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Dipolar Bose gas in a weak isotropic speckle disorder
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We investigate the properties of a homogeneous dipolar Bose gas in a weak three-dimensional isotropic
speckle disorder at finite temperatures. By using the Bogoliubov theory (beyond the mean field), we calculate
the condensate and the superfluid fractions as a function of density and strengths of disorder and interaction. The
disorder impact on the anomalous density, the chemical potential, and the ground-state energy is also analyzed.
We show that the peculiar interplay of the dipole-dipole interaction and weak disorder makes the superfluid
fraction and sound velocity anisotropic.
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I. INTRODUCTION

Disordered Bose gas in a weak random external potential
(dirty boson) represents an interesting model for studying
the relation between Bose-Einstein condensation (BEC) and
superfluidity and has been the subject of many theoretical
investigations in the past two decades [1–10]. Experimentally,
the dirty boson problem was first studied with superfluid
helium in aerosol glasses (Vycor) [11–13]. Recently, several
groups [14–20] have loaded ultracold atoms into optical
potentials and studied BECs in the presence of disorder.

What happens to a homogeneous BEC if a weak random
external potential is switched on? Indeed, the presence of
a disordered potential may lead to decrease both BEC and
superfluidity. Furthermore, one of the intriguing features
of disordered Bose gas is the appearance of the so-called
Anderson localization [21,22] in the noninteracting case.
This phenomenon, which can be understood as the effect
of multiple reflections of a plane wave by random scatterers
or random potential barriers, has recently attracted a great
deal of interest [16–18]. Experimentally, the random potential
can be created using different techniques, one of which is
the static laser speckle, whereas the potential felt by atoms
is proportional to the speckle intensity with the sign of the
detuning from the atomic transition [23]. Laser speckles,
produced by passing an expanded laser beam through diffusive
plates, are special in that they have: (i) exponential, i.e.,
strongly non-Gaussian intensity distribution and (ii) finite
support of their power spectrum [24]. Recent progress in
different experimental realizations of laser speckle disorder
is reported in Refs. [23,25].

In their recent work Abdulaev and Pelster [26] have
shown that a Gaussian approximation of the autocorrelation
function of laser speckles, used in some recent papers, is
inconsistent with the general background of laser speckle
theory. They also pointed out that the concept of a quasi-three-
dimensional (3D) speckle, which appears due to an extension
of the autocorrelation function in the longitudinal direction
of a transverse two-dimensional speckle, is not applicable
for the true 3D speckle, since it requires an additional
space dimension. In this context, they derived an appropriate
autocorrelation function for an isotropic 3D laser speckle
potential which has the Fourier transform given in Eq. (16) (see
below).

Recent progress in the physics of ultracold gases have led to
the creation of BECs with dipole-dipole interaction (DDI) and
stimulated a tremendous boost in theoretical and experimental
studies of weakly interacting Bose gases [27–29]. What is
important in such systems is that the atoms interact via a DDI
that is both long ranged and anisotropic. By virtue of this
interaction, these systems are expected to open fascinating
prospects for the observation of novel quantum phases in
ultracold atomic gases. On the other hand, dipolar BECs
confined in random media remain largely unexplored. One can
quote, for example, a uniform dipolar Bose gas with a Gaussian
disorder correlation function, a Lorentzian, and a δ-correlated
disorder that have been explored recently by Krumnow and
Pelster [30], Nikolic et al. [31], and Ghabour and Pelster [32].

In the present paper, we study the impact of a weak disorder
potential with a 3D isotropic laser speckle autocorrelation
function of Ref. [26] on the properties of a homogeneous
dipolar Bose gas at finite temperatures. To this end, we use the
Bogoliubov theory (beyond the mean field), and we calculate in
particular the condensed depletion and the anomalous fraction.
This latter quantity, which grows with increasing interactions
and vanishes in noninteracting systems [33–36], is important
to fully understand the interplay of disorder and interactions.
We show, in addition, how the anisotropy of the DDI enhance
quantum, thermal, and disorder fluctuations as well as the
superfluid fraction.

The rest of the paper is organized as follows. In Sec. II,
we describe our model of the dipolar dilute Bose gas in
a general random potential. In Sec. III, we derive analyt-
ical expressions for the condensate fluctuations and some
thermodynamic quantities for 3D isotropic laser speckle
disorder potential at finite temperatures. We show that the
competition between both contact interaction-disorder and
DDI-disorder leads to enhance the condensate depletion, the
anomalous density, disorder fluctuation, ground-state energy,
equation of state, and the sound velocity. In Sec. IV, the
superfluid fraction is obtained, and its characteristics are
discussed. Finally, our conclusions and outlook remain in
Sec. V.

II. THE MODEL

We consider the effects of an external random field
on a dilute 3D dipolar Bose gas with dipoles oriented
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perpendicularly to the plane. The Hamiltonian of the system
is written as

Ĥ =
∫

d3r ψ̂†(r)

(−�
2

2m
� + U (r)

)
ψ̂(r)

+ 1

2

∫
d3r

∫
d3r ′ψ̂†(r)ψ̂†(r′)V (r − r′)ψ̂(r′)ψ̂(r), (1)

where ψ† and ψ denote, respectively, the usual creation
and annihilation field operators, the interaction potential
V (r − r′) = gδ(r − r′) + Vdd (r − r′), and g = 4π�

2a/m cor-
responds to the short-range part of the interaction with a being
the scattering length. In what follows we suppose that the
contact interactions are repulsive, i.e., a > 0. On the other
hand, the dipole-dipole component reads

Vd (�r) = Cdd

4π

1 − 3 cos2 θ

r3
, (2)

where the coupling constant Cdd is μ0μ
2 for particles having a

permanent magnetic dipole moment μ (μ0 is the magnetic
permeability in vacuum) and d2/ε0 for particles having a
permanent electric dipole d (ε0 is the permittivity of vacuum),
m is the particle mass, and θ is the angle between the relative
position of the particles r and the direction of the dipole.
The characteristic dipole-dipole distance can be defined as
r∗ = mCdd/4π�

2. For most polar molecules r∗ ranges from
10 to 104 Å. The disorder potential is described by vanishing
ensemble averages 〈U (r)〉 = 0 and a finite correlation of the
form 〈U (r)U (r′)〉 = R(r,r′).

Passing to the Fourier transform and working in the
momentum space, the Hamiltonian (1) takes the form

Ĥ =
∑

k

�
2k2

2m
â
†
kâk + 1

V

∑
k,p

Uk−pâ
†
kâp

+ 1

2V

∑
k,q,p

f (p)â†
k+qâ

†
k−qâk+pâk−p, (3)

where V is a quantization volume and the interaction potential
in momentum space is given by [36]

f (k) = g[1 + εdd (3 cos2 θk − 1)], (4)

here εdd = Cdd/3g is the dimensionless relative strength
which describes the interplay between the DDI and the
short-range interactions.

Assuming the weakly interacting regime where r∗ � ξ

with ξ = �/
√

mgn being the healing length and n is the total
density, we may use the Bogoliubov approach. Applying the
inhomogeneous Bogoliubov transformations [2],

âk = ukb̂k − vkb̂
†
−k − βk, â

†
k = ukb̂

†
k − vkb̂−k − β∗

k, (5)

where b̂
†
k and b̂k are operators of elementary excitations. The

Bogoliubov functions uk,vk are expressed in a standard way:
uk,vk = (

√
εk/Ek ± √

Ek/εk)/2 where Ek = �
2k2/2m is the

energy of a free particle and

βk =
√

n

V

Ek

ε2
k

Uk. (6)

The Bogoliubov excitations energy is given by

εk =
√

E2
k + 2μ0d (θ )Ek, (7)

where μ0d = n limk→0 f (k) is the zeroth-order chemical
potential.

Importantly, the spectrum (7) is independent of the random
potential. This independence holds in fact only in zeroth order
in perturbation theory; conversely, higher-order calculations
render the spectrum dependent on the random potential due
to the contribution of the anomalous terms (see below).
For k → 0, the excitations are sound waves εk = �csd (θ )k,
where csd (θ ) = cs

√
1 + εdd (3 cos2 θ − 1) with cs = √

gn/m

is the sound velocity without DDI. Due to the anisotropy of the
dipolar interaction, the sound velocity acquires a dependence
on the propagation direction, which is fixed by the angle θ

between the propagation direction and the dipolar orientation.
This angular dependence of the sound velocity has been
confirmed experimentally [37].

Therefore, the diagonal form of the Hamiltonian of the dirty
dipolar Bose gas (3) can be written as

Ĥ = E +
∑

�k
εkb̂

†
kb̂k, (8)

where E = E0d + δE + ER, E0d (θ ) = μ0d (θ )N/2 with N

being the total number of particles,

δE = 1

2

∑
k

[εk − Ek − nf (k)] (9)

is the ground-state energy correction due to quantum fluctua-
tions,

ER = −
∑

k

n〈|Uk|2〉Ek

ε2
k

= −
∑

k

nRk

Ek

ε2
k

(10)

gives the correction to the ground-state energy due to the
external random potential.

The noncondensed and the anomalous densities are defined
as ñ = ∑

k〈â†
kâk〉 and m̃ = ∑

k〈âkâ−k〉, respectively. Then
invoking for the operators âk the transformation (5), setting
〈b̂†kb̂k〉 = δk′kNk and putting the rest of the expectation values
equal to zero, where Nk = [exp(εk/T ) − 1]−1 are occupation
numbers for the excitations. As we work in the thermodynamic
limit, the sum over k can be replaced by the integral∑

k = V
∫

d3k/(2π )3, and using the fact that 2N (x) + 1 =
coth(x/2), we obtain

ñ = 1

2

∫
d3k

(2π )3

Ek + f (k)n

εk

[
coth

(
εk

2T

)
− 1

]
+ nR, (11)

and

m̃ = −1

2

∫
d3k

(2π )3

f (k)n

εk

coth

(
εk

2T

)
+ nR. (12)

The contribution of the random potential comes through the
last terms in Eqs. (11) and (12). These terms are defined as

nR = 1

V

∑
k

〈|βk|2〉 = n

∫
d3k

(2π )3

E2
k

ε4
k

Rk. (13)
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Expressions (11) and (12) must satisfy the equality,

ñk(ñk + 1) − |m̃k|2 = 1

4 sinh2(εk/2T )
+ nR

(
Ek + 2f (k)n

εk

)

× coth

(
εk

2T

)
. (14)

Equation (14) clearly shows that m̃ is larger than ñ at low
temperatures irrespective of the presence of an external random
potential or not. So the omission of the anomalous density in
this situation is principally an unjustified approximation and
wrong from the mathematical point of view [34–36].

III. BEC FLUCTUATIONS AND THERMODYNAMIC
QUANTITIES

To proceed further in practical calculations, we must define
the laser speckle potential: U (r) = U0 + �U (r), where U0

is defined by the light far-field intensity as U0 = 〈I 〉 and
〈�U (r)〉 = 0. At the derivation of U (r), it was assumed that
the incident laser wave does not induce an atomic electron
interlevel transition but merely deforms the atomic ground
state. It is useful now to specify the relationship among the
far-field intensity autocorrelation function |CI (r)|2, the laser
speckle autocorrelation function |CA(r)|2, and the disorder
potential correlation function. One can write then: |CI (r)|2 =
〈U (r′)U (r′ + r)〉 and |CA(r)|2 = 〈�U (r′)�U (r′ + r)〉/U 2

0 .
Therefore, using the Fourier transform, we
get

|CI (k)|2 = U 2
0 [δ(k) + |CA(k)|2], (15)

where the autocorrelation function of the laser speckle is given
by [26]

|CA(k)|2 = 3

4π
(2σ )3[(2σk)3 − 12(2σk) + 16], (16)

where σ characterizes the correlation length of the disorder
(for further computational details, see Ref. [26]). Interest-
ingly, we see from the formula of |CA(k)|2 that its value
becomes zero for k = 1/σ . Hence, the momentum in (16)
only varies in a finite interval from zero, in contrast to the
case for a Gaussian function [30]. Accordingly, Eq. (16)
makes our results completely different from those of Ref. [32]
in particular at zero temperature. At finite temperatures
one can expect that our results coincide with the above
reference since we assume that disorder, quantum, and
thermal fluctuations are too small that the Hamiltonian can
be expanded in both leading order of disorder plus thermal
and quantum fluctuations. Therefore, disorder and thermal
fluctuations are additive and, thus, independent from each
other.

Putting R(k) = R|CA(k)|2 [26], where R = U 2
0 stands

for the disorder strength. Substituting the function (16)
in Eq. (13) and performing the integration over the
momentum form 0 to 1/σ , we get the expression for
the condensate fluctuation due to the external random
potential,

nR = m2R

8π3/2�4

√
n

a
h(εdd,α), (17)
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FIG. 1. (Color online) Behavior of the disorder function
h(εdd ,σ/ξ ) from Eq. (18) as a function of σ/ξ . Black line: εdd = 0
(pure contact interaction). Blue dashed line: εdd = 0.38 (Er atoms).
Red dotted line: εdd = 0.6. Green dot-dashed line: εdd = 0.95. Here,
the interaction can be adjusted by means of the Feshbach resonance.

where

h(εdd,α) =
∫ π

0
dθ

sin θS(α)√
1 + εdd (3 cos2 θ − 1)

(18)

is depicted in Fig. 1, and the function,

S(α) = 1

2π

√
α

2

[
4 − (8α + 6) ln

(
1 + 1

2α

)

+ 2

√
2

α
arctan

(
1√
2α

)]
,

with α = σ 2[1 + εdd (3 cos2 θ − 1)]/ξ 2.
In the absence of the DDI (εdd = 0), we recover the

result for the 3D BEC with short-range interparticle inter-
action of Ref. [26]. For σ/ξ → 0 and εdd = 0, we read
off from Eq. (18) that one obtains h(εdd,α) → 1 (see also
Fig. 1). Therefore, we should reproduce the Huang and Meng
result [2] for the condensate depletion in this limit. For
σ/ξ → 0, we get from Eq. (18) that h(εdd,0) = Q−1(εdd ).
Thus, the disorder fluctuation (17) becomes identical to that
obtained in 3D dipolar BEC with δ-correlated disorder nR =
(m2R/8π3/2

�
4)

√
n/aQ−1(εdd ) [32] where the contribution

of the DDI is expressed by the functions Qj (εdd ) = (1 −
εdd )j/2

2F1(− j

2 , 1
2 ; 3

2 ; 3εdd

εdd−1 ), where 2F1 is the hypergeometric
function. Note that functions Qj (εdd ) attain their maximal
values for εdd ≈ 1 and become imaginary for εdd > 1 [36,38].

On the other hand, the disorder function (18) decreases
with increasing disorder correlation length while it rises
for increasing εdd (see Fig. 1) and diverges in the limit
εdd > 1. Another important consequence is that when a

vanishes, nR becomes infinite. This means that the system
would collapse if there were no repulsive interactions between
particles.
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Upon calculating the integral in Eq. (11), we get for the
condensate depletion,

ñ

n
= 8

3

√
na3

π
Q3(εdd ) + 2

3

√
na3

π

(
πT

gn

)2

Q−1(εdd )

+ 2πR′
√

na3

π
h(εdd,α), (19)

where R′ = R/g2n is a dimensionless disorder strength.
The integral in Eq. (12) is ultraviolet divergent. This

divergence is well known to be unphysical since it is caused by
the usage of the contact interaction potential. A general way
of treating such integrals is as follows. First, one restricts to
asymptotically weak coupling and introduces the Beliaev-type
second-order coupling constant [36],

fR(k) = f (k) − m

�2

∫
d3q

(2π )3

f (−q)f (q)

2Eq

. (20)

After the subtraction of the ultraviolet divergent part, the
anomalous fraction turns out to be given

m̃

n
= 8

√
na3

π
Q3(εdd ) − 2

3

√
na3

π

(
πT

gn

)2

Q−1(εdd )

+ 2πR′
√

na3

π
h(εdd,α). (21)

The leading terms in Eqs. (19) and (21) represent the quantum
fluctuation [36]. The subleading terms, which represent the
thermal fluctuation [36], are calculated at temperatures T �
gn where the main contribution to integrals (11) and (12)
comes from the region of small momenta (εk = �csdk). The
situation is quite different at higher temperatures, i.e., T �
gn where the main contribution to integrals (11) and (12)
comes from the single-particle excitations. Hence, the thermal
contribution of ñ becomes identical to the density of noncon-
densed atoms in an ideal Bose gas [36], whereas the thermal
contribution of m̃ tends to zero since the gas is completely
thermalized in this range of temperature [33,34,36]. The last
terms in (19) and (21) account for the effect of disorder on the
noncondensed and the anomalous densities.

Equation (21) clearly shows that at zero temperature, the
anomalous density is larger than the noncondensed density
for any range of the dipolar interaction as well as for any
value of the strength and the correlation length of the disorder
as has been anticipated above. Moreover, m̃ changes its sign
with increasing temperature in agreement with the uniform
Bose gas with a pure contact interaction [36]. Likewise, the
anomalous density obtained in (21) permits us to determine in
a straightforward manner the equation of state and thus, leads
to a finite compressibility (see below). Remarkably, Eqs. (19)
and (21) reproduce the short-range interaction results since
Qj (εdd = 0) = 1. Furthermore, the DDI enhances quantum,
thermal, and disorder fluctuations of the condensate for
increasing εdd as is shown in Fig. 1.

The Bogoliubov approach assumes that fluctuations should
be small. We thus conclude from Eqs. (19) and (21) that at T =
0, the validity of the Bogoliubov theory requires inequalities√

na3Q3(εdd ) � 1 and R′√na3h(εdd,α) � 1. For R′ = 0,
this parameter differs only by the factor Q3(εdd ) from the

universal small parameter of the theory
√

na3 � 1 in the
absence of DDI. At T � gn, the Bogoliubov theory requires
the condition (T/gn)

√
na3Q−1(εdd ) � 1. The appearance of

the extra factor (T/gn) originates from the thermal fluctuation
corrections.

The presence of quantum and disorder fluctuations leads
also to corrections of the chemical potential which are given by
δμd = ∑

k f (k)[vk(vk − uk)] = ∑
k f (k)(ñ + m̃) [35,36,39].

Inserting the definitions (11) and (12) into the expression of
δμd , we find after integration,

δμd

μδ

= 32

3

√
na3

π
Q5(εdd ) + 4πR′

√
na3

π
h1(εdd,α), (22)

where h1(εdd,α) = ∫ π

0 dθ sin θ
√

1 + εdd (3 cos2 θ − 1)S(α)
and μδ = gn.

In the absence of the disordered potential (R′ = 0), Eq. (22)
coincides with that derived recently in Refs. [36,38]. For a
condensate with a pure contact interaction [Q5(εdd = 0) =
1] and for R′ = 0, the obtained correction to the chemical
potential (22) excellently agrees with the seminal Lee-Huang-
Yang quantum corrected equation of state [40].

The energy shift due to the interaction and the quantum
fluctuations (9) is ultraviolet divergent. The difficulty is over-
come if one takes into account the second-order correction to
the coupling constant (20). A simple calculation yields [36,38]

δE = 64

15
Vgn2

√
na3

π
Q5(εdd ). (23)

However, the energy shift due to the external random poten-
tial (15) is evaluated as

ER

Eδ

= 16πR′
√

na3

π
h1(εdd,α), (24)

where Eδ = Ngn/2.
When σ � ξ , the energy shift due to the external random

potential (10) is ultraviolet divergent. Again, by introducing
the renormalized coupling constant (20) one gets: ER/Eδ =
16πR′√na3/πQ1(εdd ) which well coincides with the result
obtained with the δ-correlated disorder of Ref. [32].

IV. SUPERFLUID FRACTION

The superfluid fraction ns/n can be found from the normal
fraction nn/n, which is determined by the transverse current-
current correlator ns/n = 1 − nn/n. We apply a Galilean
boost with the total momentum of the moving system P =
mv(nvs + nnvn), where vs denotes the superfluid velocity and
vn = u − vs is the normal fluid velocity with u being a boost
velocity [31]. The superfluid fraction is then written

n
ij
s

n
= δij − 4

∫
d3k

(2π )3

�
2

2m

nRkkikj

Ek[Ek − 2nf (k)]2

− 2

T n

∫
d3k

(2π )3

[
�

2

2m

kikj

4 sinh2(εk/2T )

]
. (25)

We remark that if m̃ were omitted from expression (25),
then the related integral would be divergent leading to the
meaningless value ns → ∞. This indicates that the presence
of the anomalous density is crucial for the occurrence of the
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superfluidity in Bose gases [8,36], which is in fact natural since
both quantities are caused by atomic correlations.

Equation (25) yields a superfluid density that depends
on the direction of the superfluid motion with respect to
the orientation of the dipoles. In the parallel direction, the
superfluid fraction reads

n
‖
s

n
= 1 − 4πR′

√
na3

π
h‖(εdd,α)

− 2π2
�

45mncs

(
T

�cs

)4

Q‖
−5(εdd ), (26)

where the function,

h‖(εdd,α) =
∫ π

0
dθ

sin θ cos2 θS(α)√
1 + εdd (3 cos2 θ − 1)

(27)

is decreasing with increasing εdd for fixed σ/ξ as is de-
picted in Fig. 2(a). And the functions Q‖

j (εdd ) = 1
3 (1 −

εdd )j/2
2F1(− j

2 , 5
2 ; 3

2 ; 3εdd

εdd−1 ) have the following properties:

Q‖
j (εdd = 0) = 1/3 and imaginary for εdd > 1 [32].
In the perpendicular direction, the superfluid fraction (25)

takes the form

n⊥
s

n
= 1 − 2πR′

√
na3

π
h⊥(εdd,α)

− π2
�

45mncs

(
T

�cs

)4

Q⊥
−5(εdd ), (28)

where the function,

h⊥(εdd,α) =
∫ π

0
dθ

sin θ (1 − cos2 θ )S(α)√
1 + εdd (3 cos2 θ − 1)

= h(εdd,α) − h‖(εdd,α) (29)

is increasing with εdd for fixed σ/ξ as is displayed in Fig. 2(b).
And Q⊥

j (εdd ) = Qj (εdd ) − Q‖
j (εdd ).

The third terms in (26) and (28), which represent the thermal
contribution of n⊥

s and n
‖
s , are similar to those obtained in

Ref. [32] for δ-correlated disorder as we have anticipated
above. These thermal terms are calculated at low temperatures
T � ng. Whereas, at T � ng, there is copious evidence that
both thermal terms of ns coincide with the noncondensed
density of an ideal Bose gas. Furthermore, we read off from
Eqs. (26) and (28) that for εdd � 0.5, the thermal contribution
of n⊥

s is smaller than that of n
‖
s , whereas the situation is inverted

for εdd > 0.5.
For σ/ξ → 0 and εdd = 0, both components of the super-

fluid fraction reduce to ns/n = 1 − 4nR/3n, which well recov-
ers the earlier results of Refs. [2,4,5] for the isotropic contact
interaction. For σ/ξ → 0, we have h‖(εdd,0) = Q‖

−1(εdd ) and
h⊥(εdd,0) = Q⊥

−1(εdd ). As a result, the disorder correction to
superfluid fraction (17) becomes identical to that obtained in
the 3D dipolar BEC with δ-correlated disorder [32].

Figure 2 shows also that for increasing εdd, h‖(εdd,α) de-
creases, whereas h(εdd,α) increases for fixed σ/ξ . Therefore,
this reveals that there exists a critical value of interaction εc

dd

beyond which the system has the surprising property that the
disorder-induced depletion of the parallel superfluid density
is smaller than the condensate depletion even at T = 0. This
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FIG. 2. (Color online) Behavior of the disorder functions
(a) h‖(εdd ,σ/ξ ) and (b) h⊥(εdd ,σ/ξ ) as a function of σ/ξ . Black line:
εdd = 0. Blue dashed line: εdd = 0.38. Red dotted line: εdd = 0.6.
Green dot-dashed line: εdd = 0.95.

can be attributed to the fact that the localized particles cannot
contribute to superfluidity and, hence, form obstacles for the
superfluid flow. For large disorder correlation length, i.e.,
σ � ξ, εc

dd reduces indicating that the localized particles are
localized in the respective minima for the disorder potential
only for a finite localization time [41]. This localization time
remains to be analyzed in more detail in a future paper. In
addition, the superfluid fraction can be either larger or smaller
than the condensate fraction nc/n = 1 − ñ/n, depending on
temperature, on interaction, and on the strength of disorder.
Increasing R′ leads to the simultaneous disappearance of the
superfluid and condensate fractions.

Note that the sound velocity of a dipolar BEC in a
weak external disorder potential can be calculated within the
hydrodynamic approach as c2

s (q) = (∂μ/m ∂n)qT n̂sq [30,31]
where the tensorial property of the superfluid density has
been taken into account. From Eqs. (26) and (28) it follows
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that the sound velocity can also be separated into a parallel
and a perpendicular component. Both components change
via effects of the interaction strength εdd , disorder strength
R′, and the ratio σ/ξ . One can easily show also that the
sound velocity is consistent with the inverse compressibility
κ−1 = n2∂μ/∂n [42] where the increase in κ−1 tends to
increase the sound velocity and vice versa.

V. CONCLUSION

In this paper, we have studied the properties of a homoge-
neous dipolar Bose gas in the presence of a weak disorder
with an autocorrelation function for an isotropic 3D laser
speckle potential at finite temperatures. Using the Bogoliubov
approach, we have calculated the condensate fluctuation due
to disorder as well as the corresponding corrections to the
condensed depletion, the anomalous fraction, the chemical
potential, and the ground-state energy. We have pointed out

that the interplay between the anisotropy of the DDI and
the external random potential leads to modify both the BEC
and the superfluidity characteristics. Furthermore, we have
reproduced the expression of the condensate fluctuations and
thermodynamics quantities obtained in the literature in the
absence of both the DDI and the disordered potential. We
discuss the validity criterion of the Bogoliubov approach in a
dirty dipolar BEC.

Finally, an interesting question that begs to be asked is
how the interplay of disorder and DDI can affect Anderson
localization or the quantum phases that arise due to disorder
in the regime of strong correlations.
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