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Many-body processes in black and gray matter-wave solitons
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We perform a comparative beyond-mean-field study of black and gray solitonic excitations in a finite ensemble
of ultracold bosons confined to a one-dimensional box. An optimized density-engineering potential is developed
and employed together with phase imprinting to cleanly initialize gray solitons. By means of ab initio simulations
with the multiconfiguration time-dependent Hartree method for bosons, we demonstrate that quantum fluctuations
limit the lifetime of the soliton contrast, which increases with increasing soliton velocity. A natural orbital analysis
reveals a two-stage process underlying the decay of the soliton contrast. The broken parity symmetry of gray
solitons results in a local asymmetry of the orbital mainly responsible for the decay, which leads to a characteristic
asymmetry of remarkably localized two-body correlations. The emergence and decay of these correlations as
well as their displacement from the instantaneous soliton position are analyzed in detail. Finally, the role of
phase imprinting for the many-body dynamics is illuminated and additional nonlocal correlations in pairs of
counterpropagating gray solitons are observed.
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I. INTRODUCTION

Solitons are very peculiar solutions of nonlinear wave
equations emerging in various fields of physics ranging
from nonlinear optics to shallow water waves [1,2]. These
solutions are characterized by their form stability under time
evolution and even under collisions so that solitons can
behave akin to classical particles and may be described as
such under certain conditions. In particular, ultracold bosonic
quantum gases allow, both theoretically and experimentally,
for thorough investigations of dark solitons, i.e., localized
density minima accompanied by characteristic phase jumps
in the order parameter, residing on the background density
profile of trapped atomic clouds ([3,4] and references therein).
The fully integrable Gross-Pitaevskii mean-field equation
for a quasi-one-dimensional, uniform, perfect Bose-Einstein
condensate, for instance, possesses a dark-soliton solution
[3–6] completely characterized by the ratio β of soliton
velocity u to the speed of sound s = √

ρ0g/m:

ψβ(x,t) = √
ρ0e

−iμ0t/�

[
iβ + η tanh

(
η
x − βst − x0

ξ

)]
,

(1)

with |β| � 1, η =
√

1 − β2, bulk density ρ0, chemical poten-
tial μ0 = ρ0g, healing length ξ = �/

√
mρ0g, atomic mass m,

and contact interaction strength g. Black solitons (β = 0) do
not move and feature a density notch with a phase jump of π ,
while gray solitons (|β| > 0) are moving objects with a finite
density minimum and a smaller phase jump.

As excited states, however, dark solitons may suffer from
various sources of instabilities ranging from thermodynamic
(e.g., [7–9] and references therein) and dynamical instabilities
(e.g., [7,10–14] and references therein) to decay as a conse-
quence of quantum fluctuations. Since nowadays experiments
can be operated at effectively zero temperature and with a high
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aspect ratio of the transverse and longitudinal traps, ultracold
bosonic quantum gases serve as ideal systems for exploring
the quantum features of and correlation effects in solitonic
excitations. The number of atoms and the interaction strength
obviously constitute key parameters, which determine the
intensity of correlations and are, most importantly, controllable
in experiments nowadays. In passing, we note that the
illumination of beyond-mean-field effects in vortex excitations
has also recently attracted interest [15–18].

Usually, the form stability of the dark solitons is regarded
as a compensation of dispersion by the nonlinearity of
the Gross-Pitaevskii equation [5]. The actual many-body
Schrödinger equation, however, is linear and should also be
able to describe solitons in appropriate parameter regimes. The
ongoing theoretical efforts from this linear perspective can be
classified into two directions: The deductive approach [19–27]
aims at establishing a relation between the holelike type-II
excitations of the solvable Lieb-Liniger model [28,29] and
the Gross-Pitaevskii soliton solutions [5]. In contrast to this,
we follow the inductive approach in which one either starts
with a mean-field product state featuring a soliton or uses
experimentally relevant protocols to prepare a many-body state
resembling the properties of a dark soliton. The subsequent
time evolution is then studied with beyond-mean-field meth-
ods.

Shortly after the first experimental implementation of dark
solitons in Bose-Einstein condensates [30], the inductive
approach studies predicted a dynamical instability due to
quantum fluctuations [31–41]: The density minimum of a
dark soliton is incoherently filled with atoms on potentially
experimentally relevant time scales. On the one hand, this
dynamical quantum depletion effect has been studied within
the Bogoliubov perturbation theory [32–36] as well as a
nonperturbative variant [37] highlighting the role of the
localized zero (anomalous) mode in uniform (trapped) systems
as the main contributor to the filling of the density minimum.
On the other hand, the numerically exact time-evolving
block-decimation (TEBD) technique has been employed in
finite lattices [38,39] and continuous systems within the
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Bose-Hubbard approximation [41]. As the main experimental
signatures, the relaxation of the reduced one-body density to
a flat profile and a quantum-fluctuation-induced inelasticity of
a binary soliton collision were reported. Moreover, at times
when the reduced one-body density, i.e., the average over
many single-shot measurements, has already relaxed to a flat
distribution, the histograms of simulated destructive N -atom
single-shot measurements have revealed a solitonlike density
minimum at random positions [34,36,41–43]. These findings
suggest the existence of highly nontrivial correlations being
unraveled in single-shot measurements.

The above works have almost exclusively focused on black
solitons and, except for some side aspects of [24,37–39],
gray solitons have not been studied beyond the mean-field
approximation. Therefore, this work aims at a systematic com-
parison of beyond-mean-field signatures in black solitons and
their experimentally more relevant gray counterparts. Having
introduced our setup and the employed ab initio method in
Secs. II A and II B, respectively, we present a semianalytically
optimized density-engineering scheme, which, in combination
with a phase-imprinting procedure, allows one to robustly
and cleanly generate gray solitons (Sec. II C). Although the
broken parity symmetry of a gray soliton results in a larger
variety of allowed incoherent scattering channels compared
to a black soliton of definite parity, gray solitons prove to be
more stable in terms of a longer contrast lifetime (Sec. III A)
and slower dynamical quantum depletion (Sec. III B). De-
spite the extensive literature on many-body effects in black
solitons, the evolution of local two-body correlations, which
are experimentally accessible via density-density correlation
measurements, has not been investigated. In Sec. III C, we
explore the occurrence of spatially well-localized bunching
and antibunching correlations for dark solitons: Whereas these
correlations are symmetrically arranged around a black soliton
of definite parity, the localized bunching correlations become
displaced to the back of a gray soliton with subsonic velocity
while emerging. The characteristic asymmetric correlation
pattern of a gray soliton is traced back to a local asymmetry of
the single-particle state most responsible for the soliton decay.
In Sec. III D, the role of the phase imprinting is illuminated,
demonstrating that imposing a phase profile accelerates the
quantum decay while omitting this procedure results in pairs
of counterpropagating, long-living gray solitons. Besides the
localized two-body correlations identified for a single gray
soliton, we observe additional nonlocal correlations in the
latter case. We conclude in Sec. IV.

II. SETUP, COMPUTATIONAL METHOD, AND
INITIAL-STATE PREPARATION

A. Setup

In this work, we study the dynamics of N indistinguishable
bosons in a one-dimensional box potential of length L.
Such potentials are realizable via crossed optical dipole or
strong transverse lattice potentials combined with various
implementation techniques for box potentials in the longitudi-
nal direction [44–46]. Considering bosonic atoms interacting
solely via the contact interaction such as 87Rb, at such low
temperatures that both kBT and the chemical potential μ

are much smaller than the excitation energy �ω⊥ of the
axially symmetric transverse harmonic potential, justifies one
to consider a purely one-dimensional model,

Ĥ =
N∑

i=1

p̂2
i

2m
+ g

∑
1�i<j�N

δ(x̂i − x̂j ), (2)

with hard-wall boundary conditions. Here, m denotes the
mass of an atom and g relates to the three-dimensional
s-wave scattering length as and the transverse trapping
potential via g = 4�

2

m

as

a2
⊥
/(1 − C as

a⊥
), with a⊥ = √

2�/(mω⊥)
and a numerical constant C [47]. In the thermodynamic limit
with linear atom density ρ0 = N/L, the interaction regime
of our system is fully characterized by the dimensionless
Lieb-Liniger parameter γ = mg/(�2ρ0) measuring the ratio
of interaction and kinetic energy [28,29]. Violating the above
prerequisites for a quasi-one-dimensional description gives
rise to complex dynamical instabilities of dark solitons, which
is of current experimental and theoretical interest [11–14] but
goes beyond the scope of this work.

Our system features three length scales: The mean interpar-
ticle distance ρ−1

0 , the condensate healing length ξ , and the box
length L. In order to resemble the properties of a mean-field
soliton in the initial state, we focus on weak interactions.
Moreover, we aim at separating the length scale of the soliton,
ξ , well from the box length. Thus, we initially operate in
the Thomas-Fermi mean-field regime, whose validity range
for the ground state (in the thermodynamic limit) is given
by ρ−1

0 � ξ � L or 1 � γ � N−2 [48]. Here, the first
(second) inequality ensures the applicability of the mean-field
(Thomas-Fermi) approximation. In the following, N = 100
bosons with γ = 0.04 and L = 20ξ are considered. We remark
that the above considerations apply only to ground states in the
thermodynamic limit and therefore do not exclude dynamical
quantum depletion in the many-body quantum dynamics of
our finite ensemble.

In the following, we use the healing-length-based unit
system, i.e., ξ as the length and μ0 as the energy unit
implying that the correlation time τ = ξ/s = �/μ0 serves
as the time unit. The dimensionless Hamiltonian reads Ĥ ′ =∑

i p̂
′2
i /2 + g′ ∑

i<j δ(x̂ ′
i − x̂ ′

j ), with g′ = √
γ . For simplicity,

we will omit the dash in the notation from now on.

B. Computational method

Going nonperturbatively beyond the mean-field approxima-
tion requires the usage of sophisticated many-body methods
such as, e.g., TEBD [49] in order to soften the exponential
increase of complexity with the number of degrees of freedom.
In this work, we employ the recently developed multilayer
multiconfiguration time-dependent Hartree method for bosons
(ML-MCTDHB) [50,51], which is a flexible, ab initio method
for solving the time-dependent Schrödinger equation for
bosons or bosonic mixtures in one or higher dimensions. This
method rests on expanding the total many-body wave function
with respect to a variationally optimized time-dependent basis,
which spans the optimal subspace of the Hilbert space at
each instant in time and thereby reduces the necessary basis
size significantly compared to an expansion with respect to a
time-independent basis.
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When applied to a single bosonic species only, ML-
MCTDHB reduces to the multiconfiguration time-dependent
Hartree method for bosons (MCTDHB), which was introduced
in [52,53]. In this case, the total wave function |�t 〉 is expanded
with respect to bosonic number states |n1, . . . ,nM〉t being
based on time-dependent single-particle functions (SPFs)
|φi(t)〉, i = 1, . . . ,M: |�t 〉 = ∑

�n|N An1,...,nM
(t)|n1, . . . ,nM〉t ,

where �n = (n1, . . . ,nM ) encodes the occupation numbers of
the M SPFs and �n|N indicates that the summation runs over all
occupation numbers ni that sum up to N . The (ML-)MCTDHB
equations of motion for the expansion coefficients An1,...,nM

(t)
and the SPFs |φi(t)〉 are then derived from a variational
principle. In this way, the method provides a variationally
optimized |�t 〉 within this class of trial wave functions
characterized by the given number of SPFs, M . It can be
proven that the coupled (ML-)MCTDHB equations of motion
respect certain symmetries such as parity [51], which will
become of importance for this work. Varying M allows one
to go from the mean-field limit (M = 1) to, with respect to
the given spatial grid, the numerically exact limit, in which
M equals the number of grid points n. In the Appendix, a
convergence discussion for our simulation data is provided. In
view of the ansatz for |�t 〉, it becomes inevitable to specify
a recipe for initializing the many-body wave function |�t=0〉
featuring a dark soliton.

C. Initial-state preparation

The objective of our initialization recipe is to prepare a
many-body state which features only little depletion and the
density and phase characteristics of a dark soliton in the
dominant natural orbital, i.e., the eigenvector of the reduced
one-body density operator ρ̂1 with the largest eigenvalue
(natural population). In particular, we aim at generating a clean
solitonic excitation, which is favorable for both clear physical
insights and the convergence of our numerical method. For
these reasons, the phase- and density-engineering scheme
is applied [54]: Via imaginary-time propagation of the ML-
MCTDHB equations of motion, an initial guess for the many-
body wave function is relaxed to the ground state of the box po-
tential with an additional localized barrier V (x) of such shape
that the induced density minimum resembles the density profile
of a dark soliton. After switching off V (x) instantaneously, an
intense laser-induced potential θ (x)/T is applied for a duration
T � τ , where θ (x) shall coincide with the phase profile of
a dark soliton (1). Assuming that this potential dominates
all other terms in the Hamiltonian, the corresponding time-
evolution operator reads ÛT ≈ ⊗N

j=1 e−iθ(x̂j ). Its action on the
total wave function is obviously equivalent to an instantaneous
replacement |φi(0)〉 → e−iθ(x̂)|φi(0)〉, i = 1, . . . ,M .

For generating a black soliton at the box center x0 = 0,
we follow the strategy of [38,39,41] by using a Gaussian
barrier V (x) = h exp[−x2/(2w2)] with h = 60μ0 and w ≈
0.07ξ . In principle, it is also possible to generate a gray
soliton by means of a Gaussian barrier fine tuned to an
appropriate, e.g., tanh-phase profile [54]. We, however, use
the analytical phase profile of (1) for θ (x) and develop a
semianalytical formula for an optimized density-engineering
potential: Having determined the Gross-Pitaevskii ground state
�(x) of the box numerically, we define a real-valued target

Gross-Pitaevskii orbital ψ
β
target(x) ∝ |�(x)ψβ(x,0)|, which we

assume (i) to be twice differentiable in the box domain
(−L/2,L/2) and (ii) to solve a stationary Gross-Pitaevskii
equation with an unknown potential Vβ(x). Then we may
express Vβ(x) in terms of ψ

β
target(x),

Vβ(x) = const + 1

2

∂2
xψ

β
target(x)

ψ
β
target(x) + f

(
ε,ψ

β
target(x)

)
− g(N − 1)

∣∣ψβ
target(x)

∣∣2
, (3)

where f (ε,z) = ε exp(−|z|/ε), and ε � 1 regularizes1 possi-
ble zeros or too small values of ψ

β
target(x). By construction, the

Gross-Pitaevskii ground state of the box plus Vβ(x) potential
equals ψ

β
target(x) and, due to weak interactions, we may

expect that a corresponding many-body calculation beyond
the mean-field approximation results in a one-body density
ρ1(x) ≈ |ψβ

target(x)|2. This scheme turns out to be both very
robust and practicable as it does not require any optimization
algorithm. As long as the target state is twice differentiable
(which is related to the absence of zeros) and features a length-
scale separation required by the local density approximation
(LDA), this approach allows one to cleanly generate gray
solitons while only marginally exciting other modes. For
demonstrating its versatility, we have also successfully applied
this recipe to initialize oscillating dark solitons in harmonic
traps (plots not shown). Moreover, if one can increase the
healing length ξ above the optical diffraction limit by means of,
e.g., a Feshbach resonance, this density-engineering scheme
might also improve the initial-state preparation in experiments.

III. RESULTS

We begin our comparative study of black and gray soli-
tons beyond the mean-field approximation with the reduced
one-body density (Sec. III A) and the quantum depletion
(Sec. III B). Then, the reduced one-body dynamics is unraveled
in terms of a natural orbital analysis, characterizing the
single-particle state mostly responsible for the soliton decay.
Concerning black solitons, our results are fully consistent with
TEBD simulations of discrete [38,39] and continuous [41]
systems. Afterwards, we explore the evolution of local two-
body correlations (Sec. III C). Finally, the role of the phase-
imprinting procedure is illuminated (Sec. III D).

A. Reduced one-body density and contrast

All single-particle properties are described by the reduced
one-body density operator ρ̂1(t) = tr1|�t 〉〈�t | being obtained
by tracing out all bosons but a single one in the density operator
of the N -body system. First, let us compare the evolution of the
reduced one-body density ρ1(x; t) = 〈x|ρ̂1(t)|x〉 for a black
and gray soliton. In Fig. 1, we present both mean-field and

1In our applications, we can safely omit the regularization as long as
|β| > 0. For β = 0, however, (3) becomes ill defined since ψ0

target(x)
is not differentiable at x = x0. In fact, the (not regularized) potential
maximum Vβ (x0) diverges as 1/β2 for β → 0, while the full width at
half maximum of this potential remains finite.
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FIG. 1. (Color online) Time evolution of the reduced one-body
density ρ1(x; t) for N = 100 bosons in a box of length L = 20ξ and
a Lieb-Liniger parameter γ = 0.04. The initial state resembles the
properties of (a) a black (β = 0.0) and (b) a gray (β = 0.5) soliton.
The calculations are performed with M = 4 optimized SPFs. Insets:
M = 1 mean-field simulations.

ML-MCTDHB calculations performed with M = 4 optimized
SPFs, which we will refer to as many-body simulations in the
following, in contrast to the effective single-particle mean-field
theory. One can clearly see that the applied density- and
phase-engineering scheme generates stable solitons within
the mean-field approximation, whereas the density minimum
becomes filled with atoms in the many-body simulations. This
filling process appears to be slower in the case of a moving
gray soliton compared to the black one. In both the many-body
and the mean-field simulations, one clearly notices that our
optimized density-engineering potential (3) allows for the
generation of clean solitonic excitations: As a consequence of
employing a Gaussian barrier of finite width, the black soliton
is accompanied by some quite short wavelength phonons,
which are visible as rays of density modulations in Fig. 1(a).
In contrast to this, only long-wavelength phonon modes are
marginally populated in the case of the optimized gray soliton
engineering [Fig. 1(b)].

Next we quantify the lifetime of the soliton contrast,

c(t) = max ρ1(x,0) − ρ1
(
xs

t ,t
)

max ρ1(x,0) + ρ1
(
xs

t ,t
) , (4)
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FIG. 2. (Color online) Time evolution of the relative contrast
c(t)/c(0) for dark solitons of various soliton velocity to speed-of-
sound ratios β = u/s. Inset: Contrast lifetime τc vs β. All other
parameters as in Fig. 1.

where xs
t refers to the soliton position at time t being defined

as the position of the density minimum. To compare results for
black and gray solitons, we define the contrast lifetime τc to be
the time after which the relative contrast c(t)/c(0) has dropped
to 1/2 (cf. also [38]). As the relative contrast is affected by
some fluctuations due to phonons, we fit f (t) = a + btc with
c > 0 to c(t)/c(0) and extract τc = [( 1

2 − a)/b]
1
c .

From Fig. 2, we may infer that the soliton contrast indeed
lives the longer the closer β approaches unity, which is
consistent with the analytical prediction in [37]. Moreover,
the decay of the gray soliton relative contrast is approximately
independent of β for some time, which turns out to be longer
for larger β. After that time, the relative contrast decays with
a faster rate.

The inset of Fig. 2 depicts the contrast lifetime τc in
dependence on β showing that the lifetime of a gray soliton
with β = 0.5 is enhanced by a factor of 1.9 compared to
the black soliton. The data for β = 0.6, β = 0.7 indicate
that the lifetime can be increased much further. Yet we
note that the lifetime values for 0.4 < β < 0.7 refer to
extrapolations to extend the converged results for a short
time, while the individual data point for β = 0.7 has been
extrapolated because the soliton reaches the box boundary
before τc.

We finally remark that the dynamics of the relative contrast
serves as a measure for the quality of the density engineering:
While the relative contrast decay is superimposed with only
weak fluctuations for 0.1 � β � 0.5, stronger perturbations
are visible for the black soliton as well as β > 0.5. The
perturbations for large β values, which take place on a
relatively long time scale of about 2τ , raise from the fact
that the soliton width separates less from the box length scale,
which undermines the LDA underlying Eq. (3). In the case of
the black soliton, the short-time fluctuations are a consequence
of the Gaussian potential barrier being not of optimal shape
and, moreover, the choice for its width and height being a
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compromise between resembling the correct density profile
and having a small quantum depletion at the same time.

B. Quantum depletion and natural orbital analysis

In order to unravel the reduced one-body dynamics and to
learn about the structure of the many-body wave function, we
inspect the spectral decomposition of the reduced one-body
density operator,

ρ̂1(t) =
M∑
i=1

λi(t) |ϕi(t)〉〈ϕi(t)|, (5)

defining the natural orbitals |ϕi(t)〉 and natural populations
λi(t) [55]. First, we consider the quantum depletion d(t) =
1 − maxi λi(t) ∈ [0,1] measuring how strongly the many-
body wave function deviates from a perfect Bose-Einstein
condensed state [56]. In Fig. 3(a), the evolution of d(t) is
compared for various values β. Initially, the maximal quantum
depletion of about 8.5% is achieved for β = 0.0, and d(0)
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FIG. 3. (Color online) (a) Time evolution of the quantum deple-
tion d(t) for various β. (b) Evolution of the natural populations λi

for β = 0.0 (solid black lines) and β = 0.5 (dash-dotted red lines).
The blue dashed lines refer to the natural populations for a β = 0.0
density- but not phase-engineered initial state. Inset: Close-up of the
two least dominant natural populations. All other parameters as in
Fig. 1.

decreases with increasing β. Moreover, we may also witness
the impact of the Vβ(0) ∼ 1/β2 divergence as β tends to zero
while the half width at half maximum of Vβ(x) saturates
to a finite value: As we decrease β linearly but keep it
still finite, the quantum depletion d(0) increases nonlinearly,2

which is a consequence of Vβ(x) being optimal solely with
respect to the (mean-field) density profile but not with respect
to beyond-mean-field properties such as quantum depletion.
Nevertheless, the initial many-body state is close enough to a
perfectly condensed state for all considered β values in order
to initially resemble the important properties of mean-field
dark solitons, as we shall see below.

The subsequent dynamics of the quantum depletion can be
divided into two stages: First, d(t) stays quite constant for
some time, which turns out to be the longer the larger β is.
Afterwards, a steep increase is followed with a slope increasing
with decreasing β. Thereby, we observe that the grayer the
soliton is, the longer it resembles mean-field characteristics
such as conservation of contrast and low quantum depletion.

In Fig. 3(b), we present the natural populations λi(t)
for β = 0.0 and β = 0.5 as well as for a density- but not
phase-engineered initial state, which is discussed in Sec. III D.
In principle, M = 4 natural orbitals are available in our
simulations, yet only two of them essentially contribute to
the reduced one-body density operator and thereby to the
total many-body wave function. The remaining two natural
orbitals acquire natural populations of below 2%. Again, the
dynamics consists of two stages: First, the natural populations
are stationary for a duration which prolongs with increasing β.
Afterwards, the most dominant natural orbital loses weight in
favor of the second dominant one, which happens much faster
for the black soliton compared to β = 0.5 on the time scales
under consideration.

Finally, we unravel the density and phase profiles of
the two most dominant natural orbitals in Fig. 4. Clearly,
the dominant natural orbital features solitonic characteristics
such as the localized density minimum accompanied by
an appropriate phase jump. In contrast to this, the second
dominant natural orbital undergoes two stages of evolution.
First, the density is rearranged on a time scale on which
also the quantum depletion and the natural populations are
stationary, i.e., until t ∼ 1.5τ, . . . ,3.5τ for β = 0.0, . . . ,0.7.
After this phase of the dynamics, the second dominant natural
orbital has accumulated most of its density in the vicinity of
the instantaneous density minimum of the dominant natural
orbital. This accumulated density remains localized in the
vicinity of the density dip of the dominant natural orbital even
in the case of a moving gray soliton. In view of its natural
population and density distribution, the second dominant
natural orbital is mainly responsible for the filling of the
one-body density depression—a result fully consistent with
lattice simulations for black solitons in a box potential [39] as
well as a Bogoliubov treatment of black solitons in a harmonic
trap, where the anomalous mode dominates the filling of the
density minimum, e.g., [32,33].

2In fact, the data can be fitted well by a sum of two exponentials
with negative exponent coefficients.
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FIG. 4. (Color online) Comparison of the density evolution of the
most and second dominant natural orbital for (a),(b) a black soliton
and (c),(d) a gray soliton with β = 0.5. The instantaneous soliton
positions xs

t defined as the minimum of ρ1(x; t) are depicted as white
dashed lines. Insets: Phase profile of respective natural orbital. All
other parameters as in Fig. 1.

Moreover, in Fig. 4, we have marked the position of the
soliton, allowing for identification of a crucial difference
between black and gray solitons: For β = 0.0, the many-body
state has a definite parity for all times, which translates into
definite parities of the natural orbitals and therefore leads to
a perfectly symmetrically accumulated density of the second
dominant natural orbital with respect to the soliton position.
In contrast to this, the many-body state for β > 0 can be
shown to feature only a combined parity and time-reversal
symmetry and, more importantly, the accumulated density of
the second dominant natural orbital is not locally symmetric
with respect to the instantaneous soliton position. In Sec. III C,
we will see that this asymmetry results in distinct two-body
correlations. We remark that the degree of local asymmetry
depends on the definition of the soliton position xs

t : If we
had defined xs

t as the minimum of the dominant natural
orbital density |ϕ1(x; t)|2, the local asymmetry would still
be present, but slightly reduced. All statements in Secs. III C
and III D, which relate to the soliton position, hold qualitatively
for both definitions of xs

t and we stick to xs
t being the

position of the minimum of ρ1(x; t) as the latter is directly
observable.

Before turning to the local two-body correlations, we
comment on phonon excitation mechanisms: In the case of
the black soliton, we observe that the even-parity natural
orbitals, i.e., the second and fourth ones (not shown), are
essentially carrying all phonon excitations visible in ρ1(x; t).
These natural orbitals have been of odd parity before the phase
imprinting and possess a finite slope in the vicinity of x = 0.
Thus the phase engineering creates a cusp at x = 0, whose
energy density is subsequently transported via phonons into the
bulk as one can infer from the oscillatory density and phase
modulations in Fig. 4(b). Yet the odd-parity natural orbitals

also contribute to the phonons in ρ1(x; t) with, however,
so minute a weight that the density modulations are hardly
observable in Fig. 4(a). Here the phonon generation underlies
a different mechanism: Having been of even parity before the
phase imprinting, odd-parity natural orbitals initially feature a
tiny but finite density at the phase-jump position x = 0, which
is transported into the bulk afterwards. It is conceivable that
besides these two phonon generation mechanisms, the shape
of |ϕi(x; t)|2 in a finite vicinity of x = 0 also plays a role by
storing excess energy when the density-engineering barrier
is removed, which is then turned into phonon excitations.
However, this argument should generically hold for all natural
orbitals, irrespective of their parity, and therefore we may
regard this mechanism to be of minor importance if it is
important at all. For β = 0.5, phonons are hardly visible in
the natural orbitals and therefore essentially absent in ρ1(x; t),
as already discussed.

C. Two-body correlation analysis

As solitons are entities localized in space, we consider the
local two-body correlation measure:

g2(x1,x2; t) = ρ2(x1,x2; t)

ρ1(x1; t)ρ1(x2; t)
, (6)

which coincides with the diagonal of the second-order coher-
ence function defined by Glauber [57]. Here, we have intro-
duced the two-body density ρ2(x1,x2; t) = 〈x1x2|ρ̂2(t)|x1x2〉
with the reduced two-body density operator ρ̂2(t) =
tr2|�t 〉〈�t | obtained by a partial trace over all but two bosons.
Due to our normalization of ρ2(x1,x2; t) to unity, a perfectly
condensed many-body state would lead to g2(x1,x2; t) = 1
everywhere. Finding g2(x1,x2; t) to be larger (smaller) than
unity means that two bosons are found more (less) likely at the
spots (x1,x2) compared to statistical independence. Despite the
g2-correlation function being one of the simplest observables
sensitive to beyond-mean-field properties, such correlations
have not been studied in the context of dark solitons—except
for the perturbative treatment with a different focus in [58].
Besides its conceptual simplicity, the experimental accessi-
bility via in situ density-density fluctuation measurements
[59–65] makes the g2-correlation function attractive such that
experimental interest in the correlation properties of dark
solitons has already been triggered [65]. Due to the involved
averaging process, probing beyond-mean-field physics on the
level of density fluctuations can turn out to be more robust
than inspecting signatures which become manifest only in
single-shot n-body (n � 2) absorption image measurements
as considered in, e.g., [41]—given a sufficient stability of the
apparatus and imaging system, of course.

In Fig. 5, we compare the time evolution of the g2-
correlation measure for a black and a gray soliton initial
state: Initially [Figs. 5(a) and 5(d)], g2(x1,x2; t = 0) only
marginally deviates from unity as expected for an initial
state within the Thomas-Fermi mean-field regime. During
the time evolution, however, the black and gray solitons
establish quite distinct correlation patterns: First focusing
on the black soliton, the g2-correlation function inherits the
two-body reflection symmetry g2(−x1,−x2; t) = g2(x1,x2; t)
from the many-body wave function of definite parity. Most
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FIG. 5. (Color online) Two-body correlation function g2(x1,x2; t) for a black soliton (first row) and a gray soliton with β = 0.5 (second
row) at times t = 0.0 (first column), t = 2.5τ (second column), and t = 5τ (third column). Dashed lines refer to the instantaneous soliton
position xs

t and the arrows indicate the direction of the soliton movement. All other parameters as in Fig. 1.

of the detection events (x1,x2) remain uncorrelated during the
evolution, but pronounced correlations emerge in the vicinity
of the soliton notch [Fig. 5(b)]: On the one hand, we observe
that a pair of bosons strongly bunches at the soliton position
(x1 = x2 = 0) or in the same flank of the soliton (x1x2 > 0).
On the other hand, two bosons statistically avoid to be detected
in different flanks of the soliton (x1x2 < 0). Thereby, the
region around the soliton position where g2(x1,x2; t) features
bunching is strongly squeezed on the off-diagonal x2 = −x1

axis. At later times [Fig. 5(c)], the g2 function preserves its
correlation pattern but its maximal value reduces by more than
a factor of 1.8 compared to Fig. 5(b). At the same time, the
extent of the bunching (antibunching) region on the diagonal
x1 = x2 (off-diagonal x1 = −x2) increases from about 1.7ξ

(1.0ξ ) to 3.0ξ (2.2ξ ), which goes hand in hand with the
widening of the minimum in the reduced one-body density
[cf. Figs. 1(a) and 4(a)].

In the case of a gray soliton, the broken parity symmetry
is imprinted in the evolution of the g2-correlation function,
leading to a quite characteristic correlation pattern after a
short time [Fig. 5(e)]: Most strikingly, the region where
atom pairs occur bunched is localized in the soliton flank
opposite to its direction of movement, i.e., x1,x2 < xs

t , whereas
atoms in the soliton flank pointing into its direction of
motion are either slightly antibunched or uncorrelated. In
fact, this displacement of the bunching region can be—at
least partially—traced back to the local asymmetry of the
second dominant natural orbital density with respect to the
soliton position xs

t : Focusing on the diagonal x1 = x2 =
xs

t ± ε, ε > 0, and on the vicinity of xs
t such that ρ1(xs

t ±
ε; t) ≈ λ2(t)|ϕ2(xs

t ± ε; t)|2 [cf. Fig. 4(c)], one immediately

sees that for fixed two-body densities ρ2(xs
t ± ε,xs

t ± ε; t),
the local asymmetry |ϕ2(xs

t − ε; t)|2 < |ϕ2(xs
t + ε; t)|2 im-

plies g2(xs
t + ε,xs

t + ε; t) < g2(xs
t − ε,xs

t − ε; t) according to
definition (6).

Moreover, regions of antibunching emerge in the sectors
(x1,x2) ∈ R2 with x1/2 < xs

t < x2/1, which are elongated
towards the direction of motion of the soliton. In the overall
correlation pattern, the maximal deviation of g2(x1,x2; t) from
unity is with ±8% rather weak but increases at later times
[Fig. 5(f)]. Furthermore, the antibunching regions become
confined to the sectors x1/2 < xs

t < x2/1 then, while an
atom pair in the sector pointing into the soliton’s direction
of movement, i.e., x1,x2 > xs

t , turns out to be essentially
uncorrelated. At even later times, the bunching region widens
and shifts in the direction of movement such that it becomes
approximately symmetric on the diagonal x1 = x2 with respect
to the soliton position xs

t (plot not shown). We note that the
localization of the (anti)bunching regions with respect to the
soliton position does not depend on the choice for the definition
of xs

t discussed in Sec. III B.
In total, the maximal positive and negative deviations of

g2(x1,x2; t) from unity are much smaller compared to the black
soliton, which can be easily understood in terms of selection
rules: While for β = 0, the definite parity of the total wave
function permits only pairwise scattering of atoms out of the
most dominant natural orbital of odd parity into the even parity
second most dominant natural orbital (cf. also [31,38,39]), this
process can also happen atomwise in the case of a gray soliton.
In view of the particular density distribution of the most and
second most dominant natural orbital, two-body correlations
thereby have to be quite pronounced for the black soliton,
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whereas relatively weaker correlations are possible for gray
solitons.

In order to quantify the asymmetry of the correlation
pattern in dependence on β, we define the position of the
bunching center as follows: First, we introduce a bunching
distribution within a disk of radius R with center (xs

t ,x
s
t ) as

being proportional to the g2 function minus one wherever it
shows bunching:

p(x1,x2; t) ∝ [ g2(x1,x2; t) − 1 ]

× �
(
R − ∣∣x − xs

t

∣∣) �[g2(x1,x2; t) − 1]. (7)

Here, �(x) denotes the Heaviside step function and we use
the abbreviations x = (x1,x2) as well as xs

t = (xs
t ,x

s
t ). In the

following, we choose R = 4ξ , which is sufficient for capturing
the important correlation pattern. This probability distribution
is used for defining the bunching center x̄t as the expectation
value of x. Due to the particle exchange symmetry of the
g2-correlation function, both components of x̄t coincide and
equal

x̄t =
∫

dx1dx2 x1 p(x1,x2; t). (8)

To compare the x̄t dynamics for various β, we have performed
a Galilean boost into the comoving system of the soliton in
Fig. 6(a) depicting x̄t − xs

t , which is proportional to bunching
center displacement from the soliton position in the (x1,x2)
plane, i.e., |x̄t − xs

t | = √
2|x̄t − xs

t |. Within 0.5, . . . ,2.5 nat-
ural time units τ for β = 0.1, . . . ,0.7, the bunching center
x̄t first moves away from the soliton opposite to its direction
of motion with an approximately constant velocity being the
faster the smaller β is (for β > 0). This motion takes place
with subsonic velocity3 as one can infer from a comparison
with the trajectory x(t) of a fictitious sonic excitation emitted
opposite to the soliton direction of movement at t = 0 from
the soliton position x(0) = 0. Importantly, this steady motion
of the bunching center lasts the longer the grayer the soliton
is, such that larger β result in larger maximal displacements
from the soliton position. After this phase of the dynamics,
the displacement either features a maximum or stays for some
time approximately at its maximal value before it decreases.
This decrease reflects that the bunching center becomes
approximately symmetric with respect to the soliton position
at even later times. Afterwards, we cannot make predictions
for the further evolution since more optimized SPFs would be
needed to ensure convergence.

Although the term is definitely not proper in a strict sense,
these findings suggest that the observed highly localized
correlations feature a certain “inertia”: The phase imprinting

3We remark that for β = 0.1 and β = 0.2, the motion appears
to be supersonic. Since the bunching center, however, is only
slightly displaced from the soliton position for these slow solitons, a
comparison with the bulk sound velocity turns out to be difficult: The
bunching center stays in a region of very low and spatially rapidly
changing density such that the local speed of sound (which actually
is not a meaningful concept here in view of the spatial extent of the
bunching region) turns out to be much smaller than its bulk value. See
also the discussion about event horizons and dark solitons in [66].
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FIG. 6. (Color online) Analysis of the bunching center x̄t for
various β: (a) Displacement of x̄t with respect to instantaneous
soliton position xs

t . The dashed lines indicate the trajectories of a
fictitious sonic excitation emitted at t = 0 from the soliton position
in the negative x direction for the various β, i.e., x(t) − xs

t =
−√

gρbulk t − xs
t , where the bulk density ρbulk is evaluated directly

after the density engineering at t = 0. (b) The value of the two-body
correlation function g2(x̄t ,x̄t ; t) at the bunching center. The bunching
distribution (7) is calculated for R = 4ξ . All other parameters as in
Fig. 1.

appears to give the density dip an instantaneous kick, thereby
setting it into motion. At the same time, bunching correlations
emerge and drift the further into the back of the soliton
the stronger this kick is, i.e., the larger β is. In order to
test this picture, we have exerted a force on a gray soliton
giving it dynamically a kick: By imposing an additional
weak potential V (x) = V0 [1 − tanh(x/l)]/2 with V0 > 0,
l = O(ξ ), we realize a bulk density profile ∝[const − V (x)]
featuring two distinct sound velocities sl < sr in the left and
right half space. We then initialize a gray soliton in the left
half space [x0 < 0 in (1)] moving to the right by means of the
optimized density- and phase-engineering scheme introduced
in Sec. II C. Although l = O(ξ ) results in a nonadiabatic
change of the local density for the soliton (cf. e.g., [67]),
we have carefully checked that passing the step in the bulk
density only leads to an acceleration of the soliton within the
mean-field picture. The corresponding many-body simulation
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reveals that the bunching center becomes drastically separated
from the soliton position when passing x = 0. Essentially,
the bunching center remains stuck in the vicinity of x = 0
while decreasing in amplitude with time, thus giving further
evidence for the aforementioned “inertia” of these localized
correlations under kicks (plots not shown). We suspect that this
inertia effect might be a consequence of the time scales for the
emergence and drift of these correlations being decoupled from
the time scales associated with the movement and acceleration
of the density dip.

In Fig. 6(b), we present the time evolution of the g2-
correlation function evaluated at the bunching center, i.e.,
g2(x̄t ,x̄t ; t). For the black soliton, strong bunching correlations
emerge almost instantaneously, which reflects the particular
role of the parity-induced selection rule, enforcing the dom-
inant dynamical quantum depletion channel to take place
pairwise, as well as the particular shape of the dominant
and second dominant natural orbital for local two-body
correlations. At about t = 1.0τ , the bunching correlations
establish a maximum of approximately 2.9 and afterwards
these correlations decay again. We conjecture that this decay
might be a precursor of a relaxation to a stationary state at
later times. Qualitatively, the g2(x̄t ,x̄t ; t) follows essentially
the same behavior in the case of a gray soliton. However, the
faster the soliton the longer it takes until noticeable correlations
have built up. The build-up of correlations can last several
natural time units τ , i.e., significantly longer compared to the
black soliton. Moreover, the time when g2(x̄t ,x̄t ; t) becomes
maximal turns out to be longer than the time needed for the
bunching center to become maximally displaced from the
soliton position. As expected from the previous observations,
the maximum of g2(x̄t ,x̄t ; t) is smaller for larger β.

D. Role of phase engineering

Having discussed the dynamics of a phase- and density-
engineered solitonic initial state in detail, we finally inves-
tigate the role of the phase-imprinting procedure. For this
purpose, we only apply the density-engineering scheme for
a black soliton4 as described in Sec. II C. As a result, we
obtain an initial state with the very same natural population
distribution as in the case of phase and density engineering.
In contrast to the latter situation, the majority of atoms
resides in a gerade rather than an ungerade orbital now,
which constitutes an energetically more favorable situation.5

4Preparing the initial state with the optimized density-engineering
potential (3) for β > 0 instead does not change the results quali-
tatively. Yet as seen for the phase- and density-engineered initial
state, the strength of beyond-mean-field effects such as correlations
is weaker in this case. We note that this density-engineering scheme
results in a state of definite many-body parity also for β > 0.

5In fact, the energy of the many-body system is raised by the phase
engineering due to the altered parity of the orbitals (cf. the discussion
of phonon generation mechanisms in Sec. III B). Comparing the
excess energy of the density-engineered with the density- and
phase-engineered initial state, i.e., Ed − E0 and Edp − E0 with E0

denoting the ground-state energy of the considered N = 100 bosons
in the box potential, we find (Edp − E0)/(Ed − E0) ≈ 1.09.

The subsequent many-body dynamics is summarized in
Fig. 7.

In contrast to the phase- and density-engineered initial state,
the density minimum now splits into two counterpropagating
minima of constant velocities, which move through a back-
ground with phonon modes being excited much more inten-
sively [Fig. 7(a)]. A mean-field simulation (plot not shown)
essentially reveals the same density profile ρ1(x; t), which
can be explained by the evolution of the natural populations
in Fig. 3(b): Quite in contrast to the density- and phase-
engineered initial state, the natural populations essentially stay
constant and, thus, the rather small initial quantum depletion
of about 8.5% is retained. The density of the dominant
natural orbital approximately resembles the full density profile
ρ1(x; t) as expected, while its phase profile features two
phase jumps localized at the positions of these two minima
[Fig. 7(c)]. Therefore, we may conclude that the density-
engineering scheme creates two counterpropagating gray
solitons with |β| ≈ 0.7 in the single-particle state occupied by
approximately 91.5% of the atoms—as predicted for density
engineering in [68,69] within the mean-field theory and also
experimentally observed in, e.g., Ref. [70].

The remaining atoms essentially reside in the second
dominant natural orbital being of odd parity, whose density
appears to be dragged to the box boundaries by the two
gray solitons in the dominant natural orbital. Thereby, the
region between the two solitons becomes depleted in density
while density is accumulated in the vicinity of the two density
minima of the dominant natural orbital. Again, we can witness
a local asymmetry of this accumulated density with respect to
the position of the two gray solitons in the dominant natural
orbital, which is a persistent feature for both definitions of
the soliton position discussed in Sec. III B. Moreover, we
note that the phase of the second dominant natural orbital
is approximately constant in domains x ∈ [−L/2,0) and x ∈
(0,L/2] so that this orbital hardly contributes to the proba-
bility current density j (x; t) = tr[ĵ (x)ρ̂1(t)] with the current
density operator ĵ (x) = 1

2 [δ(x − x̂) p̂ + p̂ δ(x − x̂)] and x̂, p̂

denoting the position and momentum operator, respectively.
Thus, essentially only the phonon excitations being almost
exclusively accommodated in the gerade dominant natural
orbital as well as the mass counterflow to the movement of the
gray solitons in this orbital contribute to the current density
j (x; t).

In summary, all observations so far are consistent with
our results on a single gray soliton, in particular the long
lifetime of the contrast against decay via quantum fluctuations
[cf. Fig. 2(b), β = 0.7]. We finally address the question in
Fig. 7(b) as to whether the g2-correlation pattern can also
be understood as the sum of the correlation patterns of two
counterpropagating gray solitons: Indeed, we find for x1, x2 in
the vicinity of one and the same gray soliton that g2(x1,x2; t)
resembles the peculiar locally asymmetric correlation pattern
of bunching in the back of the soliton, with antibunching of
pairs of atoms being located in different flanks of the soliton
and being uncorrelated ahead. Yet moreover, with respect to the
soliton position, an additional nonlocal correlation structure
has emerged. Denoting the position of, e.g., the right-moving
gray soliton as xs

t , we may state that bunching (antibunching)
regions for (x1,x2) in the vicinity of (xs

t ,x
s
t ) are turned into
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SVEN KRÖNKE AND PETER SCHMELCHER PHYSICAL REVIEW A 91, 053614 (2015)

0 1 2 3 4 5 6
t (units of τ )

-10

-5

0

5

10

x
(u

ni
ts

of
ξ)

(a)

0.004

0.012

0.020

0.028

0.036

0 1 2 3 4 5 6
t (units of τ )

-10

-5

0

5

10

x
(u

ni
ts

of
ξ)

(c)

0.004

0.012

0.020

0.028

0.036

0 1 2 3 4 5 6
-10

-5

0

5

10

-10 -5 0 5 10
x1 (units of ξ)

-10

-5

0

5

10

x
2

(u
ni

ts
of

ξ )

(b)
t = 5τ

0.84

0.88

0.94

1.00

1.06

1.12

0 1 2 3 4 5 6
t (units of τ )

-10

-5

0

5

10

x
(u

ni
ts

of
ξ)

(d)

0.000

0.016

0.032

0.048

0.064

0 1 2 3 4 5 6
-10

-5

0

5

10

0 π 2π
phase

FIG. 7. (Color online) Evolution of a density-engineered initial state (no phase imprinting is applied): (a) Reduced one-body density
ρ1(x; t), (b) two-body correlation function g2(x1,x2) at time t = 5τ , as well as density of the (c) dominant and (d) second dominant natural
orbital, with corresponding phase profiles as insets. The corresponding natural populations are depicted in Fig. 3(b). Dashed lines refer to the
instantaneous soliton position xs

t obtained by linear regression of the position of the local ρ1(x; t) minima and the arrows indicate the direction
of the soliton movement. All other parameters as in Fig. 1.

antibunching (bunching) regions under a parity transformation
acting only on one of the two coordinates (x1,x2): Finding
one atom in each of the backs of the two solitons is statistically
avoided, while detecting one atom in each of the forward flanks
of the two solitons is a rather uncorrelated event. Moreover,
the probability of measuring one atom in the back flank of
one soliton and another atom in the forward flank of the other
soliton is slightly enhanced due to correlations. As a matter
of fact, these nonlocal correlations between the solitons are a
generic feature of parity symmetric many-body wave functions
with essentially only two contributing natural orbitals and
g2(0,0; t) ≈ 1 [71].

IV. CONCLUSIONS AND OUTLOOK

We have provided a systematic study of beyond-mean-field
signatures in black and, in particular, gray solitons. For
this purpose, a robust, semianalytically optimized density-
engineering scheme has been developed, which in combination
with phase imprinting allows one to cleanly generate gray
solitons. In situations where the healing length can be
increased above the optical diffraction limit, this preparation
scheme is also of potential experimental relevance. We have
demonstrated that the quantum fluctuations limited lifetime of
dark solitons increases with their velocity. This is, in particular,

intriguing as the variety of allowed incoherent scattering
channels is larger for gray solitons compared to black ones
of definite parity. The enhanced lifetime of gray solitons also
manifests itself in a slower dynamical quantum depletion. The
dark-soliton decay takes place in a two-step process: First, the
density of the second dominant natural orbital accumulates
in the vicinity of the soliton while the quantum depletion
stays constant. Second, the population of this orbital increases
significantly. Strikingly, the accumulated density of the second
dominant natural orbital features a local asymmetry with
respect to the soliton position for gray solitons.

Dark solitons have the peculiar feature that quantum fluctu-
ations induce spatially highly localized two-body correlations
in the vicinity of the density minimum. While the zones
of (anti)bunching are distributed symmetrically around this
minimum for a black soliton of definite parity, the locally
asymmetrically accumulated density of the second dominant
natural orbital imprints itself in an asymmetric correlation
pattern for gray solitons. In particular, we have shown that
localized bunching correlations move to the backward flank
of a gray soliton with subsonic velocity, resulting in a
bunching center being the further displaced from the soliton
the faster the soliton moves through the bulk. Moreover,
we have observed that these localized correlations have a
kind of particle character in the sense that they feature a
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certain inertia under accelerations of the soliton. To unravel
the underlying mechanism and sharpen the terminology for
this phenomenology remains an interesting prospect for future
works.

Finally, we have illuminated the role of the phase im-
printing: As within the mean-field approximation, density
engineering alone results in pairs of counterpropagating gray
solitons, which individually feature both the enhanced lifetime
and peculiar localized correlation pattern of a single gray
soliton. In addition, nonlocal two-body correlations between
the two solitons emerge, which can be traced back to the
parity symmetry, absent correlations at the parity-symmetry
center, g2(0,0; t) ≈ 1, and the fact that essentially only two
natural orbitals contribute with significant weights [71]. As a
next step, it would be interesting to also study dark-bright
solitons beyond the mean-field approximation in order to
reveal possibly emerging interspecies correlations. Moreover,
it is necessary to check the robustness of all these beyond-
mean-field signatures in the presence of decoherence and
particle loss, which has been shown to significantly influence
the properties of quantum bright matter-wave solitons [72].
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APPENDIX: NUMERICAL PARAMETERS AND
CONVERGENCE

The hard-wall boundary conditions are implemented by a
sine discrete variable representation (DVR) with n = 200 grid
points resulting in a grid spacing �x ≈ 0.1ξ (cf. appendix
of [73]). Compared to the Bose-Hubbard approximation of
a continuous system (cf. e.g., [74]), our sine DVR also
considers next-to-nearest neighbor and higher-order hopping
processes. Due to the single-particle spectrum of the density-
engineering Hamiltonian featuring pairs of quasidegenerate
states, it is only meaningful to consider an even number of
SPFs when going beyond the mean-field approximation. We
can efficiently afford for, at most, M = 4 optimized SPFs
when dealing with N = 100 bosons resulting in ∼177.000
number state configurations. By carefully comparing with
M = 2 simulations as well as with the results in [41], we
can ensure convergence at least up to times t ∼ 6.25τ , which
is not long enough for relaxing to a uniform density profile
but more than sufficient for the phenomena we are interested
in. We emphasize that (ML-)MCTDHB gives a variationally
optimized total wave function for any M .
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