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Symmetry-protected skyrmions in three-dimensional spin-orbit-coupled Bose gases
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We present a variational study of pseudo-spin-1/2 Bose gases in a harmonic trap with weak three-dimensional
(3D) spin-orbit coupling of σ · p type. This spin-orbit coupling mixes states with different parities, which inspires
us to approximate the single-particle state with the eigenstates of the total angular momentum, i.e., superposition
of harmonic s-wave and p-wave states. As the time-reversal symmetry is protected by two-body interaction,
we set the variational order parameter as the combination of two mutually time-reversal symmetric eigenstates
of the total angular momentum. The variational results essentially reproduce the 3D skyrmionlike ground state
recently identified by Kawakami et al. [T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Phys. Rev.
Lett. 109, 015301 (2012)]. We show that these skyrmionlike ground states emerging in this model are primarily
caused by the p-wave spatial mode involved in the variational order parameter that drives two spin components
spatially separated. We find the ground state of this system falls into two phases with different density distribution
symmetries depending on the relative magnitude of intraspecies and interspecies interaction: phase I has parity
symmetric and axisymmetric density distributions, while phase II is featured with special joint symmetries of
discrete rotational and time-reversal symmetry. With the increasing interaction strength the transition occurs
between two phases with distinct density distributions, while the topological 3D skyrmionlike spin texture is
symmetry protected.
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I. INTRODUCTION

The experimental realization [1,2] of one-dimensional (1D)
spin-orbit (SO) coupling in pseudo-spin-1/2 Bose gases has
stimulated many theoretical works on SO coupling in cold
atom physics. These works range from Raman induced 1D SO
coupling [3–7] that has been realized in cold atoms to more
symmetric two-dimensional (2D) Rashba configuration [7–16]
that has been extensively studied in condensed matter. In the
absence of a harmonic trap, single-particle ground states of
both Raman induced and Rashba SO coupling are degenerate,
and two-body interaction selects the generic ground state
from the degenerate manifold determined by the interaction
parameters. For example, Wang et al. [8] found that two
distinct ground-state phases, namely, the plane-wave and
standing-wave (or stripe) phases, appear when intraspecies
two-body interaction is larger or smaller than interspecies
interaction, respectively, in homogeneous 2D Rashba SO-
coupled pseudo-spin-1/2 Bose gases. In the presence of a
2D harmonic trap, a more complex phase diagram of Rashba
SO-coupled Bose gases with two classes of phases and several
subphases in each was figured out by Hu et al. [10,11].

Now experimental schemes for the realization of Rashba
SO coupling have been proposed such as in [17]. On the
other hand, the most symmetric three-dimensional (3D) SO
coupling or Weyl coupling [18–24], which does not even exist
in solid matter, is expected to be realizable in cold atom gases,
and experimental schemes for that have also been proposed
theoretically [18,19]. Recently, Kawakami et al. [20] identified
a 3D skyrmion ground state in 3D SO-coupled two-component
bosons by numerically minimizing the Gross-Pitaevskii energy
functional of the system. They explained the stability of 3D
skyrmion ground state as a result of helical modulation of
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the order parameter in the presence of SO coupling. The
interaction in their work is supposed to be SU(2) symmetric.
Even though two skyrmionlike ground states are found to be
stabilized in different interaction regimes, a ground-state phase
diagram is still absent now. In another work by Li et al. [21],
the 3D skyrmionlike ground state is found to emerge in the
weak SO-coupling regime, while the skyrmion lattice arises in
the strong SO-coupling regime.

In this work, we consider a pseudo-spin-1/2 boson system
subject to 3D SO coupling of σ · p type in a harmonic trap,
and aim to elucidate the role of interaction in determining
the ground-state density and spin texture therein. In Sec. II
we introduce the energy functional for the model in rescaled
units of length, energy, interaction, and SO-coupling strength.
In the weak SO-coupling case, the single-particle energy
levels are essentially harmonic oscillatorlike [22], and SO
coupling will mix states with different parities while keeping
the total angular momentum a conservative. In Sec. III we
first try to couple the two lowest s- and p-wave states with
the same total angular momentum 1/2 into two spinor wave
functions with total angular momentum magnetic quantum
number ±1/2 that are time-reversal states of each other. Then
we set the variational order parameter as the superposition of
these two states just as has been done in 1D and 2D cases [3,8].
Finally, we calculate the energy functional using the proposed
variational order parameter. In Sec. IV the ground-state phase
diagram is determined by numerically minimizing the energy
functional with respect to the variational parameters; we
illustrate the density and spin texture for the two phases.
Section V summarizes our main results.

II. MODEL

We consider a pseudo-spin-1/2 boson system confined in a
harmonic trap with a weak Weyl type 3D spin-orbit coupling
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σ · p. The system is described by its Gross-Pitaevskii energy
functional under the mean-field approximation

E = E0 + Eint, (1)

where the single-particle part is

E0 =
∫

d3r�†(r)

(
p2

2m
+ 1

2
mω2r2 + λσ · p

)
�(r) (2)

with m the mass of atoms and ω the trap frequency.
� = (ψ↑,ψ↓)T denotes spinor order parameters for bosons
with pseudospin states ↑ , ↓, σ = (σx,σy,σz) are the Pauli
matrices, and λ parametrizes the SO-coupling strength. The
interaction Eint takes the usual contact form of s-wave
scattering interaction [25]. We assume now [8,10,11,21] the
two intraspecies interaction parameters being the same g↑↑ =
g↓↓ = g and define the relative magnitude of the interspecies
and intraspecies parameters as c = g↑↓/g↑↑. The interaction
part is then

Eint = 1

4

∫
d3r

[
(g + cg)n2 + 4(g − cg)S2

z

]
. (3)

In Eq. (3), n(r) = n↑(r) + n↓(r) is the particle density and
Sz is the z component of the spin density S = 1

2�†σ� with
n↑,↓(r) = |ψ↑,↓(r)|2 the particle densities of two components,
respectively. The corresponding Hamiltonian is time-reversal
symmetric with the time-reversal operator defined as T =
−iσyK and K denotes the complex conjugate. The system
has length scale of the trapping potential lT = √

�/mω,
energy scale �ω, interaction strength scale �ωl3

T /N , and
SO-coupling strength scale √

�ω/m. If we further normalize

the order parameter to unity, i.e., � →
√

N/l3
T � with N the

total particle number in the condensate, the energy functional
per particle is obtained as

ε =
∫

d3r�†(r)

{
− ∇2

2
+ r2

2
+ λσ · p

}
�(r)

+ 1

4

∫
d3r

(
(g + cg)n2 + 4(g − cg)S2

z

)
. (4)

III. VARIATIONAL APPROACH

In the case of weak SO coupling the single-particle energy
spectrum in our system should be harmonic oscillatorlike
as proposed in [21,22]. The three-dimensional harmonic
oscillator thus proves to be a good choice of the trial wave
function, upon which we may develop our variational method.
As can be seen later the spin-orbit coupling induces transition
between eigenstates with the same total angular momentum
but different parity, which are mixed into the variational wave
function. The interaction Hamiltonian further couples the two
time-reversal states with different weight factors due to the
anisotropic interaction parameter ratio c.

A. Variational order parameter

The eigenequation of the three-dimensional harmonic
oscillator, (−∇2

2 + r2

2 )φ = εφ, has well-known solutions, with
energy eigenvalues εnr l = 2nr + l + 3

2 and eigenfunctions

φnr lml
(r,θ,ϕ) = Rnr l(r)Ylml

(θ,ϕ). Here nr is the radial quan-
tum number, l is the orbital angular momentum quantum
number with ml its magnetic quantum number, Rnr l is the
radial wave function, and Ylml

is the spherical harmonics.
The Casimir operator l2 and s2 for the orbital and spin
angular momenta and their z components are all conservatives
in the harmonic oscillator problem. In order to take into
account the spin-orbital-coupling term σ · p, it is convenient to
choose the coupled representation of angular momentum, i.e.,
the complete set of commutative operators l2,s2,j2,jz where
j = l + s and jz denote the total angular momentum and its
z component, respectively. The eigenfunction φnr lml

(r,θ,ϕ)
should be combined with the spin wave function χms

in the
coupled representation as

φnr ljmj
(r,θ,ϕ) = Rnr l(r)Y l

jmj
(), (5)

where Y l
jmj

() = ∑
ml,ms

C
jmj

lml
1
2 ms

Ylml
χms

is the spinor spheri-

cal harmonics [26] with j = l ± 1/2 and C
jmj

lml
1
2 ms

the Clebsch-

Gordan coefficients. In the coupled representation, the ground-
state wave function has nr = l = 0. This gives a total angular
momentum j = 1

2 with mj = ± 1
2 and the two degenerate

ground states are

φ00 1
2 ± 1

2
(r) = R00(r)Y 0

1
2 ± 1

2
(), (6)

respectively. Because the SO-coupling term breaks the parity
symmetry, it can couple s- and p-wave states with the
same total angular momentum j and jz [21]. Keeping these
considerations in mind, in the simplest approximation, we
suppose the ground state contains only the lowest s- and
p-wave states with total angular momentum quantum number
j = 1

2 in the presence of the SO-coupling term. The state with
mj = 1

2 takes the form

�j= 1
2 ,mj = 1

2
= Nα

(
φ00 1

2
1
2
+ iαφ01 1

2
1
2

)
(7)

where Nα = (1 + α2)−1/2, α stands for the relative weight of
the s and p orbital modes, and i in front of α originates from
the pure imaginary matrix element of the SO coupling between
the two states in Eq. (7). This hypothesis is similar to that
appearing in [21] and [22], and has been verified numerically
[21]. Explicitly this state is a spinor:

�j= 1
2 ,mj = 1

2
= Nα

⎛
⎝R00Y00 − iα

√
1
3R01Y10

iα

√
2
3R01Y11

⎞
⎠ . (8)

The state with mj = − 1
2 takes the form

�j= 1
2 ,mj =− 1

2
= Nα

(
φ00 1

2 − 1
2
+ iαφ01 1

2 − 1
2

)
(9)

and similarly we have

�j= 1
2 ,mj =− 1

2
= Nα

⎛
⎝ −iα

√
2
3R01Y1−1

R00Y00 + iα

√
1
3R01Y10

⎞
⎠ (10)

which is nothing but the time reversal of �j= 1
2 ,mj = 1

2
. In the

single-particle level, �j= 1
2 ,mj =± 1

2
and any normalized super-

position of them having the same energy thus are “degenerate”
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single-particle states, which is similar to degeneracy indicated
by the Kramers theorem in the spin-1/2 system.

The single-particle states exhibit infinite-fold degeneracy
and we expect this degeneracy can be partially resolved by the
interaction which would pick up the ground state from these
degenerate states as in the case of Rashba spin-orbital coupling
considered by Wang et al. [8]. Since the interaction does
not break the time-reversal symmetry, the residual twofold
Kramers degeneracy needs to be considered in the wave
function [2]. We therefore set the variational order parameter
as

� = c+� + c−T �

=
(

c+�↑ − c−�∗
↓

c+�↓ + c−�∗
↑

)
, (11)

with the constraint c2
+ + c2

− = 1. Here � ≡ �j= 1
2 ,mj = 1

2
and

�↑,↓ are its up and down components. So far, we have
introduced three variational parameters α,c+,c− and the
energy functional of Eq. (4) can be calculated analytically
using the proposed order parameter (11).

B. Energy functional

We calculate the energy functional on the variational wave
function (11). The contribution comes from two parts, the
single particle and the interaction Hamiltonian. We notice that
for the kinetic and trapping potential terms the nonzero integral
contribution comes from those states with the same parities,
while the spin-orbital-coupling σ · p term will mix states with
opposite parities, i.e.,∫

d3r�†(r)

{
− ∇2

2
+ r2

2
+ λσ · p

}
�(r)

= N2
α

[〈
φ00 1

2
1
2

∣∣∣∣
(

− ∇2

2
+ r2

2

)∣∣∣∣φ00 1
2

1
2

〉

+ α2

〈
φ01 1

2
1
2

∣∣∣∣
(

− ∇2

2
+ r2

2

)∣∣∣∣φ01 1
2

1
2

〉

+ i2α
〈
φ00 1

2
1
2

∣∣λσ · p
∣∣φ01 1

2
1
2

〉]
. (12)

Here we have used〈
φ00 1

2
1
2

∣∣λσ · p
∣∣φ01 1

2
1
2

〉
= 〈

φ00 1
2 − 1

2

∣∣λσ · p
∣∣φ01 1

2 − 1
2

〉
, (13)

which is on account of [jz,σ · p] = 0.
It is crucial to calculate the contribution of the spin-orbital-

coupling term by means of the irreducible tensor method [26].
To this end we first introduce the irreducible form of the
spin-orbital coupling term. The irreducible tensor form of the
momentum operator is [26]

p(1) = i
√

2
1

r
{C(1)l(1)}(1) − i

∂

∂r
C(1), (14)

where C(1) and l(1) are rank-1 irreducible tensors of the unit
vector r̂ and the orbital angular momentum l, and {A(m)B(n)}(k)

defines the rank-k tensor product of rank-m irreducible tensor
A(m) and rank-n irreducible tensor B(n). According to [26],

the dot product of two arbitrary vectors A and B is related to
the tensor product through A · B = −√

3{A(1)B(1)}(0). In our
case, the radial coordinate r can be separated from the spin
and spherical parts accordingly,

σ · p = − i

√
6

r
{σ (1){C(1)l(1)}(1)}(0)

+ i
√

3
∂

∂r
{σ (1)C(1)}(0), (15)

such that〈
φ00 1

2
1
2

∣∣σ · p
∣∣φ01 1

2
1
2

〉

= −i
√

6〈R00(r)|1

r
|R01(r)〉

× 〈
Y 0

1
2

1
2
()

∣∣{σ (1){C(1)l(1)}(1)}(0)
∣∣Y 1

1
2

1
2
()

〉

+ i
√

3〈R00(r)| d

dr
|R01(r)〉

× 〈
Y 0

1
2

1
2
()

∣∣{σ (1)C(1)}(0)
∣∣Y 1

1
2

1
2
()

〉
. (16)

The integrals for the radial coordinates are easy to calculate:

〈R00(r)|1

r
|R01(r)〉 =

√
2

3
, (17)

〈R00(r)| d

dr
|R01(r)〉 = − 1√

6
, (18)

where R00(r) =
√

22/
√

πe−r2/2 and R01(r) =√
23/(3

√
π )re−r2/2 are used. The Wigner-Eckart theorem can

be used to calculate the angular and spin integrals:

〈
Y 0

1
2

1
2
()

∣∣{σ (1){C(1)l(1)}(1)}(0)
∣∣Y 1

1
2

1
2
()

〉 = 1√
6
, (19)

〈
Y 0

1
2

1
2
()

∣∣{σ (1)C(1)}(0)
∣∣Y 1

1
2

1
2
()

〉 = 1√
3
. (20)

Substituting Eqs. (17)–(20) into Eq. (16), one has

〈
φ00 1

2
1
2

∣∣σ · p
∣∣φ01 1

2
1
2

〉 = −i

√
3

2
. (21)

Hence the single-particle part of the energy functional is∫
d3r�†(r)

{
− ∇2

2
+ r2

2
+ λσ · p

}
�(r)

= N2
α

(
3

2
+ 5

2
α2 +

√
6αλ

)
(22)

where we have used that the eigenenergies of the s and p states
of the three-dimensional oscillator are, respectively, ε00 = 3/2
and ε01 = 5/2.

For the calculation of the interaction part of the energy
functional, it is easy to show that the total density n is always
spherical symmetric,

n = |�|2 = (4π )−1N2
α

(
R2

00 + α2R2
01

)
, (23)

and the density-density interaction energy is∫
d3rn2 = 1

12
N4

α (2π )−
3
2 (5α4 + 12α2 + 12). (24)

053624-3



GUANJUN CHEN, TIANTIAN LI, AND YUNBO ZHANG PHYSICAL REVIEW A 91, 053624 (2015)

On the other hand, the spin density is anisotropic; e.g., the z

component takes the form of

Sz = (8π )−1N2
α

{
(c2

+ − c2
−)

(
R2

00 + α2R2
01 cos 2θ

)
− (2c+c−)(2αR00R01 sin θ sin ϕ−α2R2

01 sin 2θ cos ϕ)
}
,

(25)

and the spin-spin interaction energy is integrated as∫
d3rS2

z = 1

4
N4

α (2π )−
3
2

[
1

36
(7α4 − 12α2 + 36)

− 1

3
c2
+c2

−(α4 − 12α2 + 12)

]
. (26)

Collecting Eqs. (22), (24), and (26) into Eq. (4), we finally
arrive at the variational result for the ground-state energy per
particle:

ε =N2
α

(
3

2
+ 5

2
α2 +

√
6αλ

)
+ N4

α (2π )−
3
2

1

72

× [(11α4 + 12α2 + 36)g + (4α4 + 24α2)cg

− 6c2
+c2

−(g − cg)(α4 − 12α2 + 12)]. (27)

IV. GROUND-STATE PHASE DIAGRAM

The ground-state phase diagram can be determined nu-
merically via the minimization of the variational energy with
respect to the parameters α, c+, and c− for given c and g.
We notice that the parameters c+ and c− appear only in
the last term of Eq. (27) in the form of c2

+c2
−, the value of

which ranges from zero to one-quarter. The parameter c2
+c2

−
as a whole takes the value of either zero or one-quarter in
the minimization, depending on the signs of (g − cg) and
f (α) = α4 − 12α2 + 12. The ground state thus falls into two
classes of phases as depicted in Fig. 1: in phase I, the variation
yields |c+|2 = 1, |c−|2 = 0, or |c+|2 = 0, |c−|2 = 1; in phase
II, the variation yields |c+|2 = |c−|2 = 1/2. It is clear that α

must be negative for a positive λ due to the fact that α’s in
Eq. (27) are all even ordered except the spin-orbital-coupling
term. We see that c = 1 divides the phase plane into upper and

FIG. 1. Phase diagram of weakly SO-coupled two-component
bosons with coupling strength λ = 0.2

√
�ω/m, which shows two

skyrmionlike phases I and II. Phase I is a skyrmion ground state of
order parameter exp[−i(r) · S]ζ with ζ z = (1,0)T and phase II is a
skyrmion state with ζ x = 1√

2
(1,1)T . The interaction parameter g is in

units of �ωl3
T /N . Density distribution and spin texture of these two

phases are shown in Figs. 2 and 3, respectively.

FIG. 2. (Color online) Density distribution and spin texture of
phase I for α = −1.6. All coordinates are in units of lT = √

�/mω.
Top: Three rows are densities in xy, yz, and xz planes, respectively;
three columns are for up and down components and the total density
as explicitly labeled above each column. Density distributions in xz

and yz planes are the same due to the z-axis rotational symmetry.
Bottom: 3D skyrmion spin texture s(r) = S(r)/n(r) of phase I. The
streamline plot of s in a selected region is shown.

lower regions. With increasing g the system enters alternately
into phases I and II and the boundaries are determined by

f (α) = 0, i.e., α± = −
√

6 ± 2
√

6. For typical experiments
with the 87Rb condensate, the interaction strength scale is
10−13 Hz cm3, which gives rise to g ∼ 40–80. For smaller
g, α � α− results in a positive value of f (α) such that the
c > 1 region belongs to phase I and c < 1 belongs to phase
II. By adjusting the trapping frequency and the density of
the condensate one can easily increase g to cross the critical
line such that α ∈ [α+,α−], which makes f (α) negative. We
observe an interesting swap of the phases: c < 1 corresponds
to phase I and c > 1 corresponds to phase II. A similar phase
transition appears in the Rashba spin-orbital-coupled bosons
[10,11]. Further increasing the interaction strength makes the
optimized parameter α � α+ and the phases swap occurs
again.

The density distributions and the spin texture of phases I
and II are shown in Figs. 2 and 3, respectively. Typical features
include the following.
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FIG. 3. (Color online) Density distribution and spin texture of
phase II for α = −1.6. All coordinates are in units of lT = √

�/mω.
Top: Three rows are densities in xy, yz, and xz planes, respectively;
three columns are for up and down components and the total density
as explicitly labeled above each column. Though the total density
is isotropic again, the density distribution for the two components
exhibits more complex symmetry as described in the text. Bottom:
3D skyrmion spin texture s(r) = S(r)/n(r) of phase II, which is
roughly a π/2 rotation about the y axis of that in phase I. The
topological structure of the spin texture is protected by the time-
reversal symmetry.

A. Phase I

This phase contains two degenerate states |c+|2 = 1,
|c−|2 = 0 and |c+|2 = 0, |c−|2 = 1. They are time-reversal
states of each other and have similar density and spin
texture except that the spin-up and spin-down components
are exchanged. The order parameter for the former has the
form

� = (4π )−
1
2 Nα

(
R00(r) − iαR01(r) cos θ

−iαR01(r) sin θeiϕ

)
.

The particle densities for the spin-up and spin-down compo-
nents are

n↑ = (4π )−1N2
α

(
R2

00(r) + α2R2
01(r) cos2 θ

)
,

(28)
n↓ = (4π )−1N2

αα2R2
01(r) sin2 θ,

which respect the rotational symmetry about the z axis and
the parity symmetry, i.e., n↑,↓(r) = n↑,↓(r,θ ) and n↑,↓(r,θ ) =
n↑,↓(r,π − θ ). The densities of the two components in xz and
yz planes are the same as shown in Fig. 2, which exhibit clearly
characters of the p-wave state; i.e., the spin-up component is
dumbbell-like while the spin-down component forms a torus.
The total density on the other hand is isotropic—the sum of
n↑ and n↓ in Eq. (28) relies only on the radius r .

This spin density calculated on the variational order
parameter shows interesting spin texture described by

Sx = (4π )−1N2
α

(
αR00(r)R01(r) sin θ sin ϕ

+α2R2
01(r) sin θ cos θ cos ϕ

)
,

Sy = (4π )−1N2
α

( − αR00(r)R01(r) sin θ cos ϕ

+α2R2
01(r) sin θ cos θ sin ϕ

)
,

Sz = (8π )−1N2
α

(
R2

00(r) + α2R2
01(r) cos 2θ

)
. (29)

The average value of the spin in the xy plane is zero, i.e.,
〈Sx〉 = 〈Sy〉 = 0. The spin texture s(r) = S(r)/n(r) is depicted
in Fig. 2 and we find that spin density forms a torus near the
xy plane and a bundle of nearly vertical streamlines of spin
penetrate the central region of the torus. This skyrmionlike
texture has been discussed in [20] and identified as the ground
state in the c < 1 regime for an interaction parameter c0 = 100.
Li et al. [21] also found this ground-state skyrmion spin texture
in the weak SO-coupling case for isotropic interaction c = 1.
The term “skyrmionlike” means the absence of a boundary
condition at r → ∞ [20]; thus, the winding number for the
texture is not an integer.

In order to get a deep understanding of the skyrmion nature
of this ground state, we notice that the order parameter can be
obtained from a local spin rotation from the polarized spinor
wave function ζ z = (c+,c−)T = (1,0)T ,

�z = exp(−i(r)·s)
√

n(r)ζ z, (30)

supposing that n(r) = (4π )−1N2
α [R2

00(r) + α2R2
01(r)] and

�(r) = ω(r)r/r . This operation rotates the spin at position
r by an angle ω(r) about the axis r/r . The rotation angle
is position dependent; i.e., ω(r) = 2 arctan[αR01(r)/R00(r)]
and s is the usual spin angular momentum operators for
spin-1/2. It is the explicit form of �(r) that determines the
specific texture of the skyrmion [27]. The polarized spinor
order parameter ζ z has all spins being oriented in the positive
z direction. After the rotation the order parameter �z for this
skyrmion state is position dependent. The order parameter is
the most symmetrically shaped skyrmion with the symmetric
axis unrotated, which is identical with that already discussed in
[27–32]. In those papers the 3D skyrmion states are proposed
as excited states in pseudo-spin-1/2 or ferromagnetic spin-1
[27] Bose gases although they may be metastable.

B. Phase II

This phase again contains two degenerate states with c+ =
c− = ± 1√

2
and c+ = −c− = ± 1√

2
, which are time-reversal

states of each other. They share similar density distribution and
spin texture just like the case of phase I. The order parameter
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for c+ = c− has the form

� = (8π )−
1
2 Nα

(
R00(r) − iαR01(r)(cos θ + sin θe−iϕ)
R00(r) − iαR01(r)(− cos θ + sin θeiϕ)

)
,

(31)

and the particle densities for the two components are

n↑ = (8π )−1N2
α

(
R2

00(r) + α2R2
01(r)

− 2αR00R01 sin θ sin ϕ + α2R2
01 sin 2θ cos ϕ

)
,

n↓ = (8π )−1N2
α

(
R2

00(r) + α2R2
01(r)

+ 2αR00R01 sin θ sin ϕ − α2R2
01 sin 2θ cos ϕ

)
. (32)

The density for each component consists of two parts: one
is isotropic and common for both components as shown in
the first and third lines in Eq. (32), while the second and
fourth lines in Eq. (32), the other part for two components,
are complementary to each other. This leads again to an
isotropic total density. The overall density distribution of
the two components can be visualized as two cashew nuts
perpendicularly crossing and partially overlapping with each
other. The distributions in xy, yz, and xz planes are shown
in Fig. 3. The density distributions have symmetries when,
e.g., the densities of two components are invariant under the
combined operation of time reversal and π rotation about
the x(or z) axis, i.e., n↑(r,π − θ,2π − φ) = n↓(r,θ,φ) and
n↑(r,θ,π + φ) = n↓(r,θ,φ), while the π rotation about the
y axis itself leaves the density distributions unchanged, i.e.,
n↑,↓(r,π − θ,π − φ) = n↑,↓(r,θ,φ).

The spin texture associated with the order parameter is
expressed as

Sx = (8π )−1N2
α

[
R2

00 + α2R2
01(sin2 θ cos 2ϕ − cos2 θ )

]
,

Sy = (8π )−1N2
α

(
2αR00R01 cos θ + α2R2

01 sin2 θ sin 2ϕ
)
,

Sz = (8π )−1N2
α

( − 2αR00R01 sin θ sin ϕ

+α2R2
01 sin 2θ cos ϕ

)
. (33)

The average spin polarization along the z axis is zero, i.e.,
〈Sz〉 = 0. The spin texture S(r)/n(r) is presented in Fig. 3.
The spin density in this case forms a torus near the yz plane
and the fountainlike streamlines of spin pass through the hole
of the torus, which is more or less like a π/2 rotation of the
torus in phase I about the y axis. Similarly, this ground state
can be obtained from a local spin rotation from the spinor
order parameter ζ x = (c+,c−)T = 1√

2
(1,1)T that describes a

system with all spins pointing to the positive x direction,
i.e.,

�x = exp(−i�(r)·s)
√

n(r)ζ x. (34)

The spinor wave function ζ x is related to ζ z by a π/2 rotation
around y. Owing to the non-Abelian nature of SO(3) rotation,
the spin texture of phase II is different from the π/2 rotation
around y of phase I. The difference between these two textures
lies in the fact that the spin in the torus of phase I revolves the z

axis following elliptical (oval) orbits that rotate gradually like
the perihelion precession in celestial mechanics, while in phase
II the orbits are closed loops. Apart from this, they indeed share
the same topology determined by the same  as can be seen
from the spin streamline plot in Fig. 3, because the topological

spin texture is protected by time-reversal symmetry of the
system. This skyrmion spin texture is proposed as the ground
state in the regime of c > 1 in [20].

For a two-component Bose gas without SO coupling, it
is known that the interaction parameter c = 1 represents the
miscible to immiscible phase transition; i.e., the ground state
is phase separated for c > 1, whereas for c < 1 the two
components are coexisting which results in Sz = 0 to reduce
the spin-dependent interaction. This important statement is
valid even in the case of homogeneous Rashba spin-orbit-
coupled Bose gases [8], in which c = 1 divides the miscible
plane-wave phase and the immiscible stripe phase. However,
this scenario fails for a trapped system due to the angular
symmetry of the single-particle eigenstates. For Bose gas
trapped in a harmonic trap, the spin-orbit coupling inevitably
induces the mixing of different eigenstates [10,11], e.g., s and
p spatial modes in a 3D harmonic oscillator. When the p-wave
spatial mode is mixed in the wave function, the corresponding
state always tends to be phase separated. To what extent is
the state phase separated is determined by the weight of the
p-wave state. We found that our ground state tends to be phase
separated for both c > 1 and c < 1 regimes, but it is true that
a larger coexisting region appears for weaker SO-coupling
strength.

We find in this study that in both phase I and phase II
the densities of the two components are spatially separated
in three dimensions. We thus come up with a conclusion that
phase separation of the spin components generally exists in 1D
[33], 2D [10,11] and 3D SO-coupled boson gases. In our case
it is the SO-coupling-induced p-wave spatial mode involved
in the variational order parameter that drives the two spin
components spatially separated. Previously, the skyrmions
appearing in the two-component Bose gases without the SO
coupling were all excited states, so the topologically stable
skyrmions may be energetically unstable and additional stabil-
ity mechanics are needed to stabilize them in the excited states.
In the paper of Battye et al. [34], a stability mechanics was
proposed for the non-spin-orbit-coupled model; the essential
condition is phase separation. Our numerical results show that
the spin-orbit-coupling energy participates in the mechanism
here in the sense that stronger SO coupling tends to separate the
two components even more distinctly, which obviously helps
to stabilize the skyrmions. In this regard, our skyrmion ground
states and related phase separation are consistent with those
of [34]. Moreover, the stability of the ground-state skyrmions
has been numerically checked in [20] for their parameters
c0 = 100, 0 < c1/c0 � 1 (c < 1 in our case), and c1/c0 < 0
(c > 1), respectively. On the other hand, the topology of the
skyrmion texture is protected by the time-reversal symmetry
of the system; even the phase transition drastically changes the
density structure.

V. SUMMARY

We have investigated variationally the ground-state phase
diagram of weakly 3D spin-orbital-coupled two-component
Bose gases in a harmonic trap. Two phases for the ground
state are identified depending on intraspecies and interspecies
interaction strength, and the corresponding density distribution
and the spin texture are illustrated for optimized variational
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parameters. Phase I is featured with the parity symmetric
and rotational symmetric density distribution of both spin-up
and spin-down components and skyrmion spin texture with
torus in the xy plane and spin streamline passing through
the central region, while phase II is characterized with
density distribution possessing discrete π rotational symmetry
about the y axis and π rotational time-reversal symmetry
about x and z axes and the similar spin torus is in the
yz plane, roughly a π/2 rotation of that in phase I about
the y axis. In both phases, the density of two components
is essentially phase separated. With increasing interaction
strength, interesting phase transition occurs between the two

phases, while the topology of ground-state spin textures is
protected.
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