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Critical velocity for vortex shedding in a Bose-Einstein condensate
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We present measurements of the critical velocity for vortex shedding in a highly oblate Bose-Einstein
condensate with a moving repulsive Gaussian laser beam. As a function of the barrier height V0, the critical
velocity vc shows a dip structure having a minimum at V0 ≈ μ, where μ is the chemical potential of the
condensate. At fixed V0 ≈ 7μ, we observe that the ratio of vc to the speed of sound cs monotonically increases for
decreasing σ/ξ , where σ is the beam width and ξ is the condensate healing length. We explain our results with
the density reduction effect of the soft boundary of the Gaussian obstacle, based on the local Landau criterion
for superfluidity. The measured value of vc/cs with our stiffest obstacle is about 0.4, which is in good agreement
with theoretical predictions for a two-dimensional superflow past a circular cylinder.
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I. INTRODUCTION

A superfluid flows without friction but becomes dissipative
above a certain critical velocity vc via generating its elementary
excitations such as phonons and vortices. The Landau criterion
provides a conventional energetic consideration to determine
the critical velocity, stating vc = min[ε(p)/p] [1], where ε(p)
is the energy of an elementary excitation of momentum p.
For a homogeneous system, the Landau critical velocity is
equal to the speed of sound cs . However, the dynamic response
of a superfluid flow is significantly sensitive to the boundary
condition of the system and hence a quantitative understanding
of the critical velocity has been a challenging task in the study
of superfluidity.

One of the paradigmatic situations considered in fluid
mechanics is a two-dimensional (2D) flow past a circular
cylinder. For an incompressible flow, the local velocity is
increased by a factor of 2 at the lateral sides of the cylinder [2]
and the local Landau supersonic criterion suggests a critical
velocity of vc = 0.5cs that is independent of the radius R

of the cylinder. Theoretical studies showed that the onset
of dissipation involves generating a counterrotating vortex
pair [3,4]. More rigorous calculations, taking into account
the compressibility of the superfluid and quantum pressure
near the boundary of the cylinder, predicted that the critical
velocity converges to vc = 0.37cs in the large-cylinder limit
R � ξ [5–9], where ξ is the superfluid healing length.
Experimental verification of the predictions on vc/cs is highly
desirable.

In previous ultracold-atom experiments, a similar situation
was investigated by stirring superfluid samples with a repulsive
laser beam [10–15]. The existence of finite critical veloci-
ties [10,11,14] and generation of vortex dipoles [12,13,15]
were successfully demonstrated. However, the measured
values of vc/cs ranged widely from 0.1 to 0.45, which
did not allow a quantitative study of the homogeneous 2D
problem. Theoretical investigations showed that the inhomo-
geneous density distribution of a trapped sample [16–18],
3D vortex dynamics [19–21], or the manner of stirring
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[13,16,21–23] should be critical in the measurements. Re-
cently, the vortex shedding dynamics was also investigated
experimentally with polariton superfluids flowing past static
defects [24,25].

In this paper we systematically study the critical velocity for
vortex shedding in a Bose-Einstein condensate with a repulsive
Gaussian potential. We measure the critical velocity as a func-
tion of the barrier height V0 of the potential over a wide range of
beam width 10 < σ/ξ < 55. In particular, in order to address
the 2D homogeneous regime, we employ spatially large and
highly oblate condensates, ensuring vortex dynamics in two
dimensions.

The key difference of a Gaussian potential from a hard
cylinder is its soft boundary. A Gaussian potential V (r) =
V0 exp(−2r2/σ 2) produces a density-depleted hole in the
condensate when V0 > μ, where μ is the chemical potential of
the condensate. The radius of the hole and the potential slope
at the hole boundary are given as

R = σ
√

ln(V0/μ)/2, (1)

S = −dV

dr

∣∣∣∣
r=R

= 4μR/σ 2, (2)

respectively. In comparison to the case with a hard cylinder, the
soft boundary reduces the density in the proximity of the ob-
stacle and consequently lowers the local speed of sound. Then,
from the local Landau criterion it is naturally suggested that
the critical velocity of the hard cylinder defines an upper bound
for that of the obstacle formed by the Gaussian potential. When
the hole radius R becomes larger with higher V0 [Fig. 1(b)]
and/or the beam width σ decreases for fixed R [Fig. 1(c)], the
obstacle would converge to the hard cylinder with stiffening its
boundary.

The main result of our measurements is that in the deep
nonpenetrable regime (i.e., V0 � μ), the critical velocity
vc increases with decreasing σ/ξ for fixed V0/μ and ap-
proaches about 0.4cs . This observation is consistent with the
expectation from the aforementioned discussion based on the
local Landau criterion. Furthermore, the measured value of
vc/cs with our stiffest obstacle is in good agreement with
theoretical predictions for a 2D superfluid flow past a hard
cylinder.
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FIG. 1. (Color online) Soft boundary of the optical obstacle
formed by a repulsive Gaussian potential V (r) = V0 exp(−2r2/σ 2).
(a) Normalized potential slope at the obstacle boundary S̃ =
(ξ/μ)|dV/dr|r=R as a function of σ/ξ and R/ξ , where μ and ξ

is the chemical potential and the healing length of the condensate,
respectively, and R is the obstacle radius such that V (R) = μ. The
boundary becomes stiffer as (b) R/ξ becomes larger or (c) σ/ξ

decreases. The corresponding trajectories are indicated by the arrows
in (a).

II. EXPERIMENT

Our experiment starts with a Bose-Einstein condensate of
23Na atoms in a harmonic trap formed by combining optical
and magnetic potentials [15]. The condensate fraction of the
sample is over 90%. In a typical sample condition, where
the trapping frequencies are ωr,z = 2π × (9.0,400) Hz and
the atom number of the condensate is N0 = 3.2(2) × 106, the
condensate healing length is ξ = �/

√
2mμ ≈ 0.46 μm and

the speed of sound is cs = √
μ/m ≈ 4.3 mm/s at the trap

center, where � is the Planck constant divided by 2π and m

is the atomic mass. By adjusting the trapping frequencies or
the atom number of the condensate, ξ is varied up to 0.9 μm.
The Thomas-Fermi radius and thickness of the condensate
are RTF/ξ � 240 and ZTF/ξ � 6, respectively. In this highly
oblate condensate, vortex line excitations are strongly sup-
pressed [26,27] and the vortex dynamics is expected to be two
dimensional.

We adiabatically ramp up the power of a repulsive Gaussian
laser beam in 1 s and hold it for 0.2 s to ensure that
the condensate is stationary. Then we translate the laser
beam horizontally by 24 μm by using a piezodriven mirror
[Fig. 2(a)]. The velocity v of the laser beam is kept constant
during the translation and controlled by adjusting the traveling
time. The sweeping region of the laser beam is centered in the
condensate [Fig. 2(b)]. The density variation over the sweeping
region is less than 10% and the speed of sound can be well
approximated to be spatially constant. After completing the
sweeping, we slowly ramp down the laser beam power for 0.5 s
and take an absorption image of the condensate after expansion
by releasing the trapping potential to detect vortices.

The width σ of the laser beam is calibrated from the in situ
images of very dilute samples penetrated through by the laser
beam, taking into account the imaging resolution of our system
(≈5 μm). The beam waist of the laser beam is 9.1(12) μm
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FIG. 2. (Color online) Vortex shedding in a highly oblate Bose-
Einstein condensate. (a) Schematic of the experiment. An optical
obstacle is formed by a repulsive Gaussian laser beam penetrating
through the condensate and moves horizontally at a constant velocity
in the center region. (b) An in situ image of the condensate with
the optical obstacle at the initial position. (c) Probability P (v) of
having vortex dipoles (blue circles) and the number of vortices (red
diamonds) as a function of the velocity v of the optical obstacle.
The barrier height V0 ≈ 2.1μ and the Gaussian width σ ≈ 20ξ . The
solid line is a sigmoidal function fit to P (v). The inset shows an
image of a condensate containing a vortex dipole. Each data point
was obtained from 15 realizations of the same experiment and the
error bars indicate the standard deviations of the measurements.

at the focal plane and the Gaussian width σ of the optical
obstacle is controlled by defocusing the laser beam at the
sample plane. The sample thickness (<3 μm) is much shorter
than the Rayleigh length of the laser beam and we ignore the
beam divergence. The beam width is much smaller than the
condensate radius and the chemical potential of the condensate
is negligibly affected by the presence of the laser beam.

A vortex dipole is identified with two density-depleted holes
that are symmetrically located in the condensate with respect to
the sweeping line of the laser beam [Fig. 2(c) inset]. After being
generated in the center region of the condensate, the vortex
dipole moves toward the edge of the condensate and splits
into two individual vortices that subsequently travel along the
boundary of the condensate in the opposite direction. This
peculiar orbit motion of the vortices was studied in Ref. [13].
A single vortex was observed occasionally at low v with
probability <4%. Because the vortex lifetime is over 10 s [15],
we attribute the single vortex to uncontrolled perturbations in
sample preparation and we do not count it as a vortex dipole.

The critical velocity vc for vortex shedding is determined
from the probability distribution P (v) for having vortex
dipoles after sweeping with the laser beam. Here P (v) is
obtained from 15 realizations of the same experiment with
a given sweeping velocity v, i.e., P (v) is the ratio of the
number of images showing vortex dipoles to the total number
of measurements. The critical velocity vc is determined by
fitting a sigmoidal function to the probability distribution as
P (v) = 1/(1 + e−(v−vc)/γ ) [Fig. 2(c)]. We use the value of
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FIG. 3. (Color online) (a) Normalized critical velocity vc/cs

versus the relative barrier height V0/μ for various beam widths
σ/ξ ; (σ,ξ ) = [24.5(24),0.46] (red diamonds), [16.0(14),0.46] (black
squares), [9.1(12),0.46] (blue circles), and [9.1(12),0.9] μm (open
squares). The inset displays vc/cs at V0 ≈ μ as a function of σ/ξ

and the solid line is a line to guide the eye. (b) Same data in the
nonpenetrable regime (V0 > μ) as a function of the hole radius R/ξ ,
together with additional data points for V0/μ > 10.

1.5γ as the measurement uncertainty of vc, corresponding to
the range of 0.2 � P � 0.8.

III. RESULTS AND DISCUSSION

Figure 3(a) displays the results of the critical velocity as a
function of the barrier height V0 for various beam widths. The
critical velocity shows a dip structure having a minimum at
V0 ≈ μ, clearly distinguishing the two regimes: a penetrable
regime with V0 < μ and a nonpenetrable regime with V0 > μ.
The dip structure of the critical velocity can be accounted
for by a consideration based on the local Landau criterion.
For V0 < μ, the density minimum is located at the top of the
Gaussian potential and decreases for higher V0, thus lowering
the local speed of sound. On the other hand, when V0 > μ,
as described before, the potential slope becomes steeper with
higher V0 and the density in the proximity of the obstacle
boundary is gradually restored to the bulk density, leading to
a higher critical velocity. The dip structure around V0 = μ

becomes more pronounced with larger σ/ξ by lowering the
minimum value [Fig. 3(a) inset].

In terms of the vortex shedding mechanism, the penetrable
regime is different because there is no density-depleted
region in the fluid and it has been anticipated that vortex
nucleation would be initiated by generation of rarefaction
pulses [8,9,28,29]. Recently, the critical velocity of penetrable
obstacles for dissipation was investigated in effective 1D

systems [30–33]. In one dimension, the critical velocity is
predicted to vanish as V0 approaches μ [31], but it is not
the case in our 2D situation. Moreover, the critical velocity
shows a quite intriguing dependence on σ/ξ [Fig. 3(a) inset].
Further investigation of the functional form of vc(V0/μ; σ/ξ )
in the penetrable regime is warranted. However, in this work,
we focus on the nonpenetrable regime to address the 2D hard
cylinder situation.

In Fig. 3(b) we recast the data for the nonpenetrable regime
(V0 > μ) as a function of the hole radius R, together with
additional data obtained for V0 > 10μ with σ = 20ξ and 35ξ .
Note that the hole radius is weakly dependent on the barrier
height as R ∝ √

ln(V0/μ). From the previous discussion of the
boundary stiffness effect and S ∝ R/σ 2 [Fig. 1(b)], one may
expect that vc/cs would be saturated to a certain value with
increasing hole radius and also that the saturation behavior
would be faster with smaller beam width. We see that the
experiment data are roughly fit to the expectation in a small-R
region. However, when R is increased to be larger than σ , the
growth rate of the critical velocity slows down and becomes
negative. Note that at R/ξ ∼ 35, the critical velocity with
small σ/ξ = 20 is even lower than that with large σ/ξ = 54.

One possible explanation for such climbing-over behavior
of the critical velocity is the imperfection of the laser beam
profile. If the beam profile is not perfectly Gaussian, for
example, the intensity profile of the outer part of the laser beam
decays slower than exponential and then the potential slope S

at the obstacle boundary would decrease with increasing R.
We see that the climbing over of vc occurs at R ∼ σ in both
of the data sets with σ/ξ = 20 and 35. This seems to support
the beam profile effect because in our experiment σ is varied
by defocusing the same laser beam. The M2 factor of the laser
beam is measured to be 1.2.

To further investigate the soft boundary effect on the
critical velocity, we take a different scanning trajectory in the
parameter space of the Gaussian obstacle: decreasing σ/ξ for
fixed V0/μ. In this setting, the hole radius R is also varied
proportionally with σ [Eq. (1)] and the trajectory corresponds
to a diagonal line in Fig. 1(a). A scanning with fixed R/ξ ,
as depicted in Fig. 1(c), might be more ideal in terms of
isolating the finite-R/ξ effect [5,8,9], but this would require
exponentially high V0/μ for small σ/ξ as V0/μ = e2(R/σ )2

,
necessarily recalling the outer part of the laser beam. We
set V0/μ ≈ 7, where R ≈ σ and the normalized boundary
slope S̃ = (ξ/μ)S ≈ 4(σ/ξ )−1. In the previous measurements
(Fig. 3), vc(V0/μ) shows a maximum around this potential
height.

In the new set of measurements, we observe that the critical
velocity monotonically increases as σ/ξ decreases (Fig. 4),
which is consistent with our expectation from the boundary
stiffness. It is worth noting that, although the data are obtained
from various samples with different healing lengths, they agree
with each other in the plane of the dimensionless parameters
σ/ξ and vc/cs . This demonstrates the 2D character of the
vortex dynamics in our system because the only relevant length
scale for vortex nucleation is the healing length.

For our stiffest obstacle, vc/cs is measured to be about
0.40, which is slightly higher than the predicted value of
0.37 for a 2D hard cylinder in the large-R/ξ limit. In our
measurement, R � 10ξ marginally satisfies the large obstacle
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FIG. 4. (Color online) Normalized critical velocity vc/cs versus
σ/ξ for fixed V0/μ ≈ 7. Here σ = 9.1(12) μm for black closed
squares and ξ = 0.46 μm for black closed circles. The blue open
circles show the results of theoretical calculation for a 2D hard
cylinder of radius R = σ

√
ln (V0/μ)/2 from Ref. [8]. The red open

diamonds indicate the numerical results for a Gaussian potential
with V0/μ = 100 from Ref. [34], where the potential slope S̃ would
be about two times higher than ours. The dashed line denotes the
theoretically predicted value vc/cs = 0.37 for a 2D homogeneous
case with a hard cylinder in the large obstacle limit [7–9].

condition and the deviation of the measured value might be
attributed to the finite-R/ξ effect. The dependence of the
critical velocity on R/ξ was investigated theoretically [5,8,9]
and it was shown that vc/cs gradually increases from the value
of 0.37 as R/ξ → 0. In Fig. 4, for comparison, we display
the theoretical results of Ref. [8] for a 2D hard cylinder of
radius R = σ

√
ln(V0/μ)/2 (blue open circles) and the result

of numerical simulations performed with a Gaussian potential
with V0/μ = 100 in Ref. [34] (red open diamonds). The
experimental results converge to the theoretical predictions
when σ/ξ decreases, i.e., the optical obstacle becomes similar
to a hard cylinder by stiffening its boundary.

Our results are inconsistent with the 1/R dependence of
vc that was predicted from analytic analyses on the stability
of a superfluid flow [18,35]. It is clearly seen that when R/ξ

(≈σ/ξ ) increases by a factor of 5, the vc/cs decreases less than
a factor of 2. Even without including the additional reduction
effect due to the soft boundary of the obstacle, the critical

velocity decreases much smaller than what would be expected
from the 1/R dependence.

Finally, we want to recall a few aspects of the experimental
condition that should be considered for the quantitative com-
parison of the measurement results to theoretical predictions
for a 2D homogeneous case. First, the critical velocity was
not measured for a steady flow condition but by sweeping a
finite section of a trapped condensate. The measurement can
be affected by the sweeping manner. For example, if vortex
nucleation requires a finite time, which might be longer than
the sweeping time near the critical velocity [6,22], it would
result in a systematic upward shift of the measured value
of vc. Second, although we expect suppression of 3D vortex
dynamics in a highly oblate condensate, it is an inevitable fact
that the condensate has an inhomogeneous density distribution
along the axial direction. Thus, one cannot completely ignore
3D responses of the condensate, in particular, at the moment
of vortex nucleation. It might be necessary or sufficient to
introduce an effective speed of sound that would be lower than
the peak value cs of the condensate [36].

IV. SUMMARY

We have presented the measurements of the critical velocity
for vortex shedding in highly oblate Bose-Einstein condensates
and investigated the soft boundary effect of the moving
obstacle formed by a Gaussian potential. Our results are
consistent with a picture based on the local Landau criterion
and the measured value of vc/cs with the stiffest obstacle
is in good agreement with the theoretical predictions for a
homogeneous 2D superflow past a cylindrical object. This
work has established a reliable experimental method to
measure the critical velocity of a trapped condensate. One
of the intriguing extensions of this work is to investigate the
temperature dependence of the critical velocity. This would
provide a new setting for studying the role of thermal atoms
in vortex nucleation dynamics, which has been typically
investigated in a rotating environment [37–39].
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