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Motivated by recent experiments with ultracold quantum gases in optical lattices we study the decay of
the staggered moment in the one-dimensional Fermi-Hubbard model starting from a perfect Néel state using
exact diagonalization and the infinite-system-size time-evolving-block-decimation method. This extends previous
work in which the same problem has been addressed for pure spin Hamiltonians. As a main result, we show
that the relaxation dynamics of the double occupancy and of the staggered moment are different. The former is
controlled by the nearest-neighbor tunneling rate while the latter is much slower and strongly dependent on the
interaction strength, indicating that spin excitations are important. This difference in characteristic energy scales
for the fast charge dynamics and the much slower spin dynamics is also reflected in the real-time evolution of
nearest-neighbor density and spin correlations. A very interesting time dependence emerges in the von Neumann
entropy, which at short times increases linearly with a slope proportional to the tunneling matrix element while
the long-time growth of entanglement is controlled by spin excitations. Our predictions for the different relaxation
dynamics of the staggered moment and the double occupancy should be observable in state-of-the-art optical
lattice experiments. We further compare time averages of the double occupancy to the expectation values in both
the canonical and diagonal ensembles, which quantitatively disagree with each other on finite systems. We relate
the question of thermalization to the eigenstate thermalization hypothesis.
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I. INTRODUCTION

The nonequilibrium dynamics of order parameters in
quenches from ordered into disordered phases and vice versa
has been the topic of many studies, including work on
Bose-Einstein condensates [1,2], bosons defined on lattice
models [3], and systems with antiferromagnetic order [4,5].
In quantum magnets, the dynamics of the staggered magneti-
zation is a simple yet nontrivial example since the Néel state is
never an eigenstate of antiferromagnetic Heisenberg models.

In one spatial dimension, since the spontaneous breaking
of a continuous symmetry is prohibited, starting from a
state with perfect Néel order, the staggered magnetization is
expected to decay to zero under the unitary time evolution
with a SU(2)-symmetric Hamiltonian. This problem has been
intensely studied for the spin-1/2 XXZ chain [6–14] and
one observes a temporal power-law decay of the staggered
magnetization to zero for the XX case and indications of
an exponential decay to zero in the interacting case [6]. The
quantum quench dynamics starting from the Néel state has
attracted additional attention since an exact solution for the
long-time asymptotic behavior could be obtained by exploiting
the integrability of the model [9,12,13]. Therefore, the question
of whether the steady state in this quench problem can be
described by the generalized Gibbs ensemble [15] could be
addressed with rigor.

In the context of condensed-matter experiments, the decay
of Néel order is related to time-resolved spectroscopy with
Mott insulators in real materials [16–18]. In experiments with
ultracold quantum gases, it is often particularly easy to prepare
initial real-space product states with a high fidelity, which
has been used as the starting point in several nonequilibrium
studies of Hubbard- and Heisenberg-type models [19–23]. The
particular problem of the decay of Néel order has so far been
addressed in the noninteracting case in one dimension [24]

(where the initial state is an ideal charge density wave state of
one spin component) and for a two-dimensional system [25].
Moreover, the decay of a spin spiral has been investigated
in a two-component Bose gas in the strongly interacting
regime, where it can be described by the Heisenberg model,
in one and two dimensions [26]. The reverse problem, namely
the formation of antiferromagnetic order in time-dependent
protocols, is of equal relevance since this may provide a
path for studying magnetic order in the quantum regime in
ultracold atomic gas experiments [27–31], which has been
the goal of a series of recent experiments [32–36]. For other
nonequilibrium experiments with fermions in optical lattices,
see Refs. [37–39].

In this work, we study the real-time decay of the Néel
state in the one-dimensional Fermi-Hubbard model, which,
first, extends previous studies [6] by incorporating charge
dynamics and, second, is motivated by two related recent
experiments with fermions in one dimension [24] and bosons
in two dimensions [25]. The Hamiltonian reads

H = −t0
∑

i

(c†i+1,σ ci,σ + H.c.) + U
∑

i

ni↑ni↓, (1)

where t0 is the hopping matrix element, U is the on-site
repulsion, c

†
i,σ creates a fermion with spin σ = ↑,↓ on site

i, and niσ = c
†
i,σ ci,σ . The initial state is given by

|ψ0〉 = | . . . , ↑ , ↓ , ↑ , ↓ , ↑ , ↓ , . . . 〉 . (2)

Consequently, we are at half filling. We use the infinite-system-
size time-evolving block-decimation (iTEBD) algorithm [40]
to compute the time dependence of several observables such as
the staggered magnetization, the double occupancy, nearest-
neighbor correlations, and the von Neumann entropy (we set
� = 1). As a main result, we demonstrate that the relevant
time scales for the relaxation of the double occupancy is
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set by the inverse of the hopping matrix element 1/t0 while
for the staggered magnetization and nearest-neighbor spin
correlations, the dynamics is the slower the larger U is.
The difference in the relaxation dynamics can most clearly
be discerned in the strongly interacting regime U/t0 > 4.
This reflects the existence of two characteristic velocities in
the low-energy, equilibrium physics of strongly interacting
one-dimensional (1D) systems, namely the spin and charge
velocity, related to spin-charge separation [41]. Furthermore,
there are fingerprints in the time dependence of the entangle-
ment entropy. In general, in global quantum quenches, one
expects a linear increase of SvN(t) ∼ t in time [42–44]. In our
case, we observe a short-time dynamics governed by charge
excitations where SvN ∼ t0t while at longer times SvN ∝ t/U ,
suggesting that spin excitations are relevant for which the
energy scale is the magnetic exchange constant J = 4t2

0 /U .
Furthermore, we analyze the dependency of the double

occupancy on the postquench values of U/t0 and we inves-
tigate whether the steady-state values are thermal or not. The
latter is a possible scenario for an integrable 1D model [15].
We observe that time averages are close to the expectation
values in the diagonal ensemble [45], while on the system sizes
accessible to exact diagonalization, the expectation values in
the diagonal and canonical ensemble are clearly different. In
this context, we also show that the distribution of eigenstate
expectation values is in general broad, in contrast to systems
that are expected to thermalize in the framework of the
eigenstate thermalization hypothesis [45–47]. The observation
of broad eigenstate expectation values of observables in
our model is similar to those of Refs. [48,49] made for
integrable models of interacting spinless fermions. For other
recent studies of interaction quantum quenches in the one-
dimensional Fermi-Hubbard model, see Refs. [50–55], and for
studies of the time evolution starting from a perfect Néel state
in higher dimensions, see Refs. [4,5,56]. The nonequilibrium
dynamics starting from this particular state yet combined with
a sudden expansion into a homogeneous empty lattice has been
investigated in Ref. [57].

The plan of this paper is the following. We provide a
brief overview over the numerical methods and definitions
in Sec. II. Section III contains our main results, discussing
the time evolution of observables and von Neumann entropy,
steady-state values, thermalization, and the dynamics in the
strongly interacting regime. We conclude with a summary
presented in Sec. IV.

II. NUMERICAL METHODS

In this work we use two wave-function-based methods,
exact diagonalization (ED) and the iTEBD method, to study
nonequilibrium dynamics in the Fermi-Hubbard model. We
further use a standard density matrix renormalization group
(DMRG) code to compute ground-state expectation val-
ues [58,59].

A. iTEBD

We use Vidal’s iTEBD algorithm for infinite systems to
calculate the time evolution of the observables of interest
starting from the perfect Néel state. This method approximates

the true wave function by a matrix-product state ansatz [60]
appropriate for the thermodynamic limit and is related to
time-dependent density matrix renormalization group meth-
ods [61,62] and time-evolving block decimation (TEBD) for fi-
nite systems [63]. We use a Trotter-Suzuki breakup of the time-
evolution operator with a time step that is chosen small enough
to resolve high-frequency oscillations at large U/t0. The max-
imum number of states is bounded by χmax = 1024. We com-
pared runs with different χmax and show only data for which
the results are indistinguishable on the scale of the figures.

Compared to its siblings—the time-dependent density ma-
trix renormalization group method [61,62] and TEBD [63]—
the advantage of iTEBD is clearly that it is set up directly for the
thermodynamic limit. Moreover, both TEBD and iTEBD are
particularly well suited for problems in which the initial state
has an exact matrix-product state representation, which applies
to our situation. All theses approaches rely on approximating
the time-evolved wave function through matrix-product states
which only gives a faithful representation if the time-evolved
wave function does not encode a large amount of entan-
glement [60]. While our initial state is not entangled, the
entanglement in a global quantum quench like ours grows
linearly in time (see, e.g., Ref. [42]), which results in an
exponential increase of computational effort [60]. Thus, as the
time evolution progresses, eventually, going from time step
t to t + �t will consume more computational time than the
whole previous calculation. By keeping the discarded weight
constant in every step, one accounts for the time-dependent
increase of the entanglement entropy, and by carrying out
simulations with a different discarded weight the accuracy
of the data can be controlled. While the linear increase of
the entanglement entropy with time is generic to a global
quantum quench, the actual quench, model parameters, and the
observable determine the actual numerical costs such that no
general prediction of numerical effort and accuracy is possible.

B. Exact diagonalization

Our second method is exact diagonalization. We perform
the time evolution in a truncated Krylov space (see Ref. [64]
for a review and references). To be able to treat larger
systems we exploit symmetries of the Hamiltonian (1),
namely conservation of total particle number N , total spin
Sz, invariance under lattice translations (quasimomentum k),
the parity, and spin-flip symmetry. In ED simulations, we
use periodic boundary conditions, and the number of sites
is denoted by L.

C. Observables

Key quantities in our analysis are the double occupancy

d(t) = 1

L

L∑
i=1

〈ni↑ni↓〉, (3)

where the associated operator is d̂ = 1
L

∑L
i=1 ni↑ni↓. The

staggered magnetization is

ms(t) = 1

2L

L∑
i=1

(−1)i〈ni↑ − ni↓〉. (4)
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We further study nearest-neighbor density and spin corre-
lations defined as Ni = 〈nini+1〉 and Si = 〈Sz

i S
z
i+1〉, with

ni = ni↑ + ni↓ and Sz
i = (ni↑ − ni↓)/2. The von Neumann

entropy for a central cut through the system is computed from

SvN = −tr[ρA ln ρA], (5)

where ρA is the reduced density matrix of one half of the
system.

III. RESULTS

A. Time evolution and characteristic time scales

1. Double occupancy and staggered moment

Figures 1(a) and 1(b) show the time evolution of the
double occupancy d(t) and of the staggered magnetization
ms(t), respectively, obtained from iTEBD simulations. While
the double occupancy rapidly approaches a time-independent
regime for all values of U/t0 considered here, the relaxation of
the staggered magnetization towards ms = 0 is much slower.
It is very instructive to replot ms(t) versus t/U [inset in
Fig. 1(b)]. This results in a collapse of the data for U > 4t0,
which is the better the larger U/t0 is. Therefore, the relaxation
of double occupancy and staggered magnetization occur at
different time scales 1/t0 and U , respectively. This suggests
that the relaxation of spin-related quantities is set by the
magnetic exchange matrix element given by J = 4t2

0 /U for
large U/t0. Both quantities further exhibit coherent oscillations
that decay during the approach to a stationary value. For
the double occupancy the frequency is given by ω = U for
large U � t0. By contrast, the period of oscillations in ms(t)
increases in the large-U/t0 limit. This is expected, since
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FIG. 1. (Color online) (a) Double occupancy d(t) and (b) stag-
gered magnetization ms(t) as a function of time during the quench
from the Néel state to U/t0 = 0,4,8,16 (iTEBD data). Dashed lines in
(a), expectation value ddiag in the diagonal ensemble Eq. (10) from ED
(L = 10). Inset in (b), ms(t) plotted versus t/U for U/t0 = 4,8,16.

in the Heisenberg limit the period of oscillations is 1/(2J )
with J = 4U/t2

0 [6]. Note that the noninteracting case has
recently been studied comprehensively in Ref. [65] and that
our iTEBD results agree with the analytical solution for the
U = 0 case [6,66,67].

The short-time dynamics of both quantities (Ô representing
an observable) can be obtained analytically by expanding the
time-evolution operator:

〈Ô(t)〉 ≈ 〈ψ0|Ô|ψ0〉 + i〈ψ0|[H,Ô]|ψ0〉t
− 1

2 〈ψ0|[H,[H,Ô]]|ψ0〉t2 + O(t3). (6)

For both double occupancy and staggered magnetization,
the leading time dependence is ∼ t2 and comes from
〈ψ0|HÔH |ψ0〉 ∝ t2

0 , which is independent of U . Hence, the
nontrivial U dependence cannot be deduced from this short-
time dynamics. Second-order time-dependent perturbation
theory in t0/U gives

d(t) = 8t2
0

U 2
sin2

(
Ut

2

)
, (7)

ms(t) = 1

2
− 8t2

0

U 2
sin2

(
Ut

2

)
. (8)

These expressions agree with our numerical data for
U/t0 � 16.

2. Comparison to Heisenberg model

For completeness, we show that the time dependence of the
staggered magnetization in the large-U/t0 limit approaches
the one of the spin-1/2 Heisenberg model H = J

∑
i

Si · 
Si+1,

where J is the magnetic exchange coupling. We expect
the time evolution of ms(t) to be identical in both models
in the limit of large U/J since the Heisenberg model is
derived from the Fermi-Hubbard model via a Schrieffer-Wolff
transformation that projects onto the subspace of vanishing
double occupancy [68].

The comparison is shown in Fig. 2, where we present
iTEBD results for U/t0 = 16,32 and the pure spin system. We
see that the results for the two models become quantitatively
similar for large U/t0. Moreover, the short-time dynamics in
ms(t), namely the small initial oscillations (see the arrow

0 0.5 1 1.5 2 2.5
t J
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m
s(t
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Heisenberg chain
U/t0=32
U/t0=16

FIG. 2. (Color online) Time dependence of the staggered mo-
ment for Heisenberg (solid line) and Hubbard model with a large
U/t0 = 16,32 (iTEBD data), plotted versus time measured in inverse
units of the magnetic exchange constant J = 4t2

0 /U . The arrow
indicates the small-amplitude oscillations in the short-time dynamics
for finite U/t0 < ∞ whose frequency is given by U .
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FIG. 3. (Color online) (a) Nearest-neighbor charge correlations
Ni(t) = 〈nini+1〉 and (b) nearest-neighbor, longitudinal spin corre-
lations Si(t) = 〈Sz

i S
z
i+1〉 as a function of time for U/t0 = 0,4,8,16

(iTEBD results).

in the figure), disappear as U/t0 increases, indicating the
complete suppression of short-time charge dynamics. This is
accompanied by a shrinking of the time window in which the
short-time dynamics is governed by δms(t) = ms(t) − ms(t =
0) ∝ (t0t)2 [see Eq. (6)], which gets replaced by δms(t) ∝
(J t)2 (the latter follows from considering the Heisenberg
model).

3. Nearest-neighbor correlations

The time dependence of nearest-neighbor density correla-
tions Ni(t) [Fig. 3(a)] and spin correlations Si(t) [Fig. 3(b)]
bears similarities to that of the double occupancy and the
staggered moment, respectively. The density correlator under-
goes a rapid decrease towards a stationary state that happens
during the first tunneling time and then exhibits oscillations
with a U -dependent frequency. On the contrary, the relaxation
dynamics of the spin correlator is much slower, and again
controlled by U [the data for Si(t) can be collapsed in the
U/t0 > 4 regime by plotting them versus t0/U , analogous to
the staggered moment].

4. Von Neumann entropy

The existence of two different time scales for the relax-
ation dynamics of the double occupancy and the staggered
magnetization translates into an interesting time dependence
of the von Neumann entropy (see Fig. 4). At short times
t � 0.5/t0, SvN ∼ t with a prefactor that is independent of
U , while for t � 0.5/t0, the time dependence crosses over to a
linear increase with a strongly U -dependent slope. Plotting
SvN versus t/U results in a collapse of the data [see the
inset in Fig. 4], comparable to the behavior of the staggered
magnetization.

The prefactor cs of the linear increase of the von Neumann
entropy is related to the existence of gapless modes and given
by the characteristic velocities [44]. We have extracted the
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3S
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(t
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U=0
U=4t0
U=8t0
U=16t00.4 0.8

t/U

0

2

FIG. 4. (Color online) Von Neumann entropy SvN for a central
cut through the system as a function of time for U/t0 = 0,4,8,16
(iTEBD results). Inset: SvN plotted versus t/U for U/t0 = 4,8,16.

prefactor of SvN from the increase in the U -dependent regime,
shown in Fig. 5. It turns out to be a monotonically decreasing
function of U/t0. We further compare cs to the exact value of
the spinon velocity vBA

s known from the Bethe ansatz [69–71]
(dashed line in Fig. 5):

vBA
s = 2t0

I1(2πt0/U )

I0(2πt0/U )
(9)

(I0 and I1 are modified Bessel functions of the first kind). Both
cs and vBA

s clearly have a very similar dependence on U/t0,
unambiguously showing that the long-time dynamics of the
entanglement entropy are controlled by spin excitations.

B. Time averages of double occupancy

In the analysis of time averages, it is instructive to compare
them to the expectation values in the diagonal and canonical
ensemble. The diagonal ensemble is defined as [45]

Odiag =
∑

α

|cα|2〈α|Ô|α〉, (10)

where |α〉 are postquench eigenstates (H |α〉 = Eα|α〉) and
cα = 〈ψ0|α〉 are the overlaps between the initial state and
postquench eigenstates. Odiag is the long-time average of
〈Ô〉 [45], where degeneracies do not enter.

Given that the double occupancy can routinely be measured
in quantum gas experiments [21,37], we concentrate the

0 10 20 30
U/t0

0

0.5

1

1.5

2

c s/t 0

vs
BA

From SvN

FIG. 5. (Color online) Characteristic velocities cs extracted from
the time dependence of the von Neumann entropy SvN in the
U -dependent regime t � 0.5/t0, plotted versus U/t0 (circles). For
comparison we include the exact values vBA

s (dashed line) of the spin
velocity known from the Bethe-ansatz solution [69].
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FIG. 6. (Color online) Finite-size scaling of the expectation value
of the double occupancy in the diagonal ensemble (circles) ddiag for
(a) U = 4t0 and (b) U = 8t0 (circles, ED data for L = 4,6,8,10; star,
time average d̄ from iTEBD). The expectation values in the canonical
ensemble, dcan, are also included (squares).

following discussion on this quantity. The values for ddiag

computed for L = 10 using ED are included in Fig. 1(a) as
dashed lines. Clearly, the time-dependent iTEBD data are very
close to ddiag and seem to approach this value as the amplitude
of oscillations decays.

To get a feeling for the system-size dependence, we show
ddiag versus 1/L for (a) U = 4t0 and (b) U = 8t0, together
with d̄ extracted from iTEBD simulations plotted at 1/L = 0
in Figs. 6(a) and 6(b), respectively. The finite-size dependence
of the data for ddiag is consistent with ddiag(L) → d̄ as system
size increases. We should stress, though, that the time average
of the double occupancy itself could change if we were able
to reach longer times with the iTEBD approach.

The expectation value in the canonical ensemble is com-
puted from

Ocan = tr[ρÔ], (11)

where ρ = exp(−βH )/Z with Z the partition function, all
evaluated at fixed N = L and vanishing total spin

∑L
i=1〈Sz

i 〉 =
0. The temperature T = 1/β is fixed by requiring that

E = 〈ψ0|H |ψ0〉 = tr[ρH ]. (12)

While in our problem E = 0, independently of the postquench
value of U , the canonical temperature T clearly is a function
of U/J since the postquench ground-state energy Egs(U ),
defining for each U/J the zero-temperature reference point,
depends on U/J . To illustrate this point, we introduce the
excess energy

δE = E − Egs(U ). (13)

The canonical temperature T/U expressed in units of U and
the excess energy δE are plotted versus U/J in the main
panel and inset of Fig. 7, respectively. Both T/U and δE are
monotonously increasing functions of U/J as U/J is lowered.
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FIG. 7. Canonical temperature T/U (main panel) and excess
energy δE [see Eqs. (12) and (13)] versus U/J for L = 10 (ED
results).

At U/J = ∞, δE is zero since the initial state is in the ground-
state manifold in that limit. As U/J decreases, E = 0 moves
towards the middle of the many-body spectrum (see also the
discussion in Sec. III C 2 and Fig. 9) and eventually, at U = 0,
it translates into an infinite temperature (see also Ref. [72]). It
is thus more appropriate to express T in units of U rather than
J in the large-U/J regime since this results in T/U → 0 for
U/J → ∞ [72].

From the time-dependent data shown in Fig. 1(a), we
extract the time averages d̄ of the double occupancy. These
are displayed in Fig. 8(a) versus U/t0 (circles) together with
the expectation values dgs in the ground state (triangles, DMRG
data) and the expectation value dcan in the canonical ensemble
(stars). First, we observe that, as anticipated from Fig. 1(a),
d̄ ≈ ddiag for the accessible time scales or system sizes [data
for ddiag not shown in Fig. 8(a)].

0

0.05

0.1

0.15

0.2

0.25

d(
U

)

d (iTEBD)
dgs (DMRG)

dcan (ED, L=10)

0 4 8 12 16
U/t0

-0.2

-0.1

0

0.1

0.2

0.3

Δd
re

l

(a)

(b) ED, L=10

FIG. 8. (Color online) (a) Time averages (circles) of the double
occupancy as a function of U/t0. Time averages are obtained by
averaging over full periods of the oscillations. Triangles denote
the ground-state expectation values (computed with DMRG for
L = 64 and open boundary conditions) for comparison; stars are
the expectation values in the canonical ensemble Eq. (11) computed
with ED for L = 10. (b) Relative difference between canonical and
diagonal ensemble �drel = (ddiag − dcan)/ddiag.
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Second, the time averages are above the ground-state expec-
tation values. This behavior is, in the large-U/t0 limit, some-
what unexpected, given the known nonmonotonic temperature
dependence of d. As a function of T , the equilibrium double
occupancy d(T ) first decreases from its zero-temperature value
and then increases for large T towards d(T = ∞) = 1/4 (see
Refs. [73,74]). The position of the minimum in d(T ) can be
interpreted as a scale for the separation of the spin- versus
charge-excitation-dominated temperature regime. Since we do
not observe d̄ < dgs up to U/t0 = 64, we conclude that the
initial state always mixes in doublons from the upper Hubbard
band and not just the virtual doublons present in the ground
state. For the accessible system sizes, this is confirmed by the
discussion presented in Sec. III C.

We further observe the known dgs ∝ 1/U 2 behavior [75,76]
in the large-U/t0 regime (also obeyed by d̄). The value of
d = 1/4, which is the infinite-temperature expectation value
at U = 0, is approached by d̄ and ddiag as U/t0 is lowered (see
Fig. 8).

Since the system is integrable, it is not surprising that the
expectation values in the canonical ensemble are different from
the ones in the diagonal ensemble. The canonical ensemble has
been computed for a small system using exact diagonalization,
and, therefore, a quantitative comparison only makes sense by
comparing to the diagonal ensemble but not to the iTEBD time
averages. The relative difference is shown in Fig. 8(b) for L =
10 and can be quite large. At least for the accessible system
sizes (see Fig. 6), this difference does not seem to become
smaller. Therefore, we do not observe thermalization in this
model for the quench protocol studied here. Nonetheless, the
qualitative dependence of d̄ , dcan, and ddiag on U/t0 is quite
similar.

C. Connection to eigenstate thermalization hypothesis

1. Eigenstate expectation values

One popular framework to understand thermalization in
closed many-body systems is the eigenstate thermalization
hypothesis (ETH) [45–47]. It states that Odiag = Omc, where
Omc is the expectation value in the microcanonical ensemble,
if the expectation values 〈α|Ô|α〉 of Ô (a local observable)
in postquench eigenstates only depend on energy E in the
thermodynamic limit (the latter also assuming a narrow initial
state [45,72]). In other words, expectation values computed
in a typical many-body eigenstate (which should be the
vast majority of all states) already yield thermal behavior.
For sufficiently large systems, expectation values in the
microcanonical and canonical ensembles should agree with
each other.

On a finite system accessible to exact diagonalization,
validity of the ETH manifests itself in a narrow width of
〈α|Ô|α〉 at a fixed energy E for a generic quantum system,
while for a 1D integrable system, 〈α|Ô|α〉 can be very broad
for a given energy, due to the existence of many nontrivial
(local) conservation laws resulting in a large fraction of
degeneracies. The picture has been studied and often verified
(see, e.g., Refs. [45,48,49,52,77–81]), the important question
being how quickly the distributions of 〈α|Ô|α〉 become
sufficiently narrow as system size increases. Recent work
suggests that for a generic system this is exponentially fast

FIG. 9. (Color online) Postquench eigenstate expectation values
for the double occupancy for various interaction strengths: (a) U/t0 =
0, (b) U/t0 = 4, (c) U/t0 = 8, and (d) U/t0 = 16 (ED data for L =
10). The vertical dashed lines mark the quench energy E = 0 for our
initial state. The inset in (d) shows a blow-up of the first doublon band.
The Néel state is doubly degenerate (denoted by |ψ0〉 and |ψ̃0〉) and
the linear combinations |ψ±〉 = (|ψ0〉 ± |ψ̃0〉)/

√
2 live in the total

quasimomentum k = 0 and k = π subspaces.

in L [82] (see also Refs. [72,83]), while for an integrable
system, the decay of the width of 〈α|Ô|α〉 at a given E is at
most a power-law decay [82,84,85] (see also Ref. [86]).

Here, we exclusively analyze the distribution of postquench
eigenstate-expectation values of the double occupancy. These
are presented in Figs. 9(a)–9(d) for U/t0 = 0,4,8,16. For
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U/t0 � 4, the distributions have a very regular structure in-
herited from the U/t0 = ∞ limit, where the double occupancy
is a conserved quantity. There is one band for each possible
value of 〈α|d̂|α〉 (for the parameters of the figure, L = 10,
these are L〈α|d̂|α〉 = 0,1,2,3,4,5). For a nonzero and small
t0/U , the exact degeneracy in these bands is lifted while the
structure as such is preserved on these small systems. In the
lowest band, the effect of t0 �= 0 is to lower the energy from
the degenerate U/t0 = ∞ ground-state manifold at E = 0
towards the correlated ground state, resulting at the same time
in an increase of 〈α|d̂|α〉 towards its nonzero ground-state
expectation value. This lowest band is very sharp and its
negative slope translates into the decrease of d = d(T ) from
its zero-temperature value as a function of temperature at low
T [73,74], which persists as long as the dL = 0 band remains
well separated from the dL = 1 band.

At smaller U/t0, the bands eventually start to overlap
and they become very broad at a fixed energy (compare the
discussion in Refs. [78,87] for other models). At U = 0, the
distribution of 〈α|d̂|α〉 becomes flat, resulting in an essentially

energy-independent mean value of 〈α|d̂|α〉 ≈ 1/4.

2. Properties of the specific initial state

Our initial state has a mean energy of E = 0 and a width
(in the diagonal ensemble) of σdiag =

√
〈ψ0|H 2|ψ0〉 = t0

√
2L,

which is independent of U . This is indicated by the shaded
areas in Fig. 9. For large U/t0, primarily the very narrow first
band is sampled and E = 0 sits at the high-energy edge of the
first, dL = 0 band (recall that for U/t0 = ∞, dL takes integer
values). Therefore, the initial state asymmetrically mixes in
eigenstates with too-large values of 〈α|d̂|α〉 first from states
in the dL = 0 band at E < 0, and second, from the band
with dL = 1 (the latter follows from analyzing the distribution
of |cα|2). Hence, the overall structure of the distribution of
〈α|d̂|α〉 combined with the distribution of |cα|2 is consistent
with the observation that d̄ > dcan at large U/t0 (compare
Sec. III B).

At very small U/t0, the initial state samples the bulk of
the system where the density of states is large. At U = 0, the
corresponding canonical temperature derived from the quench
energy is infinite and since 〈α|d̂|α〉 does not depend much on
energy, we must find d̄ = ddiag = dcan → 1/4 as L increases,

consistent with the discussion in Sec. III B. At intermediate
U/t0, the initial state samples several overlapping and partially
very broad bands of the 〈α|d̂|α〉 distribution [see, e.g., the
case of U/t0 = 4 shown in Fig. 9(b)]. Therefore, based on
the structure of the eigenstate-expectation-value distributions
at the quench energy, we expect deviations between thermal
behavior at intermediate and large U/J , consistent with our
previous analysis. In conclusion, we stress that the quench
energy alone is not a sufficient criterion for the analysis
of finite-system size data, but that the actual distribution of
overlaps |cα|2 crucially determines which bands are involved
(see also the discussion in Ref. [72]).

IV. SUMMARY AND CONCLUSION

In this work, we studied the relaxation dynamics in the
one-dimensional Fermi-Hubbard model starting from a perfect
Néel state as a function of the interaction strength U/t0.
As a main result, we reported evidence that the relaxation
dynamics of the staggered moment, spin correlations and of
the von Neumann entropy at long times is controlled by spin
excitations, while the double occupancy undergoes a much
faster dynamics controlled by charge excitations. The slope
cs of the increase of the von Neumann entropy SvN = cst

is very similar to the exact spinon velocity known from
the Bethe ansatz. This separation of time scales for double
occupancy versus staggered magnetization could be accessible
in state-of-the-art quantum gas experiments.

We further demonstrated that the time averages of the
double occupancy are different from the expectation values in
the canonical ensemble. Nonetheless, both quantities exhibit
the same qualitative dependence on U/t0. Finally, we made
a connection to the eigenstate thermalization hypothesis by
showing that the eigenstate expectation values of the double
occupancy are, in general, broadly distributed with no well-
defined dependence on energy only, characteristic for an
integrable one-dimensional system.
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S. Hild, C. Gross, U. Schollwöck, T. Giamarchi, I. Bloch, and
S. Kuhr, Nat. Phys. 9, 235 (2013).

[23] T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I.
Bloch, and C. Gross, Nature (London) 502, 76 (2013).

[24] D. Pertot, A. Sheikhan, E. Cocchi, L. A. Miller, J. E. Bohn, M.
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