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Interference effects in potential wells
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We propose using an array of potential wells as an interferometer in which the beam splitters are provided by
tunneling during an appropriate time through the barrier between wells. This arrangement allows demonstration
of generalized Hong-Ou-Mandel effects with multiple particles traversing one or several beam splitters. Other
interferometer effects can occur, including a violation of the Bell-Clauser-Horne-Shimony-Holt form of the Bell
inequality. With interactions, one sees various effects, including so-called fermionization, collective tunneling,
and self-trapping.
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I. INTRODUCTION

The Hong-Ou-Mandel (HOM) effect [1,2] is perhaps the
simplest example of boson-boson interference, in which two
particles approaching in two different inputs of a beam splitter
always exit both in the same output, because destructive
interference removes the possibility of exits in separate
outputs. Experimental verifications have been carried out
with photons [1,3]. Other cases with two photons from
each side [4] as well as two from one side and one from
the other have also been considered theoretically [5], and
experimentally seen [6]. Theoretical generalizations using
cold atoms have recently been considered, including one in
which Fock states of arbitrary numbers of particles impinge
on a beam splitter [7,8], and another using pair-correlated
atoms produced via a collision of two Bose-Einstein con-
densates [9]. Recent experiments using particles rather than
photons have involved electrons [10], 87Rb atoms trapped in
optical tweezers [11], and helium atoms [12] where the beam
splitter was a Bragg scattering optical grating. Each of the
papers using matter waves rather than photons emphasizes
that experiments developing coherent indistinguishable pairs
of particles may be relevant in other areas such as quantum
computing and information processing [13], highly sensitive
force detection [14], quantum simulations [15], testing Bell
inequalities with material observables [16], etc. Here we want
to consider HOM-like interference with the use of Fock states
of cold atoms undergoing simple tunneling in optical double
(or multiple) potential wells in a method analogous to that
experimentally used in Ref. [11].

The essential element in the HOM effect, or in any inter-
ferometer, is a beam splitter. In the case of cold gases, various
forms of beam splitter have been designed, including, e.g.,
Bragg scatterers [12,17] and double potential-well devices. In
the latter case, the usual format [18] involves guiding a matter
wave through a potential well having a spatially or temporally
growing central repulsive peak that divides the beam into
two parts, which, for example, can be recombined further
along to show interference effects analogous to a two-slit
interferometer. In one case the authors [19] proposed using
a pair of side-by-side waveguides having a narrow region
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where tunneling took place; by adjusting the wave-packet
width (or momentum) and the barrier width the packet splits
into two equal parts, thus using the time of tunneling as the
main element to form a 50-50 beam splitter. Recently Daley
et al. [20] suggested using double-well tunneling as a beam
splitter to measure the order-2 Rényi entropy of an entangled
state. Compagno et al. [21] considered boson and fermion
walkers on a one-dimensional lattice with an optical impurity
with transmission and reflection coefficients adjusted to act as
a beam splitter. Here we will further examine the possible use
of the time of tunneling as a beam splitter, a method already
adopted by Ref. [11] in their experiment.

Most interference experiments with cold atoms have in-
volved observing a periodicity in the particle density as a
function of position or angle. An alternative would be counting
the number of particles in the detectors placed after a beam
splitter. In the case of the photon HOM experiment, a minimum
in the coincidence between the two detectors was observed.
However, there has been considerable recent progress in the
actual observation of individual atoms via the “quantum gas
microscope” [22,23]. In this case the “approach is to assemble
quantum information systems with full control over all degrees
of freedom, atom by atom, ion by ion” [22]. We will assume
such an approach is literally possible so that the number of
atoms in each well is known at the beginning of the experiment
(input to the beam splitter) and at the end in the detectors
after the beam splitters. As in Ref. [11], we assume that the
beam splitter involves turning on tunneling between two or
more wells for a set time. In this experiment two atoms were
trapped in their ground states in wells with optical tweezers and
observed via fluorescence. The distance and barrier between
the wells could be varied to enhance or cut off tunneling. In
Ref. [12] Bragg scattering was used for mirrors and a beam
splitter with observation of pairs or singles of atoms falling on
a multipixel detector. We look at variations of the HOM effect,
but we also see that these remarkable experimental methods
may yield other interesting possibilities where more elaborate
interferometry is possible.

II. DOUBLE-WELL BEAM SPLITTER

Figure 1(a) shows a beam splitter with two particle sources
and two detectors. In the standard beam splitter with the
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FIG. 1. (a) NA,NB bosons proceed from the sources A and B to
a beam splitter, followed by two detectors 1 and 2, where m1 and
m2 particles are detected. (b) A double-well potential with tunneling
strength λ between cells A and B.

annihilation operator for source A being α and that for B

is β, then the annihilation operators for detectors 1 and 2 are,
respectively,

d1 = 1√
2

(α + iβ), d2 = 1√
2

(iα + β). (1)

We want to show that the the double well of Fig. 1(b) is
equivalent to the device of 1(a) if the tunneling occurs for a set
time period. Let a be the destruction operator for a particle in
well A and b for one in well B. Then the two-level Hamiltonian
we consider is taken as

H/� = E0(a†a + b†b) − λ(a†b + b†a)

+ W

2
(a†a†aa + b†b†bb), (2)

where we have assumed the wells are at equal depth with
identical particles in each. The tunneling parameter is λ with
interactions of strength W among particles in the same well.
In the double-well case with no interactions, the annihilation
operators evolve in time according to

a(t) = a(0) cos λt + ib(0) sin λt,
(3)

b(t) = ia(0) sin λt + b(0) cos λt.

At time t = π/4λ we have

a

(
π

4λ

)
= 1√

2
[a(0) + ib(0)] = d1,

(4)

b

(
π

4λ

)
= 1√

2
[ia(0) + b(0)] = d2,

which is then equivalent to the 50-50 beam splitter. The simple
two-particle HOM effect, with a single particle initially in each
well, corresponds to the following state vector:

a†
(

π

4λ

)
b†

(
π

4λ

)
|0〉

= 1

2
[a(0)† − ib(0)†][−ia(0)† + b(0)†]|0〉

= −i

2
[a(0)†a(0)† + b(0)†b(0)†]|0〉, (5)

that is, ending up with a superposition of a pair of particles in
each well, as expected in the simplest HOM effect. The HOM
effect arises because of the destructive interference resulting
from exchange of particles in the final state.

For the general case of arbitrary N , we can solve for the
coefficients in the expansion of the wave function |ψ(t)〉 of
H in Fock states |n,N − n〉, having n particles in well A and
N − n in well B. If we take

|ψ(t)〉 =
∑

n

cn(t) |n,N − n〉 , (6)

then the differential equation for cn(t) can be shown to be

i
dcn(t)

dt
=

∑
n′

〈n,N − n|H/�|n′,N − n′〉cn′ (t)

= −λ[
√

n(N − n + 1)cn−1(t)

+
√

(n + 1)(N − n)cn+1(t)]

+W

2
[n2 − n + (N − n)2 − (N − n)]cn(t), (7)

where we have omitted the term in E0 that leads to a trivial
phase factor.

III. HOM CALCULATIONS

We can use Eqs. (7) to compute HOM-type interferences.
For the simplest case of NA = NB = 1, the equations are

iċ0 = γ c0 −
√

2c1, iċ1 = −
√

2c0 −
√

2c2, (8)

iċ2 = γ c2 −
√

2c1, (9)

where now we have expressed the time in units of �/λ and
defined γ = W/λ. The solutions of these equations for the
probabilities |cn(t)|2 are shown in Fig. 2.

For γ = 0 the analytic solutions are

c0(t) = c2(t) = i√
2

sin 2t, c1(t) = cos 2t, (10)
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FIG. 2. Double-well HOM result with N = 2, NA = NB = 1,

showing the time dependence of the probabilities of particle occu-
pation of the wells with no interaction, γ = 0. The probabilities are
shown with |c1(t)|2 as a solid line, and |c0(t)|2 = |c2(t)|2, dashed.
Initially we assume the wells each contain one particle: c1(0) = 1
and c0(0) = c2(0) = 0. After time t = π/4 (in units of �/λ) the
probabilities become |c1|2 = 0 and |c0|2 = |c2|2 = 1/2.
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FIG. 3. Double-well HOM result with N = 4 and 8. (Left) Probabilities pn of particle occupation of well A at time t = π/4 (in units of
�/λ) for initial conditions NA = NB = 2; the interaction parameter γ = 0. (Right) Similarly for initial conditions NA = NB = 4.

giving the wave function at time t = π/4 as

|ψ(t = π/4)〉 = i√
2

(|0,2〉 + |2,0〉). (11)

Thus the probabilities for the HOM effect, with

pn ≡ |cn(π/4)|2, (12)

are the standard results: p0 = p2 = 1/2; p1 = 0.

This “HOM time” is just as identified in the experiment of
Ref. [11], but in our case the HOM effect can be generalized to
more particles in each source, as was done in Refs. [7] and [8].
In Fig. 3 we show the cases of N = 4 and 8, where again we
consider the occupations of the wells at time t = π/4 with
equal occupation in each well initially. If the initial number of
particles is not the same in each well, then the HOM preference
for even occupation cannot be maintained so purely, as seen in
Fig. 4.

Until now we have reproduced the results of Ref. [7] exactly.
One aspect of the present approach to the HOM analysis is
that we can include the effects of interactions. In the N = 2
case the probabilities, obtained from a numerical solution of
Eqs. (8), show that p0 and p2 decrease as γ increases and
p1 increases until all probabilities are equal at γ ≈ 2.5. By
γ = 6, p0 and p2 are very small. This might be expected for
a repulsive potential, but the results [and those of Eqs. (7) for
any time] are invariant under sign reversal of γ . The results
are the same as if the particles had been fermions. Indeed,
such so-called fermionization of the system has been seen
previously [21,24]. We can see what is happening by looking

2 4 6 8
n

0.05

0.15

0.25
pn

FIG. 4. Double-well HOM result for N = 9, with NA = 4, NB =
5 initially, showing the probabilities pn of particle occupation of well
A at time t = π/4 (in units of �/λ).

at the full time dependence in Fig. 5. The average probability
for staying in the original {1,1} state is enhanced and those
for the pair states {2,0} and {0,2} are diminished. This result
illustrates coordinated tunneling as seen in other work [24–26].
In Refs. [24] and [26] two particles started out in the same well,
and the result was the pair states became favored and the {1,1}
state diminished in probability. In our case any coordinated
tunneling would seem to involve the pairs crossing together,
but in opposite directions, so that we get the opposite result.
In Ref. [21] bunching was seen for two noninteracting bosons
and antibunching for a pair of fermions or strongly repulsive
bosons.

In Fig. 6 we show the effect of increasing γ = W/λ on
the initially equal-sided N = 8 case. At small γ = 0.3 the
HOM effect becomes less “pure” with odd states {1,7},{3,5},
etc. now possible; by γ = 0.5 the {4,4} state is enhanced;
and at large γ = 1 the {4,4} state has become highly favored.
The effect seems related to “self-trapping,” in which the sign
of an initial imbalance in the number of particles in the two
wells becomes fixed when the interaction parameter exceeds
a critical value [26–30], with reduced amplitude oscillations
away from the initial value of the imbalance. We discuss some
results of an analysis of self-trapping in the Appendix and
how our results might be similar. For fixed N = 8 the critical
interaction strength for self-trapping is γ = 0.5; the graphs
then show results below, at, and above this critical value. This
effect is again independent of the sign of γ.
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FIG. 5. Double-well HOM probabilities |cn(t)|2 as a function of
time (in units of �/λ) for N = 2 (initially NA = NB = 1) with γ = 6;
|c0(t)|2, |c2(t)|2 shown as dashed lines; |c1(t)|2 as solid line. Compare
with Fig. 2, for which γ = 0. As γ is increased beyond the value
here, the amplitudes of the oscillations diminish further.
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FIG. 6. Effects of interactions γ on the double-well HOM results with N = 8 [cf. Fig. 3 (right)]. (Left) Probabilities pn of particle occupation
of well A for initial conditions NA = NB = 4 and interaction parameter γ = 0.3. (Center) Similarly with γ = 0.5. (Right) Similarly for γ = 1.

IV. GENERALIZATIONS

In addition to simulating a single beam splitter, particle
tunneling between wells can behave as an interferometer.
Reference [31] coupled two waveguides together with tun-
neling at two points, corresponding to beam splitters, to make
a two-input, two-output interferometer. Suppose we put three
wells in a line as shown in Fig. 7(a). Particles in the outer wells
A and C are connected by tunneling to the center well B. The
tunneling Hamiltonian, without interactions, is

H/� = λ(a†b + ab† + b†c + bc†). (13)

If we solve the equations for a(t), b(t), and c(t), we find
that the solutions repeat the initial conditions after a time
tR = π/(

√
2λ), but at half that, tH = π/(2

√
2λ), the equations

for the operators are equivalent to detector equations for the
interferometer shown in Fig. 7(b). Initially we take a single
particle in each of the outer wells. The initial configuration
repeats in tR . If a Fock state for the occupation of the three wells
is |m1,m2,m3〉, then the wave function at time tH becomes

|ψ(tH )〉 = − 1√
8

|200〉 − 1√
2

|020〉 − 1√
8

|002〉 + 1

2
|101〉 .

(14)

Thus while the original state |1,0,1〉 is present, the only other
states are those with two particles in each well, in a kind of
HOM effect.

We can place four wells on a square as shown in Fig. 8(a)
with particles initially only in wells A and C. Tunneling is
between nearest-neighbor wells with the initial state being
{A,B,C,D} = {1010}. Possible states are {2000, 0200, 0020,
0002, 1100, 1010, 1001, 0110, 0101, 0011}. Now the repeat
time for the initial wave function is π/2λ. At half that, tH =

FIG. 7. (a) Three wells in a line. (b) The interferometer equivalent
to the three-well line of (a). The phase shift needed is φ = π.

π/4λ, the system is equivalent to the interferometer shown.
With a single particle in each site A and C, the wave function
becomes

|ψ(tH )〉 = − 1√
8

(|2000〉 + |0200〉 + |0020〉 + |0002〉)

+ 1

2
(|1010〉 − |0101〉). (15)

So in this case the interference removes occupation from these:
{1100}, {1001}, {0110}, and {0011}, i.e., states with nearest
neighbors both occupied.

However, we can do a more interesting experiment with this
form of interferometer, namely, look at a violation of the Bell
theorem. An interferometer method of testing the Bell theorem
with arbitrary numbers of bosons was proposed in Ref. [32],
with Alice and Bob varying phase angles ζ and θ in a device
like that in Fig. 8(b). Here we consider the four-well system
with just a single particle in each of the sites A and C. However,
in order to vary the phase angles in the four-well device, we
have to allow for variable tunneling rates. Figure 9 shows how
we proceed and defines the variable tunneling rates λ1 and λ2.
After a suitable time, t = π/4λ, we measure the parity product
〈PαPβ〉 with particles in A or C counting positive and those in
B or D counting negative, so Alice’s parity is Pα = (−1)nB and
Bob’s is Pβ = (−1)nD . We adjust λ1 and λ2 to form situations
P ′

α and P ′
β and maximize the usual quantity in the Bell-Clauser-

Horne-Shimony-Holt (BCHSH) form [33] of the Bell the-
orem: Q = 〈PαPβ〉 + 〈P ′

αPβ〉 + 〈PαP ′
β〉 − 〈P ′

αP ′
β〉. Changing

FIG. 8. (a) Four wells in a square with tunneling only along the
sides. When all four tunneling rates have the same value λ, the system
at t = π/4λ is equivalent to interferometer shown in (b) with phase
shifts ζ = θ = 0.
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FIG. 9. Four wells with Alice’s having counters A and D; Bob
has B and C. The tunneling rate between A and D is λ, as is that
between B and C. The tunneling rate between A and B is λ1 and that
between C and D is λ2.

the tunneling rate is equivalent to a change of phase in an arm of
the interferometer. The tunneling rate λ1 is Alice’s setting and
λ2 is Bob’s. Denote a parity average by E( λ1

λ
, λ2

λ
). We maxi-

mized E(1,1) + E(1 + ξ,1) + E(1,1 − ξ ) − E(1 + ξ,1 − ξ )
and found the maximum was 2.815 at ξ = 2.74. This result is
very close to the maximally possible violation of 2

√
2 [34].

V. CONCLUSION

We have shown how a simple set of potential-well traps
can be used to demonstrate the HOM effect and to build
interferometers where the beam splitter is provided by tun-
neling between wells. This suggested method emphasizes the
possibility of doing generalized HOM experiments with multi-
ple particles by using condensates. The actual implementation
of such interference effects involves some requirements that

could be difficult: initially counting particle numbers in the
wells when used as sources, turning on tunneling for a specified
time, and then counting the particle numbers in the wells acting
as detectors. Reference [11] has shown that these difficulties
can be overcome in the N = 2 case. When interactions among
the particles are considered, we find the HOM effects change
considerably, showing the effects of possible “fermionization,”
cooperative pair tunneling, and self-trapping that have been
seen in previous double-well analyses. We find that rearranging
the wells in various configurations can allow their use in a wide
range of interferometers.

Note added. After completing our work we learned of re-
lated calculations by B. Gertjerenken and P. G. Kevrekidis [35].
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APPENDIX: SELF-TRAPPING

We referred to self-trapping as a possible cause of the
results shown in Fig. 6. We would like to examine that
claim a bit in this Appendix. Reference [28] discusses the
dynamics of a Bose-Einstein condensate in a double-well
potential and the “self trapping” effect, which occurs when
the interactions between particles change the characteristics
of the tunneling between the wells. Within a mean-field
approximation, free tunneling between wells is reduced for
interactions above a certain critical value, causing an initial
imbalance between numbers of particles in the wells to be
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FIG. 10. Time dependence of NA(t) in a double-well potential with N = 8 with initial condition NA(0) = N . Solid line, exact result; dashed
line, mean-field result of Eq. (A3). (Upper left) No interaction γ = 0. The exact and mean-field results coincide. (Upper right) γ = 0.3, below
the self-trapping critical interaction value. (Lower left) γ = 0.5 at the critical value. (Lower right) γ = 1.0, above the critical value. Time in
units of �/λ.
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locked in with only smaller amplitude oscillations away from
that. In this approximation, all particles occupy the same state
given by a Gross-Pitaevskii equation,

ψ(r) = k1u1(r) + k2u2(r), (A1)

where ui(r) represents the ground-state wave function in
well i = 1,2. The mean-field equations are expressions for
the amplitudes ki.. When a more exact analysis is used (a
full N -body wave function depending on more than two
parameters, but still a two-mode approximation), quantum
fluctuations alter the mean-field results by time modulations
and system revivals.

If we derive equations of motion for the annihilation
operators in the Hamiltonian of Eq. (2), we find

i
da

dt
= −b + γ a†aa, i

db

dt
= −a + γ b†bb, (A2)

where we have measured energy from E0 = 0 and time in
units of �/λ as before. If we replace a†a by NA(t) and b†b by
NB(t), these are just the mean-field equations for the ki found
in Ref. [28], which, if one has initial conditions NA(0) = N ,
have the solution [28]

NA(t) = N

2
[1 + cn(2t |N2γ 2/16)], (A3)

where cn(u|v) is a Jacobi elliptic function. An equivalent set of
equations suitable for numerical solution for arbitrary initial
conditions is given in Ref. [27]. We can compare our own exact
results of Eqs. (7) with these mean-field results.

Note that in Sec. III our initial condition was always
NA(0) = NB(0). In this case one finds in both exact and
mean-field cases that NA(t) = N/2 because state {n,N − n}
is always paired in a superposition with state {N − n,n}.
(Note the symmetry of the probabilities in Fig. 6.) However,
self-trapping shows up dramatically when all the particles are
initially in one well, NA(0) = N . The critical interaction for
fixed N is

γc = 4

N
. (A4)

In Fig. 10 we consider a small value N = 8, although our
equations are valid for any N value. The critical value then
is γc = 0.5. Our plots show the time dependence of NA(t).
For γ = 0 the mean-field and the exact value coincide with a
sinusoidal oscillation with full amplitude 0 < NA(t) < N . At
γ = 0.3 < γc the mean field continues to show full oscillation
but an additional fluctuation is introduced in the exact result.

1 2 3 4 5 6 t
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0.6

0.8

1.0
cn t 2

FIG. 11. Time dependence of configurations probabilities |cn(t)|2
in a double-well potential with N = 8 and initial condition NA(0) =
4 with interaction γ = 10. The solid line gives |c4(t)|2 for initial
configuration {4,4}, while the dashed line is for |c3(t)|2 = |c5(t)|2 for
states {3,5} and {5,3}, respectively. All other states have very small
probabilities. The {4,4} state is trapped at relatively large values.
Time in units of �/λ.

At critical value γ = 0.5 the mean-field expression reaches
self-trapping with NA(t) = N/2; the exact result fluctuates
about this. (This result favoring equal populations in both wells
might be relevant in our own case of Fig. 6.) In the case of
γ > γc, the mean-field result maintains a value of NA(t) �
N/2 with oscillation amplitude decreasing with increasing γ ;
the exact quantum value seems to have an additional longer-
period oscillation frequency superposed, similar to the two-
frequency oscillations discussed in Ref. [24]. If NA(0) < N ,
the amplitude of the oscillation below criticality decreases
correspondingly around N/2.

None of these results exactly mirrors what we found in
Fig. 6, where the configuration {4,4} became favored. In
that case, the initial condition was NA(0) = 4, for which the
symmetry of the probabilities leads to NA(t) = 4, i.e., constant
in value, both exactly and in mean-field approximation.
However, if we look at the details of the probabilities pn(t) =
|cn(t)|2 for individual configurations {n,N − n}, then we find
that the initial configuration itself can become “trapped” at a
large value, as seen in Fig. 11 for a large interaction parameter.
This effect is analogous to the “fermionization” we saw for just
two particles in Fig. 5. This effect is due simply to the fact that
the initial condition enters with approximately unit amplitude
and that any other states appear in higher order in 1/γ . This
is an effect that cannot be seen in the mean-field calculations;
we plan to return to this subject in a future publication.
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