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Polarization-induced phase separation and re-entrant transition of two-component
fermions in a one-dimensional lattice
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By investigating the compressibility of one-dimensional lattice fermions at various filling factors, we study
the phase separation and re-entrant transition within the framework of the Bethe ansatz method. We model the
system using the repulsive Hubbard model and calculate compressibility as a function of polarization for arbitrary
values of chemical potential, temperature, and interaction strength. For filling factors 0 < n < 1, compressibility
is a nonmonotonic function of polarization at all thermodynamic parameters. The compressibility reveals a phase
transition into a phase-separated state for both low and intermediate temperatures at intermediate interactions as
one increases the polarization. For certain filling factors, we find the re-entrant transition into the mixed phase at
a higher polarization.
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I. INTRODUCTION

Ultracold fermionic atoms in optical lattices are currently
attracting a great deal of interest due to the possibility of
impressive experimental simulation of rich physics associated
with the strongly correlated condensed matter systems [1,2].
While Feshbach resonance and laser intensities provide un-
precedented control of atom-atom interactions in the optical
lattice, laser interference phenomena provide the control of
dimensionality. Two hyperfine states of Fermi atoms play
the role of the up and down spins of the electrons. Unlike
condensed matter systems, the population of spin up and
down particles can be independently controlled by using a
radio-frequency field [3–12]. As a result, polarization can be
maintained at any desired value between 0 and 100%. The
term polarization here refers to a density imbalance of two
hyperfine states.

This study was motivated by the possibility of using
ultracold atoms to engineer condensed matter systems. Con-
densed matter systems, such as transition metal oxides and
rare-earth materials show collective and interaction dominated
phenomena due to the electron-electron correlation effects.
These phenomena such as the Mott-insulator transition and
magnetism in strongly correlated materials is believed to be
explained by the Hubbard model. The repulsive Hubbard
model is the simplest model capable of explaining both
metallic and insulating like behaviors, as well as the magnetic
properties caused by electron correlation. The insulating states
can be either a band insulator, caused by the Pauli exclusion
of fermions, or a Mott insulator, caused by strong on-site
interactions. In the strong interaction limit, the localized
magnetic properties depend on various parameters such as
filling factors, orbital occupations, crystal field effects, and
Hund’s coupling strength.

Over the years, the Hubbard model has been the center
of intense research as it captures the behavior of parent
superconducting compounds and other magnetic materials.
The studies of phase separation for the Hubbard model in-
tensified after the experimental indication of phase separation
of hole-rich and hole-poor regions in cuprate superconducting
materials [13]. Strongly correlated electrons and holes are
expected to play a key role in these materials and their

phase separation is believed to hinder the superconductivity.
If the Hubbard model is the correct model for the parent
compound of superconductors, can it be used to explain phase
separation? This is the question that inspired us to study
the phase separation of an exactly solvable one-dimensional
model relevant to a flexible cold-atom experiment. It has
been theoretically shown that there is no phase separation
for two-dimensional bipartite lattices at any filling factor at
finite temperatures [14]. In contrast, the phase separation for
the one-dimensional Hubbard model is confirmed only close
to a half filling in the presence of a critical magnetic field [15].
Finite-temperature phase separation for the one-dimensional
Hubbard model away from half filling has not been intensively
investigated except for special cases [16,17].

In this paper we investigate the phase separation of one-
dimensional lattice fermions by the thermodynamic Bethe
ansatz (TBA) numerical method. We use the one-dimensional
Hubbard model as an effective model to describe the
population-imbalanced two-hyperfine mixture in the optical
lattice. We study phase separation by calculating the com-
pressibility for various parameter regimes. By investigating the
compressibility, we find phase separation at finite temperatures
and at intermediate interactions as one increases the polariza-
tion. For some filling factors, we find a re-entrant transition
into a mixed phase at a higher polarization.

This paper is organized as follows. In Sec. II, we discuss
the geometry of the system and its connection to the one-
dimensional Hubbard model. In Sec. III, we briefly discuss
our finite-temperature TBA calculation scheme. In Sec. IV, we
discuss the compressibility calculations and their connections
to the phase separation and re-entrant transition into a mixed
phase. We devote Sec. V to discussion of the experimental
connections and we provide an experimental scheme to
detect the phase separation. Finally in Sec. VI, we draw our
conclusions.

II. MODEL: A ONE-DIMENSIONAL OPTICAL LATTICE
AND THE HUBBARD MODEL

In general, a one-dimensional optical lattice refers to an
optical lattice generated by one set of laser standing waves.
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The result of combined trapping and a periodic potential gives
a pancake-like shape of the surfaces of constant potential.
However, the geometry we consider here is generated by a
three-dimensional optical lattice where reduced dimensional-
ity is achieved by freezing the atomic motion in the transverse
direction. This can be done by operating two standing waves
out of three mutually perpendicular laser standing waves
at higher beam intensities. The higher intensities suppress
tunneling in the transverse direction and create an array of
one-dimensional lattice tubes. The dynamics of the atoms
in one lattice tube can be modeled by the one-dimensional
Hubbard model given by

H =−t
∑
〈ij〉,σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓

−μ
∑
iσ

c
†
iσ ciσ − h

∑
iσ

σ c
†
iσ ciσ . (1)

The first term is the kinetic energy and is proportional to the
tunneling amplitude t between lattice sites i and j = i + 1.
The operator c

†
iσ (ciσ ) creates (destroys) a Fermi atom with

hyperfine state denoted by pseudospin σ = ↑,↓(±1) at lattice
site i. The second term describes the on-site interaction energy
U . The density operator or the occupation number operator
is niσ = c

†
iσ ciσ . Notice that 〈ij 〉 indicates only the nearest

neighbor pair of sites and we neglect tunneling beyond the
nearest neighbors. The average chemical potential μ = (μ↑ +
μ↓)/2 and the chemical potential difference h = (μ↑ − μ↓)/2,
where μσ is the chemical potential of hyperfine state σ . Here
we neglect the confinement harmonic trapping potential and
consider the lattice tubes are homogenous in space. The effect
of trapping potential is discussed in Sec. V.

The tunneling amplitude and on-site interaction are related
to the complete set of Wannier functions wn,i(�r) = ∏

α wn(α −
αi) localized at position �ri with band index n, where α = x,y,z

are the components of Cartesian coordinates. As the band gap
becomes larger than U and temperature T , only the lowest band
n = 0 is populated. For deep lattices, the lattice potential at site
i can be approximated as a three-dimensional harmonic poten-
tial with frequency ωα = 2ER

√
sα/�, where sαER is the laser

intensity of the standing wave in the α direction. The recoil
energy ER = (�k)2/2m is the kinetic energy of an atom with
mass m and the momentum �k of a single lattice photon. For
deep lattices, taking w0(α − αi) as a ground-state harmonic
oscillator function with frequency ωα , the tunneling amplitude
in the one-dimensional geometry becomes t = ∫

dxw∗
0(x −

xi)[− �
2

2m
∂2

∂x2 + V0(x)]w0(x − xj ). This is obtained from the

Mathieu equation as t = 4/
√

πERs
3/4
x exp (−2

√
sx), where

V0(x) = sxER sin2(kx) is the periodic potential generated
by counterpropagating lasers in the x direction. The lattice
constant d = λ/2 is related to the laser wavelength λ,
hence the wave vector k = 2π/λ. The on-site interaction
U = 4π�

2as

∫
dx|w0(x)|4/m ∝ as

√
sx . Notice that the on-

site interaction U can be repulsive or attractive depending
on the free-space s-wave scattering length as . In the present
work, we consider a tight one-dimensional geometry in the x

direction with a positive U modeled by Eq. (1). Notice that
the ratio t/U can easily be controlled by the laser intensity
I ∝ sx of the counterpropagating lasers in the x direction. In

our model, the laser intensities in the transverse directions that
are proportional to sy and sz are maintained at higher intensities
so that the tunneling in the transverse direction is neglected.

III. THERMODYNAMIC BETHE ANSATZ METHOD

Lieb and Wu have shown that the model presented in
the previous section is exactly solvable in one dimension
using the thermodynamic Bethe ansatz method [18]. Following
Takahashi [19,20], the thermodynamic potential per site is
given by

� = e0 − μ − kBT

{∫ π

−π

ρ0(k) ln[1 + ξ (k)]dk

+
∫ π

−π

σ0(�) ln[1 + η1(�)]d�

}
. (2)

The energy per site here is given as e0 = 2tI , and two
distribution functions of k and � are given by

ρ0(k) = 1

2π
+ cos k

∫ ∞

−∞
a1(� − sin k)σ0(�)d�,

σ0(�) = 1

2π

∫ ∞

−∞
s(� − sin k)dk. (3)

The two additional expressions introduced in the equations are
a1(x) = 4u/[π (u2 + 16x2)] and s(x) = csc(2πx/u)/u with
u = U/t . The quantity I is related to the mth-order Bessel
functions Jm(x) through

I = −2
∫ ∞

0

J0(x)J1(x)

x(1 + eux/2)
dx. (4)

The particle-hole ratios of k excitations and � excitations, ξ (k)
and η1(k), are obtained by an infinite set of nonlinear integral
equations:

ln ξ (k) = κ0(k)

T
+

∫ ∞

−∞
d�s(� − sin k) ln

(
1 + η′

1(�)

1 + η1(�)

)
,

(5)

ln η1(�) = s∗ ln[1 + η2(�)] −
∫ π

−π

s(� − sin k)

× ln[1 + ξ−1(k)] cos k dk,
(6)

ln η′
1(�) = s∗ ln[1 + η′

2(�)] −
∫ π

−π

s(� − sin k)

× ln[1 + ξ (k)] cos k dk,

and for j � 2,

ln ηj (�) = s∗ ln{[1 + ηj−1(�)][1 + ηj+1(�)]}, (7)

ln η′
j (�) = s∗ ln{[1 + η′

j−1(�)][1 + η′
j+1(�)]}. (8)

Here we use two integral functions given by s∗f (�) ≡∫ ∞
−∞ s(� − �′)f (�′)d�′ and κ0(k) ≡ −2t cos k − 4t

∫ ∞
−∞

d�s(� − sin k)Re
√

1 − (� − ui/4)2. The average chemical
potential and the chemical potential difference are entered in
the formalism through the grand potential �,

lim
n→∞

ln ηn(�)

n
= 2h

T
, (9)
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and

lim
n→∞

ln η′
n(�)

n
= U − 2μ

T
. (10)

In order to calculate the thermodynamic potential numer-
ically, one has to cut off the set of infinite equations at a
finite number j . We achieve this by following the numerical
procedure proposed by Takahashi et al. [21]. The infinite set
of equations is truncated by replacing s(�) by δ(�)/2 at
j > nc. Then the integral equations are converted into a set
of matrix equations in which 2nc + 1 unknown functions are
represented in terms of discrete points of k and �. These
nonlinear matrix equations are then solved iteratively using
Newton’s method for a given temperature T , average chemical
potential μ, and chemical potential difference h. The details of
the numerical procedure can be found in Refs. [21–23]. From
the numerical solutions of the nonlinear integral equations, we
first calculate the thermodynamic potential � using Eq. (2),
and then the particle density n ≡ n↑ + n↓ = −∂�/∂μ and the
magnetization (the density difference of two hyperfine states,
n↑ − n↓) m = ∂�/∂h follow. The compressibility is then
calculated numerically at a constant polarization P = m/n

using the second derivative of the thermodynamic potential
with respect to the chemical potential [21,24].

IV. RESULTS: IDENTIFYING PHASE SEPARATION
AND RE-ENTRANT TRANSITION THROUGH

COMPRESSIBILITY

We examine the stability of the mixed phase through the
sign of compressibility. Negative compressibility indicates an
instability of the mixed phase, where the system enters into
a phase-separated state. Figure 1 shows compressibility at a
constant interaction strength and a constant finite temperature
for various values of density. The compressibility is always
positive close to the densities of half filling and zero filling.
However, away from these two limits, the compressibility
becomes negative and then gets positive again as one in-
creases the polarization. Notice the compressibility for filling
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FIG. 1. (Color online) Compressibility of a one-dimensional lat-
tice fermion system at interaction strength U = 2t and temperature
β = 30/t . As shown in inset, the density is approximately fixed. The
negative compressibility indicates the instability of the mixed phase
against the phase-separated state. Notice that the plotted quantities
are dimensionless.

factors n � 0.5 and n � 0.75 in the figure. The negative
compressibility indicates the instability of the mixed phase,
meaning that the system is phase separated into two different
distinct phases corresponding to their pseudospins. A further
increase of polarization causes the system to make a re-entrant
transition into the mixed phase. In the mixed phase, both
spin components coexist in the same region of space. This
positive compressibility at higher polarization itself does not
guarantee the stability of the mixed phase over the phase-
separated phase. One has to compare the energies of the
phase-separated state and the mixed phase to determine the
stability. The zero-temperature stability of the mixed phase at
higher polarizations is justified in Ref. [17]. This justification
has been confirmed by comparing the ground-state energies
in both mixed and phase-separated states using both weak
and strong coupling approaches. We believe this is true even
for finite temperatures. The comparison of finite-temperature
energies of the phase-separated state and the mixed state is
not trivial and these calculations are beyond the scope of the
present paper.

The zero-temperature instability of the mixed phase at
higher polarizations has already been established within
the bosonization theoretical frame work [16]. Bosonization
theory suggests that phase separation occurs for U/t �
4π{sin[π (n + m)/2] sin[π (n − m)/2]}1/2. As shown in Fig. 2,
the mixed phase is stable only at higher densities, low polar-
izations, and low interaction strengths. The phase-separated
state is stable at higher polarizations; however, unlike finite
temperatures, the system does not make a re-entrant transition
into the mixed phase at zero temperature.

The compressibility at various interaction strengths and
temperatures is shown in Figs. 3 and 4 respectively. Here
the compressibility is calculated at a desired polarization
P by varying the chemical potential difference h and
keeping the average chemical potential at a representative
fixed value, μ = 3t . Notice that the mixed phase is stable
for the entire range of polarization at smaller and larger

0.6
0.8

1.0

P

0

2

4

u

0

0.5

1.0

n

FIG. 2. (Color online) Zero-temperature phase diagram of one-
dimensional lattice fermions in polarization (P), on-site interaction
(U), and density (n) parameter space. The phase diagram is con-
structed from bosonization theory. While the shaded region represents
the phase-separated state, the unshaded region represents the mixed
state.
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FIG. 3. (Color online) Compressibility of a one-dimensional lat-
tice fermion system at a constant temperature β = 30/t for various
interaction strengths. See Fig. 1 caption for details.

interactions. This can be justified by the compressibility at the
infinite interaction and noninteracting limits. At the infinite
interaction limit, the TBA equations can be solved to get
analytical results [25]. In the limit U → ∞, the polarization
P = tanh(βh)/2 and the compressibility can be calculated
as κ = 2β cosh(βh)/4

∫ π

0 f (k)dk, where f (k) = exp[β(μ +
2t cos k)]/{1 + cosh(βh) exp[β(μ + 2t cos k)]}2. As f (k) >

0 for all k values, the compressibility at the infinite interaction
limit is always positive. This is intuitive as the system can
be considered as spinless fermions in this limit. On the other
hand, in the limit U → 0, no phase separation occurs because
the system consists of noninteracting fermions. Again, the
negative compressibility at intermediate interactions suggests
the phase separation into two pseudospin states.

Consider the temperature dependence shown in Fig. 4. The
mixed phase makes a transition into a phase-separated state
and then makes a re-entrant transition into a mixed phase at
higher polarization for low temperatures. In contrast, the mixed
phase is stable for higher temperatures (small β) over the entire
range of polarization. The high-temperature expansion of the
thermodynamic potential for the one-dimensional Hubbard
model has been carried up to the fourth order in β by Charret
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FIG. 4. (Color online) Compressibility of a one-dimensional lat-
tice fermion system at a constant interaction strength U = 2t for
different temperatures. See Fig. 1 caption for details.

et al. [26] and up to the sixth order in β by Takahashi
et al. [21]. By using the sixth-order expansion, we confirm
the positive compressibility at higher temperatures by an
analytic calculation. The high-temperature expansion of the
compressibility and the polarization up to the sixth order is
given in the Appendix.

Notice that compressibility is a nonmonotonic function of
polarization for all temperatures and interactions. In contrast,
compressibility is a nonmonotonic function of the interaction
parameter only for larger polarizations. However, as evident
from the Fig. 3, compressibility is a monotonic function of
temperature for the entire range of polarizations.

It is worth mentioning that a small density imbalance can be
induced in condensed matter electronic systems by applying
an external magnetic field. Thermodynamic properties of
such one-dimensional systems are thoroughly discussed in
Ref. [20]. Though finite-temperature compressibility as a
function of polarization is not discussed in there, special
attention has been given to the ground-state properties such
as susceptibility, magnetization, and densities [27].

V. CONNECTIONS TO EXPERIMENTS

Recent progress in experimental techniques with ultracold
atoms, such as single-site detection [28,29], noise correlations
[30,31], Bragg scattering [32], and in situ imaging in the
lattice scaling [29], allows one to probe the density variations
in cold-atom experiments. For the case of equal-population
two-component fermions on a three-dimensional cubic lattice,
compressibility has already been measured [33].

Though we neglected it in this study, the underlying
harmonic trapping potential present in all cold gas experiments
causes the density to vary across the lattice. See Fig. 5.
By combining the TBA solutions with the local density
approximation (LDA), we then extract the local density n(z),
magnetization m(z), and then polarization P (z). In LDA, the
external trapping potential Vi = mω2z2/2 at site i is related to
the local chemical potential through the relation μi = μ0 − Vi ,
where ω is the one-dimensional trapping potential, μ0 is the
central chemical potential, and z = id, with lattice constant
d the spatial coordinate. As shown in Fig. 5, the density
monotonically decreases, while polarization monotonically
increases from the center to the edge of the trap [23]. This
trapping potential induced inhomogeneity allows both mixed-

3 2 1 0 1 2 3
0.0
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1.0

1.5

z

n,
m

123 0 1 2 3
0.2

0.4

0.6

0.8

z

P

�a) (b)

FIG. 5. Spatial variations of the atom density n(z) = n↑(z) +
n↓(z) [black curve in (a)], magnetization m(z) = n↑(z) − n↓(z) [gray
curve in (a)]), and polarization P (z) = [n↑(z) − n↓(z)]/[n↑(z) +
n↓(z)] [in (b)]. We define the scaled length z̃ = z

√
mω2/2, where

ω is the one-dimensional trapping frequency. We fixed the on-site
interaction (U = 2t) and the inverse temperature (βt = 1).
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phase and phase-separated states to exist simultaneously inside
the trap. At the center of the trap, the density is higher and the
polarization is lower. On the other hand, the polarization is
higher and the density is lower at the edge of the trap. As
a result, the mixed phase should exist at the center and at
the edge of the trap. However, depending on the density, the
phase-separated state can exist in the middle (not the center)
of the trap. Therefore, by adjusting the total density in the
trap, any polarization-induced phase separation and re-entrant
transition can be investigated experimentally with currently
available experimental techniques.

VI. CONCLUSIONS

In conclusion, we considered two-component Fermi atoms
in a highly tunable optical lattice to study the phase separation
of fermions in one dimension. We have calculated the com-
pressibility of one-dimensional lattice fermions using the ther-
modynamic Bethe ansatz method. We find that compressibility
is a nonmonotonic function of polarization. At filling factor

0 < n < 1, with low temperatures and intermediate interac-
tions, compressibility becomes negative, indicating instability
of the mixed-phase state towards the phase-separated state.
For some parameters at higher polarizations, compressibility
becomes positive again indicating a re-entrant transition into a
mixed phase. These phase-separation and re-entrant transitions
can be detected by using currently available experimental
techniques.
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APPENDIX: HIGH-TEMPERATURE EXPANSION
OF COMPRESSIBILITY

In this Appendix, we provide compressibility and polariza-
tion up to the sixth order in β. Using the high-temperature
expansion of the thermodynamic potential [21,26], we find the
compressibility

κ = β

2
− Uβ2

8
+ κ3

32
β3 + κ4

384
β4 + κ5

1536
β5 + κ6

30720
β6 + O(β7), (A1)

where the coefficients at each order are given by

κ3 = −4h2 − 8t2 − (U − 2μ)2, (A2)

κ4 = U (48t2 + 13U 2 − 48Uμ + 48μ2), (A3)

κ5 = 32h4 + 192t4 + 96t2(U − 2μ)2 − (U − 2μ)2(7U 2 + 8Uμ − 8μ2)

+ 4h2[15U 2 + 2t2(48 + U 2) − 48Uμ + 48μ2], (A4)

and

κ6 =−U [−240h4 + 2880t4 + 107U 4 + 360h2(U − 2μ)2 − 760U 3μ + 2120U 2μ2

− 2720Uμ3 + 1360μ4 + 240t2(11U 2 − 40Uμ + 40μ2)]. (A5)

The sixth-order expansion of polarization becomes

P = hβ

2
− h(U − μ)β2

4
+ P3

24
β3 + P4

48
β4 + P5

3840
β5 + P6

46080
β6 + O(β7), (A6)

where the coefficients of higher orders are

P3 = −h(h2 + 6t2), (A7)

P4 = −h[4h2 + 12t2 + (U − μ)2](U − μ), (A8)

P5 = h{16h4 + 5t2[96t2 + (12 + U 2)(U − 2μ)2] + 40h2[8t2 − 3(U − μ)2]}, (A9)

and

P6 = h{816h4(U − μ) + 20(h2)[16(U − μ)3 + 3t2(160U + U 3 − 160μ − 2U 2μ)] + 3[2880t4(U − μ) + 32(U − μ)5

+ 5t2(U 5 − 6U 4μ + 576Uμ2 − 256μ3 − 8U 2μ(60 + μ2) + 4U 3(38 + 3μ2))]}. (A10)
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