two-mode
squeeze operator representing the down-conversion process. Though mathematically equivalent to the reverse
ordering of operators, but with different displacement parameters, the ordering we consider is closely related to
what could most easily be implemented in the laboratory. The statistical properties of the state are studied with an
emphasis on how they, and its average photon number, are affected by the various controllable phases, namely,
those of the classical pump field of the two input coherent states. We then consider the multiphoton interference
effects that arise if the two beams are overlapped on a 50:50 beam splitter, investigating the role of the phases in
controlling the statistical properties of the output states. Finally, we study the prospects for the application of the
states to quantum-optical interferometry to obtain sensitivities in phase-shift measurements beyond the standard
quantum limit.
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I. INTRODUCTION

For many years now, parametric down-conversion has
been a laboratory source of light with strong nonclassical
properties [1]. The generated states of light have been used to
study a variety of quantum effects and have had applications
for fundamental tests of quantum mechanics as in two-
photon interference at a beam splitter [2] and to Bell-type
inequalities [3], as well as practical applications such as to
quantum metrology [4], quantum information processing [5],
and quantum imaging [6]. In almost all cases studied so far in
the laboratory, the light produced is the result of spontaneous
down-conversion. That is, a strong classical (UV) pump field
drives a nonlinear crystal producing pairs of frequency down-
converted (infrared) photons into the signal and idler modes
initially in vacuum states. The state produced is the two-mode
squeezed vacuum state (TMSVS) [7], which consists of a
superposition of products of identical (twin) Fock states of the
signal and idler modes, where the photon-number distributions
for the reduced density operators for each of the modes
is thermal [8]. For low gain, spontaneous down-conversion
produces mostly vacuum states in the output signal and idler
modes with about 1 in 1012 pump photons converting to a
signal-idler pair of photons. This process was employed in the
famous Hong-Ou-Mandel experiment [2], for example.

On the other hand, if the signal and idler modes into
the down-converter are initially fed beams of coherent light,
the light produced is the two-mode squeezed coherent state
(TMSCS) and the process producing it is called coherently
stimulated down-conversion, or sometimes seeded parametric
down-conversion. The statistical properties of these states
were discussed in the literature some years ago by Caves
et al. [9] and by Selvadoray et al. [10]. It is the latter
authors who have performed the most complete analysis of
the states by considering complex displacement and squeezing
parameters. Recently, this light source has been suggested for

applications to quantum interferometric photolithography [11]
and to quantum-optical interferometry [4].

In this paper we first re-examine the TMSCS. The effects of
the choices of the phases of the two input coherent states and of
the classical pump field, individually and in combination, are
studied as a means of controlling the properties of the output
fields. Our motivation comes from the possible applications of
such states to photon-number parity–based quantum-optical
interferometry. Previously, Kolkiran and Agarwal [12] studied
quantum-optical interferometry using high-gain coherently
stimulated down-conversion. In that work, however, they did
not study the statistical properties of the states before and after
beam splitting, nor did they study the use of photon-number
parity measurements for interferometry or the related issue
of the Cramer-Rao bound based on the quantum Fisher
information for optimal sensitivity. These issues are addressed
in the present paper.

In the literature [9,10], the TMSCS are mathematically
defined in two ways having to do with the orderings of the
two-mode squeeze and the displacement operators acting on
the double vacuum state. The states generated are mathe-
matically equivalent but differ in their implied methods of
physical generation. From an experimental point of view, we
believe that the natural way to think about the states is to
assume coherent light beams are fed into the input signal
and idler modes of the down-converter, which then acts to
squeeze those input states—hence the states are the result
of coherently stimulated down-conversion. As the coherent
states may be defined as displaced vacuum states, it follows
that the TMSCS is mathematically defined by the action of
the displacement operators on the vacuum states of each mode
followed by the action of the two-mode squeeze operator.
However, in the literature, specifically the papers of Caves
et al. [9] and Selvadoray et al. [10] cited above, one finds a
definition of the TMSCS with the operators acting in reverse
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order, i.e., with the two-mode squeeze operator acting on
the double vacuum followed by the displacement operator
such that the states generated could be called two-mode
displaced squeezed vacuum states (TMDSVS). Of course, the
definitions are mathematically equivalent with properly chosen
displacement parameters, but physically the latter states are
generated by performing independent displacements on the
two modes of the two-mode squeezed vacuum. That does
not appear to be an attractive method for generating the
states in the laboratory in view of the fact that displaced
vacuum states (coherent states) are readily available from
well phase-stabilized lasers. But as we shall discuss below,
the two definitions can lead to misconceptions, or at least
confusion, about the roles that the various phases (pump and
coherent state) play in controlling the statistical properties of
the states and on how the beams transform upon being mixed
at a beam splitter. Specifically, in the case of the TMDSVS,
the phases are in some sense hidden. For the purposes of
interferometry, it is desirable that the beam splitter create
a balanced, well separated, bimodal joint photon-number
distribution, and we show that such is possible by judicious
choices of the relevant phases and a certain combination of the
phases.

The paper is organized as follows: In Sec. II we briefly
review the two-mode squeezed states and their production by
spontaneous down-conversion. In Sec. III we discuss coher-
ently stimulated down-conversion and the statistical properties
of the TMSCS produced. In Sec. IV we discuss the multiphoton
interference and the consequent transformation of our state by
a 50:50 beam splitter and the control of the outcome of the
process by the choices of the various phases. In Sec. V we
examine, for certain choices of parameters, the efficacy of the
states for performing substandard-quantum-limited quantum-
optical interferometry through the use a photon-number parity
measurements. It is known that minimum phase uncertainty for
a given input state is given by the corresponding Cramer-Rao
bound [13], which in turn is determined by the quantum
Fisher information [14], and that, in all cases studied so
far, photon-number parity measurements saturate this bound.
In Sec. VI we finish the paper with a summary and some
brief remarks. Some mathematical results are included in an
Appendix.

II. COHERENTLY STIMULATED PARAMETRIC
DOWN-CONVERSION AND THE TWO-MODE SQUEEZED

COHERENT STATES

We begin by writing down the two-mode squeeze
operator

Ŝ(z) = exp(z∗âb̂ − zâ†b̂†), z = re2iφ, (1)

where r is the so-called squeezing parameter, 0 � r < ∞,
and where 2φ is the phase of the pump field, treated
classically here, driving the down-conversion process. (We
have parameterized this phase as 2φ to be consistent with
the convention used in the literature.) Here (â,â†) and (b̂,b̂†)
are the Bose operators representing the signal and idler
modes, respectively. For an arbitrary two-mode input state
|ψin〉, the output state will be given by |ψout〉 = Ŝ(z)|ψin〉.
The average total photon number of the output state will be

given by

n̄total = 〈ψin|Ŝ†(z)(â†â + b̂†b̂)Ŝ(z)|ψin〉
= 〈ψin|[(â†â + b̂†b̂) cosh(2r) − (e2iφ â†b̂† + e−2iφ âb̂)

× sinh(2r) + 2sinh2r]|ψin〉, (2)

where we have used the operator relations

Ŝ†(z)

(
â

b̂

)
Ŝ(z) =

(
â cosh r − e2iφ b̂† sinh r

b̂ cosh r − e2iφ â† sinh r

)
. (3)

Of course, if the input put state is just the pair vacuum state
|ψin〉 = |0〉a|0〉b the output will be the TMSVS,

|ψout〉 = |ξ 〉 = (1 − |ξ |2)1/2
∞∑

n=0

ξn|n〉a|n〉b

= 1

cosh r

∞∑
n=0

(−1)ne2inφ tanhnr|n〉a|n〉b, (4)

where ξ = −e2iφ tanh r , for which the average total photon
number is given by

n̄total = 2sinh2r, (5)

which, it should be noted, is independent of the pump phase
2φ. The photon states of each mode are tightly correlated and
the state as a whole is highly nonclassical due the presence of
squeezing in one or the other of the superposition quadrature
operators of the combined modes. On the other hand, the
photon-number statistics are super-Poissonian in each mode.
The joint photon-number probability distribution for there
being n1 photons in mode a and n2 in mode b is

P (n1,n2) = |〈n1|〈n2|ξ 〉|2 = tanh2nr

cosh2r
δn1,nδn2,n, (6)

such that only the “diagonal” elements n1 = n2 = n are
nonzero. In fact, each mode separately has thermal-like
statistics.

The two-mode squeezing operation is realized by the
interaction picture evolution operator given in the interaction
picture as

ÛI(t) = exp[−iĤIt/�], (7)

where the interaction Hamiltonian under the parametric
approximation is given by [15]

ĤI = i�(γ âb̂ − γ ∗â†b̂†). (8)

The parameter γ is proportional to the second-order nonlinear
susceptibility χ (2) and to the amplitude and phase factor of the
driving laser field, here assumed to be a strong classical field
such that depletion and fluctuations in the field can be ignored
as per the parametric approximation. Writing γ = |γ |e2iφ the
squeeze operator becomes [7]

Ŝ(z) = exp[−iĤIt/�] = exp[r(âb̂e−2iφ − â†b̂†e2iφ)], (9)

where the squeeze parameter r = |γ |t , which one can take as
a scaled dimensionless time.

We now turn to a discussion of the TMSCS, which we
take to be the output state for an input state consisting of
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FIG. 1. (Color online) A sketch of the scheme for generating two-
mode squeezed coherent states where signal and idler modes (a and
b, respectively) prepared in coherent states are fed into the parametric
down-converter.

a product of coherent states, i.e., |ψin〉 = |α1〉a|α2〉b so that
|ψout〉 ≡ |ξ ; α1,α2〉, where

|z; α1,α2〉 = Ŝ (z) |α1〉a|α2〉b = Ŝ (z) D̂ (α1,α2) |0〉a|0〉b
(10)

and where D̂(α1,α2) = D̂a(α1)D̂b(α2) is the product of the
displacement operators of each of the modes:

D̂a (α1) = exp(α1â
† − α∗

1 â),
(11)

D̂b (α2) = exp(α2b̂
† − α∗

2 b̂).

The coherent states are generated from the vacuum by the
actions of the displacement operators such that |α1〉a|α2〉b =
D̂(α1,α2)|0〉a|0〉b where

|α〉 = D̂ (α) |0〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 . (12)

The TMSCS given by Eq. (10) are generated by feeding the
coherent states |α1〉a|α2〉b to the input signal and idler modes,
respectively, of the down-converter as illustrated in Fig. 1 and
hence the process is coherently stimulated down-conversion.
The average total photon number for the state of Eq. (10) is
given by

n̄total = a〈α1|b〈α2|[(â†â + b̂†b̂) cosh(2r)

−(âb̂e−2iφ + â†b̂†e2iφ) sinh(2r) + 2sinh2r]|α1〉a|α2〉b
= (|α1|2 + |α2|2) cosh(2r)

−(e2iφα∗
1α

∗
2 + e−2iφα1α2) sinh(2r) + 2sinh2r, (13)

where we have used the results of Eq. (2) and that

D̂†(λ)âD̂(λ) = â + λ, D̂†(λ)â†D̂(λ) = â† + λ∗. (14)

If we now set α1 = |α1|eiθ1 and α2 = |α2|eiθ2 , we have

n̄ = (|α1|2 + |α2|2) cosh(2r)

− 2|α1||α2| cos(�) sinh(2r) + 2sinh2r, (15)

where � = θ1 + θ2 − 2φ. Evidently, the average photon num-
ber for the TMSCS depends on the combination of the phases
θ1,θ2, and 2φ in �. This result is not new [1], but as far as
we are aware, the effect of the phases on the average photon
number in coherently stimulated parametric down-conversion,
as given in Eq. (15), has yet to be demonstrated experimentally.

The joint photon-number distribution also depends only on
the value of �. However, as we demonstrate below, the joint
photon-number distribution obtained after the two beams are
mixed at a 50:50 beam splitter depends on the individual values
of the phases, not just on the combination �.

In the literature, one often finds the TMSCS defined accord-
ing to the reverse ordering of the squeeze and displacement
operators operating on the vacuum that was used above. That
is, one encounters the definition

|β1,β2; z〉 ≡ D̂(β1,β2)Ŝ(z)|0〉a|0〉b, (16)

where β1 = |β1|eiψ1 and β2 = |β2|eiψ2 are, for the moment,
arbitrary “coherent” amplitudes with phases ψ1 and ψ2. The
average total photon number obtained for this representation
is given by

n̄total = 〈β1,β2; z|(â†â + b̂†b̂)|β1,β2; z〉
= a〈0|b〈0|Ŝ†(z)D̂†(β1,β2)(â†â + b̂†b̂)

× D̂(β1,β2)Ŝ†(z)|0〉a|0〉b
= |β1|2 + |β2|2 + 2sinh2r, (17)

where we have used the results of Eqs. (14) and (3) in
that order. The total photon number in this case displays no
dependence on the phases ψ1, ψ2, and 2φ. However, the two
representations of the TMSCS are equivalent provided

Ŝ(z)D̂(α1,α2)Ŝ†(z) = D̂(β1,β2), (18)

which holds if

β1 = μα1 − να∗
2 , β2 = μα2 − να∗

1 , (19)

where μ = cosh r and ν = e2iφ sinh r. The inverse transforma-
tions, needed for later, are

α1 = μβ1 + νβ∗
2 , α2 = μβ2 + νβ∗

1 . (20)

Thus under these conditions |z; α1,α2〉 and |β1,β2; z〉 are
identical states but represent different methods of generation.
As mentioned, the former states result from the action of the
down-converter on input coherent states while the latter are
displaced TMSVS, i.e., they require displacement operations
on both modes of a TMSVS.

As just discussed, our result for the average photon number
calculated for representation of the state as given by |β1,β2; z〉
is independent of the phases ψ1, ψ2, and 2φ. That is, there
is no explicit phase dependence here. However, because of
the transformations of Eqs. (19) and (20), there is an implicit
dependence on the phases θ1,θ2, and 2φ which show up in the
combination � = θ1 + θ2 − 2φ in Eq. (15). In this sense, the
phase dependence of Eq. (15) is “hidden.” Caves et al. [9]
and Selvadoray et al. [10] use the definition of Eq. (16)
for the TMSCS, though the latter authors, for calculational
convenience, also use the definition given by Eq. (10). Our
result in Eq. (17) agrees with that of Selvadoray et al. [10],
who point out that n̄ is insensitive to a certain combination of
angles, that here we shall call �, which, in our notation, has
the form � = ψ1 + ψ2 − 2φ. In the Appendix we show the
relationship between the angles � and �, and we also show the
relationships between the sets of angles (θ1,θ2) and (ψ1,ψ2).
The result in Eq. (15) is not inconsistent with the result of
Eq. (17) as long as the relations of Eqs. (19) and (20) hold.
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FIG. 2. (Color online) n̄ versus |α| for r = 4, for � =
0,π/2, and π.

The essential point here is that the phases of the pump field and
of the input coherent states, through �, can be adjusted so as
to exert control over the average photon number of the output
field of the down-converter and of the statistics of this field,
as will be discussed below. The dependence on the phases is
hidden in the expression for the average photon number as
given in Eq. (15), though it is carried along through Eq. (19).
For given values of |α1|,|α2| and r , the average photon number
can vary significantly by adjusting �, as we show in Fig. 2
for the choices |α1| = |α2| = |α| and for r = 4. Note that for
� = 0 the average photon number is essentially independent
of the coherent state amplitude |α|. It is easy to see why. For
the choices |α1| = |α2| = |α| we can rewrite Eq. (15) as

n̄ = 2|α|2[cosh(2r) − cos(�) sinh(2r)] + 2sinh2r, (21)

and for � = 0 the bracket term cosh(2r) − sinh(2r) → 0
for sufficiently high r . We are then left with the dominant
contribution, n̄ = 2sinh2r , which is identical with the average
photon number for the squeezed vacuum state. Obviously we
can maximize n̄ for the choice � = π. As we show below,
these different choices of � dramatically affect the nature of
the photon-number distributions both before and after beam
splitting. We also point out that for a fixed value of �,
different arrangements and values of the corresponding angles
θ1,θ2, and 2φ affect the joint photon-number distribution after
beam splitting, but not before. We note that Caves et al. [9],
who examined the TMSCS as defined through Eq. (16),
set φ = 0, stating that this can be done “without loss of
generality.” This is misleading as should be clear from the
above discussion.

We now proceed to write down the quantum amplitudes
and photon distributions associated with the states |z; α1,α2〉.
In terms of the numbers states,

|z; α1,α2〉 =
∞∑

n1=0

∞∑
n2=0

c(n1,n2)|n1〉a|n2〉b. (22)

At this point it is useful to convert our two-mode number
state labeling to the angular momentum states |j,m〉 such that
we have the mapping [16]

|n1〉a|n2〉b =|j,m〉, for j = (n1 + n2)

2
and m= (n1 − n2)

2
.

(23)

We can rewrite our two-mode squeezed coherent states in
terms of the angular momentum states as

|z; α1,α2〉 =
∞∑

j=0,
1
2 ,1,...

m∑
m=−j

c(j + m,j − m)|j,m〉, (24)

where, adapting (and correcting) a result obtained by Selvado-
ray et al. [10], the coefficients are given by

c(j + m,j − m)

= exp[−iπ (j − |m|)]
[

(j − |m|)!
(j + |m|)!

]1/2[
α1α2

μν

]|m| 1

μ

(
ν

μ

)j

×L
2|m|
j−|m|

(
α1α2

μν

)(
α1

α2

)m

× exp

[
−1

2
(|α1|2 + |α2|2)

]
exp

(
ν∗α1α2

μ

)
, (25)

and where it is to be understood that n1 = j + m and n2 =
j − m, and where, again, μ = cosh r and ν = e2iφ sinh r . The
functions Lk

n(x) are associated Laguerre polynomials. In terms
of the phases θ1,θ2, and φ, the amplitude of Eq. (25) can written
as

c(j + m,j − m)

= exp[−iπ (j − |m|)]
[

(j − |m|)!
(j + |m|)!

]1/2

×
[

2|α1||α2|
sinh(2r)

]|m| tanhj r

cosh r
exp[i(|m|� + 2jφ)]

×L
2|m|
j−|m|

([
2|α1||α2|
sinh(2r)

]
exp(i�)

)( |α1|
|α2|

)m

× exp[im(θ1 − θ2)] exp

[
−1

2
(|α1|2 + |α2|2)

]

× exp[exp(i�)|α1||α2| tanh r]. (26)

There are two things to note regarding the dependence
of these amplitudes on the various phases. The first is the
appearance of the combination � = θ1 + θ2 − 2φ. As noted
above, the average total photon number for the two beams in
this representation depends only on �. This is a reflection of
the fact that the joint photon-number statistics depend only on
�, as the probability for finding n1 photons in mode a and n2

in mode b is given by

P (n1,n2) = |c(n1,n2)|2, (27)

as is clear from an examination of the coefficients given by
Eq. (26).

We now consider the joint photon-number probability
distributions for the TMSCS for various values of state
parameters. In Fig. 3 we plot P (n1,n2) versus n1 and n2

for the fixed values r = 1.2 and α1 = α2 but for the choices
� = 0, π/2, and π . The distribution is populated about the line
n1 = n2 (as is true for the TMSVS), and the effect of the phase
� on the distribution is clear as the peak of the distribution
migrates along the aforementioned line in accordance with the
change in the total average photon number as the phase angle
changed.

053801-4



COHERENTLY STIMULATED PARAMETRIC DOWN- . . . PHYSICAL REVIEW A 91, 053801 (2015)

FIG. 3. (Color online) Joint photon-number distribution P (n1,

n2) versus n1 and n2 for the two-mode squeezed coherent states for
r = 1.2 and α1 = α2 = 1 for (a) � = 0, (b) � = π/2, and (c) � = π.

We have seen that for fixed values of the squeezing
parameter and coherent state amplitudes the average photon
number and the shapes of the joint photon-number distri-
bution change with the phase �. Of course, this suggests
that other quantities change with the phase as well. We
consider here only the effect of the phase on the degree
of entanglement between the two modes. We use the linear
entropy

S = 1 − Tra(b)ρ̂
2
a(b), (28)

where ρ̂a(b) = Trb(a)ρ̂ is the reduced density operator for the
a(b) mode. Entanglement becomes maximum for S = 1. In
Fig. 4 we show the linear entropy as a function of the phase
� for the fixed values r = 1.7 and |α1| = |α2| = 2. We see

FIG. 4. (Color online) Plot of the linear entropy S against the
phase � for r = 1.7 and |α1| = |α2| = 2.

that the entanglement is high for all values of the phase �, but
it is at the maximum S = 1 for � = π , the same phase that
maximizes the average photon number for a given squeeze
parameter and coherent state amplitudes.

As pointed out above, only the choice of the phase
angle � affects the distribution; the choices of θ1,θ2, and φ

individually do not affect the distribution. They also do not
affect the linear entropy. However, as we show in the next
section, the individual phases can affect the outcome of mixing
the two beams at a beam splitter.

To conclude this section we wish to draw the reader’s
attention to Fig. 2 of the paper by Selvadoray et al. [10].
There they plot photon-number distributions for (in our
notation) β1 = β2 = 7,r = 4, for various values of the phase
combination we call �. The average photon number of their
state is n̄ = 1 587.4, yet they display their distributions only
out as far as n1 = n2 = 100, thus apparently not including most
of the distribution, especially that part of it near the average
n1 ≈ n̄/2 ≈ n2. However, the full distribution in such cases is
very broad and also very flat so that the oscillations close to the
origin observed are their most interesting features. It turns out
that for � = 0 the corresponding values of α1 and α2 are both
∼380. On the other hand, for � = π the corresponding values
of α1 and α2 are ∼0.127, indicating that from the point of
view given by the state definition Eq. (10), the corresponding
state is very close to the two-mode squeezed vacuum, and this
explains why it is concentrated along the diagonal precisely as
shown in Fig. 2(a) of Selvadoray et al. [10] for this choice of
the phase �. The point here is that the relevant state parameters
(α1,α2), for a given squeeze parameter r , can have remarkably
different values than does the set (β1,β2) in representing the
same state.

III. BEAM SPLITTING AND MULTIPHOTON
INTERFERENCE

We now consider the result of mixing the two output beams
of the coherently stimulated down-converter at a 50:50 beam
splitter. Of course, to maintain coherences and correlations, the
output beams must propagate on equidistant paths to the beam
splitter. Equal path lengths can be calibrated experimentally
using the Hong-Ou-Mandel effect [2].

For convenience we assume that our beam splitter is
balanced (50:50) and thus performs a transformation that
can be described as π/2 rotation about the “1” axis as
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given by ÛBS = exp(−iπĴ1/2), were we have followed Yurke
et al. [15], who use the Schwinger realization of the angular
momentum algebra in terms of a pair of boson operators to

describe beam splitters and some other linear optical devices.
Our state after beam splitting, in the angular momentum
representation, is thus given by

|out,BS〉 = ÛBS|z; α1,α2〉

=
∞∑

j=0

j∑
m=−j

j∑
m′=−j

c(j + m,j − m)im
′−md

j

m′,m

(
π

2

)
|j,m′〉. (29)

The probability after beam splitting that there are N1

photons in mode 1 and N2 in mode 2 is given by

P (N1,N2) = |〈J,M | out,BS1〉|2

=
∣∣∣∣

J∑
m=−J

c(j + m,j − m)iM−mdJ
M,m

(
π

2

)∣∣∣∣
2

, (30)

for N1 = J + M and N2 = J − M , where the d
j

m′,m(ϕ) values

are the usual Wigner rotation functions [16]

d
j

m′,m(ϕ) = 〈j,m′| exp(−iϕĴ2)|j,m〉. (31)

We now consider the effects of mixing the output beams of
the down-converter at a beam splitter in the manner as sketched
in Fig. 4. Again, we first consider the limiting case where the
input coherent state amplitudes vanish so that we are dealing
only with the TMSVS of Eq. (4) as the output. The output of
the beam splitting is

|out BS1〉 = (1 − |ξ |2)1/2
∞∑

n=0

(
iξ

2

)n n∑
k=0

[(
2k

k

) (
2n − 2k

n − k

)]1/2

|2k〉a|2n − 2k〉b, (32)

where we have used a result from Campos et al. [15] for the
action of beam splitting on input twin-Fock states |n〉a|n〉b with
a suitable modification for our choice of representation for the
first beam splitter. The joint photon-number distribution for
this output state is presented in Fig. 5, where we notice that
only the even number of states are populated. Some time ago,
Gagen and Milburn [17] claimed that this was a reflection of
strong correlations due to multiphoton interference. However,
it has since been shown [18] that the output state of Eq. (32) is,
in fact, not an entangled state at all and that the beam-splitting
transformation causes a factorization of the input TMSVS into
a product of single-mode squeezed vacuum states, neither of
which has an odd photon-number state populated [19].

Recall that the TMSVS is a superposition of twin-Fock
states |n〉a|n〉b and thus contains perfect photon-number cor-
relations. But this means that there is a very large uncertainty
in their relative phases. By overlapping such states on a beam
splitter, the phase fluctuations are converted into photon-
number fluctuations in the sense that there is now a large
uncertainty for the beam location of the photons: the probabil-
ity of finding them in one beam or the other is relatively high.
For the twin-Fock state input |n〉a|n〉b, the nonzero elements
of the output photon-number distribution are given by

P (2k,2n − 2k) =
(

2k

k

) (
2n − 2k

n − k

)(
1

2

)2n

,

(33)
k = 0,1,2, . . . ,n,

a distribution known in probability theory as the
fixed-multiplicative discrete arcsine law of order n [20]. This
distribution has the characteristic “U shape” in going from k =
0 to k = n, where the minimum occurs for k = n/2 for n even

or k = (n ± 1)/2 for n odd. Twin-Fock states as a resource for
sub-standard quantum limited optical interferometry have been
discussed by Holland and Burnett [21] and Campos et al. [22],
where the latter considered the use of photon-number parity
measurements for the detection scheme. The beam-splitter
output distribution for input TMSVS is a collection of “U
shapes” from each of the relevant input states |n〉a|n〉b, and an
example is given in Fig. 6(a). It is evident that beam splitting
results in a large uncertainty in the location of the photons with
respect to the two output beams. The application of the TMSVS
to interferometry has been studied by Anisimov et al. [4], who
showed that sub-Heisenberg limited sensitivity for phase-shift
measurements is possible. Later, Gerry and Mimih [23]
studied the application to interferometry of yet another state
that consists of a superposition of the correlated number
state pairs |n〉a|n〉b, this being the pair coherent state [24].
In contrast to the TMSVS, the pair coherent states exhibit
sub-Poissonian photon statistics in each mode. Recently,
Spasibko et al. [25] experimentally examined the interference
effects and photon-number fluctuations from TMSVS whose
twin beams fall on opposite sides of a beam splitter.

Because the beam-splitter transformation results in a sum
involving the amplitudes c(j + m,j − m) as given in Eq. (29),
the joint photon-number probability distribution given by
Eq. (30) will generally depend not only on the angle � but
also the individual angles θ1,θ2, and 2φ. We demonstrate this
in Figs. 6(a) and 6(b) using the same squeezing and coherent
state parameters as before and for the choice � = π/2 with
(a) θ1 = π/2, θ2 = 0, and φ = 0 and with (b) θ1 = 0, θ2 =
π/2, and φ = 0. In both cases we notice asymmetric distribu-
tions with a tendency for the clustering on the photon-number
states to be populated along the line n1 = 0 for (a) and n2 = 0
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for (b). In Fig. 6(c) we display the case for the choices � =
π,θ1 = θ2 = π/2, and φ = 0, which results in a distribution
where population is symmetrically clustered along the lines
n1 = 0 and n2 = 0. Distributions with this structure are known
to be particularly conducive to achieving interferometric
phase-shift measurements with sensitivities greater than the
standard quantum limit �ϕSQL = 1/

√
N. From the heuristic

number phase uncertainty relation, �N�ϕ � 1 for a single
mode of the field, and if the uncertainty in the photon number
is on the order of the number of photons, �N ≈ N , which
is the case in Fig. 6(c), then the uncertainty in the phase is
given by �ϕ ∼ 1/N , the Heisenberg limit of sensitivity being
�ϕHL = 1/N. The essential point is that in a distribution such
as in Fig. 6(c) there is great uncertainty with regard to the
location of most of the photons, an uncertainty created by the
beam splitter and certain choices of phases θ1,θ2, and φ.

IV. APPLICATION TO INTERFEROMETRY

Here we assume the output beams of the down-converter are
directed through a Mach-Zehnder interferometer, as indicated
in Fig. 5. The relative phase shift between the two arms of the
interferometer we denote as ϕ. We assume that photon-number
parity measurements are performed on the output b mode. We
follow Yurke et al. [15], taking the input state to the interferom-
eter |in〉, which is related to its output state |out〉 according to

|out〉 = e
i
π
2 Ĵ1e−iϕĴ3e

−i
π
2 Ĵ1 |in〉 = e−iϕĴ2 |in〉, (34)

where we have used the relation e
i
π
2 Ĵ1 Ĵ3e

−i
π
2 Ĵ1 = Ĵ2. The

parity operator of the output b mode is

�̂b = (−1)b̂
†b̂ = eiπb̂† b̂ = eiπ(Ĵ0−Ĵ3), (35)

and its expectation value is given by

〈�̂b(ϕ)〉 = 〈out|�̂b|out〉 = 〈in|eiϕĴ2eiπ(Ĵ0−Ĵ3)e−iϕĴ2 |in〉.
(36)

For our input states this becomes

〈�̂b(ϕ)〉

=
∞∑

J=0

J∑
M=−J

〈in|eiϕĴ2eiπ(Ĵ0−Ĵ3)|J,M〉〈J,M|e−iϕĴ2 |in〉

=
∞∑

J=0

J∑
M=−J

eiπ(J−M)〈in|eiϕĴ2 |J,M〉〈J,M|e−iϕĴ2 |in〉

=
∞∑

J=0

J∑
M=−J

eiπ(J−M)
∣∣f (J )

M (ϕ)
∣∣2

, (37)

where

f
(J )
M (ϕ) = 〈J,M|e−iϕĴ2 |in〉

=
∞∑

j=0

j∑
m=−j

c(j + m,j − m)〈J,M|e−iϕĴ2 |j,m〉

=
∞∑

j=0

j∑
m=−j

c(j + m,j − m)〈J,M|e−iϕĴ2 |J,m〉δJ,j

=
J∑

m=−J

c(J + m,J − m)dJ
M,m(ϕ) . (38)

The parity operator for the output a mode is

�̂a = (−1)â
†â = eiπâ†â = eiπ(Ĵ0+Ĵ3) (39)

and its output expectation value is

〈�̂a(ϕ)〉 =
∞∑

J=0

J∑
M=−J

eiπ(J+M)
∣∣f (J )

M (ϕ)
∣∣2

. (40)

In Fig. 7 we plot 〈�̂b(ϕ)〉versus ϕ for the case where
r = 1.2 and α1 = α2 = 1. It turns out that without phase-shift
adjustments, the expectation values of the parity operators are
not “centered” about ϕ = 0. To bring about such a centering,
we require the phase transformations ϕ → ϕ + π/2 for the
case where � = 0 and ϕ → ϕ − π/2 for the case where
� = π , as can be accomplished with simple linear optical
elements.

One could determine the uncertainty in the phase-shift
measurement (the sensitivity) by the error propagation calculus
according to

�ϕ = (��b)

|∂〈�̂b(ϕ)〉/∂ϕ| , (41)

where ��b =
√

〈�̂2
b(ϕ)〉 − 〈�̂b(ϕ)〉2

and where 〈�̂2
b(ϕ)〉 =

1. On the other hand, a computationally more efficient
approach, especially for our states, is to calculate the minimum
achievable uncertainty in the measurement of phase shifts as
given by the quantum Cramer-Rao bound [13]

�ϕmin = 1√
FQ

, (42)

where FQ is the quantum Fisher information and is given
as [14]

FQ = 4[〈ψ ′(ϕ) |ψ ′(ϕ)〉 − |〈ψ ′(ϕ) |ψ(ϕ)〉|2]. (43)

FIG. 5. (Color online) A sketch of our scheme for interferometric detection of the phase shift denoted ϕ via a Mach-Zehnder interferometer,
the second on the right between the first and second beam splitters (BS1 and BS2, respectively), with two-mode squeezed coherent states as
fed into BS1. Photon-number parity measurements are to be performed on the output b beam.
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FIG. 6. (Color online) Joint photon-number distribution P (n1,

n2) versus n1 and n2 for |α1| = |α2| = 1, r = 1.2, and (a) � =
π/2 with θ1 = π/2,θ2 = 0,φ = 0; (b)� = π/2 with θ1 = 0,θ2 =
π/2,φ = 0; and (c) for � = π , θ1 = π/2,θ2 = π/2,φ = 0.

FIG. 7. (Color online) For the choices r = 1.2 and α1 = α2 = 1,
the expectation value of the parity operator �̂b as a function of the
phase shift ϕ for � = π. To “center” the parity at ϕ = 0, we have in
our calculations made the replacement ϕ → ϕ − π/2. This shift can
be made with appropriate linear optical elements.

Here |ψ(ϕ)〉 is the state vector just before the second beam
splitter and

|ψ ′(ϕ)〉 = ∂

∂ϕ
|ψ(ϕ)〉. (44)

For our case,

|ψ(ϕ)〉 = e−iϕĴ3e
−i

π
2 Ĵ1 |in〉 (45)

and

|ψ ′(ϕ)〉 = −ie−iϕĴ3 Ĵ3e
−i

π
2 Ĵ1 |in〉, (46)

which leads to

〈ψ ′(ϕ) |ψ(ϕ)〉 = i〈in|Ĵ2|in〉 (47)

and to

〈ψ ′(ϕ) |ψ ′(ϕ)〉 = 〈in|Ĵ 2
2 |in〉, (48)

where we have used the relation

e
i
π
2 Ĵ1 Ĵ3e

−i
π
2 Ĵ1 = Ĵ2. (49)

Our expression for the quantum Fisher information be-
comes

FQ = 4〈(�Ĵ2)
2〉in, (50)

where 〈(�Ĵ2)
2〉in is the variance of the operator Ĵ2 with respect

to the input state. In all cases studied so far, the quantum
Cramer-Rao bound agrees with the phase uncertainty obtained
from the error propagation calculus under the assumption that
the photon-number parity operator is the relevant observable.
We have compared our quantum Cramer-Rao bound results
with sample error propagation calculus results based on
the measurement of photon-number parity and have found
complete agreement.

In Fig. 8 we plot an example of �ϕmin versus n̄ for the case
where � = πand r = 2 and where |α| is being increased. The
upper and lower dashed lines on each of the graphs represent
the corresponding standard quantum limits (SQL), �ϕSQL =
1/

√
n̄, and Heisenberg limits (HL), �ϕHL = 1/n̄, respectively.

We find that the noise reduction falls almost exactly along the
curve for the Heisenberg limit.
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FIG. 8. (Color online) The phase uncertainty �ϕmin obtained via
the Cramer-Rao bound versus the total average photon number
for � = π and for r = 2.0. The upper and lower dashed lines
represent, respectively, the corresponding standard quantum limits
and Heisenberg limits of the phase-shift uncertainties.

V. CONCLUSIONS

In this paper, we have re-examined the two-mode squeezed
coherent states (TMSCS) as obtained by the action of the
two-mode squeeze operator representing the time evolution
operator of the parametric down-conversion process acting
on input coherent light fields. We have examined the role of
the various phases that enter the state, that is, the phase of
the classical pump field and the two phases associated with
the input coherent states of the parametric down-conversion
process, and as to how these phases appear depending on
the definition of the state, whether as two-mode squeezed
coherent states as in Eq. (10) or as displaced TMSVS as
given in Eq. (16). We have investigated the effect the phases
have on the joint photon-number probability distributions of
the TMSCS and on other statistical properties such as the
average photon number. Furthermore, we have studied the
results of mixing the two beams of the TMSCS with a 50:50
beam splitter and have examined the means of controlling
that output by making certain choices of the various phases.
And finally, we have examined the prospect of utilizing the
TMSCS for photon-number parity–based interferometry, and
have found, for certain choices of parameters and phases,
noise reductions approaching the level of the Heisenberg limit.

In this work we have considered the pump field of the
down-converter to be a classical prescribed field, which means
we have ignored the effects of photon depletion the pump field
altogether. In future work we shall study the states produced
in the case where the pump field is quantized and assumed
to be initially in a coherent state or some form of single-
mode pure nonclassical state such as a squeezed vacuum. It
will be interesting to explore the effects of the phases on the
evolution of the fully quantized model, especially their effects
on the photon-number distributions and on the average photon
numbers of the output in the signal and idler modes. For the
case where all fields are initially in coherent states and with
phase choices such that � = π , we would expect a more rapid
decrease in the average photon number of the pump field as the
average photon numbers of the signal and idler modes increase
compared to the case when � = 0. In fact, we expect that the
parametric approximation breaks down after a short time such
that the very high average photon numbers appearing in the
output signal and idler modes cannot be realized in practice.
On the other hand, projective state reductions performed on
the output pump beam at different times should open up the
prospects for new forms of nonclassical, entangled, two-mode
field states.
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APPENDIX: PHASE RELATIONS AND THE U(1) ⊗ U(1)
INVARIANCE OF PHOTON-NUMBER PROBABILITY

DISTRIBUTIONS

We first establish a connection between the phases � =
θ1 + θ2 − 2φ and � = ψ1 + ψ2 − 2φ. We begin by consid-
ering the quantity α1α2e

−2iφ occurring three places in the
coefficients given in Eq. (25) by substituting for α1 and α2

from Eq. (20) to yield the relation

α1α2e
−2iφ = |α1||α2|ei� = 1

2 (|β1|2 + |β2|2) sinh(2r) + |β1||β2|[cos � cosh(2r) + i sin �]. (A1)

By equating the real and imaginary parts of Eq. (A1) we find that

� = tan−1

[
2|β1||β2| sin �

2|β1||β2| cosh(2r) cos � + (|β1|2+|β2|2) sinh(2r)

]
.

(A2)

Conversely, by considering the combination β1β2e
−2iφ and substituting from Eq. (19) we have

β1β2e
−2iφ = |β1||β2|ei� = − 1

2 (|α1|2 + |α2|2) sinh(2r) + |α1||α2|[cos � cosh(2r) + i sin �], (A3)

from which it follows that

� = tan−1

[
2|α1||α2| sin �

2|α1||α2| cosh(2r) cos � − (|α1|2+|α2|2) sinh(2r)

]
.

(A4)
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Note that the phases � and � as related through Eqs. (A2)
and (A4) are, in general, nonlinear functions of each other.
Selvadoray et al. [10] have identified � as the Gouy phase [26]
for the TMSCS.

Finally, it has been noted that there exists a U(1) invariance
of the photon-number distributions of single-mode squeezed
coherent field states [27] and of the U(1) ⊗ U(1) invariance of
the joint photon-number distributions of two-mode squeezed
coherent states [10]. The invariance in the latter case is such
that the photon-number probabilities depend only on the three
phases through the combination � = θ1 + θ2 − 2φ for the
state definition given by Eq. (10) or the combination � =
ψ1 + ψ2 − 2φ through the definition of Eq. (16). However,
this is rather trivial. For any pure two-mode field state given as

|η〉 =
∞∑

n=0

∞∑
m=0

Bnm|n〉a|m〉b, (A5)

with joint photon-number distribution Pnm = |Bnm|2, the
U(1)⊗ U(1) transformation is given by the operation [10]

exp(iζ1â
†â) exp(iζ2b̂

†b̂)|η〉

=
∞∑

n=0

∞∑
m=0

exp[i(ζ1n + ζ2m)]Bnm|n〉a|m〉b, (A6)

from which it is obvious that the transformed state has the
same photon-number distribution as that of Eq. (A5). Thus,
if the probabilities Pnm = |Bnm|2 depend only on phases
through the combinations � or �, that will be trivially
true for the transformed state of Eq. (A6). But, again,
only incoherent properties of the state, the photon-number
distribution or the average photon number, are invariant under
the transformations. Quantities involving the coherences will
strongly depend on the individual phases.
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