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Metastability, excitations, fluctuations, and multiple-swallowtail structures of a superfluid in a
Bose-Einstein condensate in the presence of a uniformly moving defect
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We solve the Gross-Pitaevskii (GP) and Bogoliubov equations to investigate the metastability of superfluidity
in a Bose-Einstein condensate in the presence of a uniformly moving defect potential in a two-dimensional torus.
We calculate the total energy and momentum as functions of the driving velocity of the moving defect and find
metastable states with negative effective mass near the critical velocity. We also find that the first excited energy
(energy gap) in the finite-sized torus closes at the critical velocity, that it obeys one-fourth power-law scaling,
and that the dynamical fluctuation of the density (amplitude of the order parameter) is strongly enhanced near
the critical velocity. We confirm the validity of our results near the critical velocity by calculating the quantum
depletion. We find an unconventional swallowtail structure (multiple-swallowtail structure) through calculations
of the unstable stationary solutions of the GP equation.
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I. INTRODUCTION

The breakdown of superfluidity is a long-standing but still
central issue regarding quantum fluids [1–6]. It has been
observed in experiments of cold atomic gases trapped in
simply connected geometry [7–12] and multiply connected
geometry [13–25]. The latter experiments have exhibited
various properties of superfluidity, including critical velocity,
vortex nucleation, decay of persistent current, phase slip,
and hysteresis. The breakdown of superflow stability in
cold atoms has been studied theoretically [26–44] using the
Gross-Pitaevskii (GP) equation [45,46]. For example, Frisch
et al. [26] showed that, in the presence of a defect potential,
a vortex pair is nucleated when the velocity is above a critical
value. Nucleation of solitons was studied in one-dimensional
superfluids [28], and the results aid in our understanding of
the relationship between the nucleation of a topological defect
and the breakdown of superfluidity.

The breakdown of superfluidity can be understood, within
the mean-field theory, through an energy diagram of stable or
unstable states as functions of a control parameter (angular
velocity of a container or driving velocity of an optical
lattice, for example). Superfluidity breaks down at the control
parameter when the metastable superflow state meets an
unstable state in the energy diagram. From condensate wave
function of the unstable state, furthermore, we see that
dynamics of topological defects causes decay of superflow.

As a typical energy diagram of superfluids, swallowtail
structure [47–59] has been investigated for one-dimensional
optical lattices and ring-shaped systems with narrow widths.
Those theories seem to explain experimental results. More
recently, experimental results [19,20] on vortex nucleations
and breakdown of superfluids have been discussed on the basis
of swallowtail structure and corresponding energy landscape.

In two- and three-dimensional superfluids, however, the
whole structure of energy diagram of stable or unstable
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branches has not yet been known. Our aim is to find the whole
structure of energy diagram in two-dimensional systems and
gain physical insight into breakdown of superfluids related
to vortex nucleation. For this purpose, we solve the GP
and Bogoliubov equations in two-dimensional torus with a
uniformly moving defect potential. In our previous work [60],
we showed the properties of excitations and fluctuations near
the critical velocity. In this full paper, we present the whole
structure of energy diagram and related results; material not
reported in Ref. [60] includes the existence or absence of a
ghost vortex pair, quantum depletion near the critical velocity,
and energy diagram, which we call multiple-swallowtail
structure.

This paper is organized as follows: In Sec. II, we introduce
our model. In Sec. III, we present the stable stationary solutions
of the GP and Bogoliubov equations [61,62]. In Sec. III A,
the velocity dependence of the total energy and the total
momentum are presented, and we compare our results with
those for optical lattice systems. In Sec. III B, we show the
density and the phase profiles below and above the critical
velocity and discuss the appearance of a ghost vortex pair.
In Secs. III C and III D, we demonstrate the properties of
the excitation and the fluctuation. In Sec. III E, we show
the results for quantum depletion and discuss the validity
of the GP and the Bogoliubov approximation in this system.
In Sec. IV, we present unstable stationary solutions of the
GP equation. We show that a multiple-swallowtail structure
appears in this system. In Sec. V, we discuss the bifurcation
structure of the system, the relation between the fluctuations
and the energy landscape near the critical velocity, and the
possible effects of the multiple-swallowtail structure on the
decay of supercurrent. Finally, we summarize our results in
Sec. VI. The numerical methods used in the present work are
summarized in Appendixes A and B.

II. MODEL

A. GP equation in a laboratory frame

We consider a system in which N bosons of mass m

are confined in a two-dimensional torus [−L/2, + L/2) ×

1050-2947/2015/91(5)/053608(15) 053608-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.053608


MASAYA KUNIMI AND YUSUKE KATO PHYSICAL REVIEW A 91, 053608 (2015)

[−L/2, + L/2). In the mean-field approximation, the physical
properties of the system can be described by a complex order
parameter (condensate wave function) �L(rL,tL), where rL

and tL denote the coordinate and time in the laboratory frame,
respectively. The subscript L denotes the variables in the
laboratory frame. The condensate wave function obeys the
GP equation [45,46]:

i�
∂

∂tL
�L(rL,tL) = − �

2

2m
∇2

L�L(rL,tL)

+ U (rL + vtL)�L(rL,tL)

+ g|�L(rL,tL)|2�L(rL,tL), (1)

where U (rL + vtL) represents a moving defect potential with
a constant velocity −v and g(> 0) is the strength of the
interaction. We use the Gaussian potential:

U (rL) ≡ U0 exp

[
−

(
rL

d

)2]
, (2)

where U0(> 0) and d are the strength and the width of the
potential, respectively. Throughout this paper, the velocity
of the potential is in the direction of x (v ≡ vex , where
ex is a unit vector in the direction of positive x.) Periodic
boundary conditions are imposed on �L(rL,tL), because there
is a requirement that the condensate wave function should be
single valued:

�L(rL + Lex,tL) = �L(rL,tL), (3)

�L(rL + Ley,tL) = �L(rL,tL), (4)

where ey is a unit vector in the direction of positive y. From
this boundary condition, we can define the winding number:

W ≡ 1

2π

∫ +L/2

−L/2
dxL

∂

∂xL
ϕL(rL,tL), (5)

where ϕL(rL,tL) is the phase of the condensate wave function.

B. GP equation in a moving frame

The GP equation in the laboratory frame (1) depends
explicitly on time. We remove t dependence by performing
a coordinate transformation from the laboratory frame to a
moving frame [3,6], as follows:

r ≡ rL + vtL, (6)

t ≡ tL, (7)

�(r,t) ≡ exp

(
i

�

1

2
mv2tL + i

�
mv · rL

)
�L(rL,tL), (8)

∇L = ∇, (9)

∂

∂tL
= ∂

∂t
+ v · ∇. (10)

Using Eqs. (6)–(10), the GP equation in the moving frame is
given by

i�
∂

∂t
�(r,t) = − �

2

2m
∇2�(r,t) + U (r)�(r,t)

+ g|�(r,t)|2�(r,t). (11)

As a result of transformation (8), the periodic boundary
condition becomes twisted [63]:

�(r + Lex,t) = eimvL/��(r,t), (12)

�(r + Ley,t) = �(r,t). (13)

The stationary solution of the GP equation (11) is given
by �(r,t) = e−iμt/��(r), where μ is the chemical potential.
Substituting this relation into Eq. (11), we obtain the time-
independent GP equation:

− �
2

2m
∇2�(r) + U (r)�(r) + g|�(r)|2�(r) = μ�(r). (14)

The chemical potential μ is determined by the condition,

N =
∫

d r|�(r)|2. (15)

C. Bogoliubov equation

The Bogoliubov equation [61,62] can be derived by
linearizing the GP equation around the stationary solution
�(r). Substituting

�(r,t) ≡ e−iμt/�[�(r) + ui(r)e−iεi t/� − v∗
i (r)eiε∗

i t/�] (16)

into the time-dependent GP equation (11), and neglecting
the higher-order terms of ui(r) and vi(r), we obtain the
Bogoliubov equation,[

L −g[�(r)]2

g[�∗(r)]2 −L

][
ui(r)
vi(r)

]
= εi

[
ui(r)
vi(r)

]
, (17)

L ≡ − �
2

2m
∇2 + U (r) − μ + 2g|�(r)|2. (18)

Here ui(r) and vi(r) are the wave functions of the ith excited
state with an excitation energy εi . The boundary conditions
for ui(r) and vi(r) are determined by the condition in which
Eq. (16) satisfies the twisted periodic boundary conditions (12)
and (13):

ui(r + Lex) = e+imvL/�ui(r), (19)

vi(r + Lex) = e−imvL/�vi(r), (20)

ui(r + Ley) = ui(r), (21)

vi(r + Ley) = vi(r). (22)

The wave functions for the excited states satisfy the following
orthonormal conditions:∫

d r[u∗
i (r)uj (r) − v∗

i (r)vj (r)] = δij , (23)∫
d r[ui(r)vj (r) − vi(r)uj (r)] = 0. (24)

Throughout this paper, length, energy, and time are normal-
ized by the healing length ξ ≡ �/

√
mgn0, ε0 ≡ gn0, and τ ≡

�/ε0, respectively, where n0 ≡ N/S (S ≡ L2 is the area of the
system) is the mean particle density. The velocity is normalized
by the sound velocity vs ≡ √

gn0/m or v0 ≡ 2π�/(mL).
Numerically solving the GP and Bogoliubov equations

yields the condensate wave function, excitation spectra, and
wave functions for the excited states. The methods we used for
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the numerical calculations are summarized in Appendixes A
and B.

III. RESULTS FOR STABLE BRANCHES

A. Energy and momentum

First, we show the energy diagram, which represents the
total energy in the moving frame as a function of driving
velocity of moving defect. The energy diagram yields the
superfluid fraction (the nonclassical rotational inertia) [63],
the critical velocity, and the metastability and hysteresis of
superflow states [48].

The total energy in the moving frame is defined by

E =
∫

d r
[

�
2

2m
|∇�(r)|2 + U (r)|�(r)|2 + g

2
|�(r)|4

]
.

(25)

Figure 1 shows the results for the stable branches. The total
energy is periodic with respect to the driving velocity v; it
stems from the periodicity of the boundary condition (12).

The lowest energy state under a given v is the ground
state, and the other states are metastable. We confirm the
metastability by calculating the excitation spectra of the
Bogoliubov equation around each stationary state of the GP
equation (see Sec. III C for details). The energy branches
shown in Fig. 1 are almost parabolic, except in the vicinity of
the termination points, which correspond to the critical velocity
vc. Each branch can be specified by the winding number W ,
which we defined by (5). For example, the red branch denoted
by open circles (◦), which continuously connects the ground
state at v = 0, has W = 0. The green branch, denoted by open
triangles (�), has W = −1.

The winding number can serve as an adiabatic invariant
under an adiabatic change of v [48,64]. Suppose that the system
is in the ground state (W = 0), and v increases adiabatically
from 0 to vc. We then expect that the system will evolve
along the red branch, and the winding number will remain
unchanged. Ring trap experiments [19,20] used the ground
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FIG. 1. (Color online) Energy diagram for the stable or
metastable branches for (L,U0,d) = (32ξ,5ε0, 2.5ξ ). The red, green,
blue, purple, and orange lines correspond to branches with a winding
number |W | = 0,1,2,3, and 4, respectively. Open (solid) symbols
represent energy branches with a nonpositive (positive) winding
number.

state of the noncirculating state as the initial condition in order
to see the dynamics under a change of v.

For the GP equation, the adiabatic condition is determined
by the Bogoliubov spectrum [50,64]; in the present case, the
dynamics is regarded as adiabatic when there is little change
in v within the time interval �/
 (where 
 denotes the lowest
excitation energy of the Bogoliubov spectrum). As we will
show in Sec. III C, 
 vanishes at v = vc. When v approaches
vc, the adiabaticity condition is violated at a certain v, and a
transition from W = 0 to a circulating state (W = −1) occurs,
which corresponds to a phase slip [65,66].

The flow properties of each branch can be seen in the ve-
locity dependence of the total momentum shown in Figs. 2(a)
and 2(b), where the total momentum of the moving frame and
laboratory frame are, respectively, given by

P ≡ − i�

2

∫
d r

[
�∗(r)

∂

∂x
�(r) − �(r)

∂

∂x
�∗(r)

]
, (26)

PLab = P − Nmv. (27)

The y component of the total momentum is zero by symmetry,
and we thus consider only the x component. For the red
branch, the total momentum of the moving frame has a linear
dependence for small v; see Fig. 2(a). The superfluid fraction
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FIG. 2. (Color online) Velocity dependence of the x compo-
nent of the total momentum per particle for the stable branches
[(L,U0,d) = (32ξ,5ε0,d = 2.5ξ )] in (a) the moving frame and (b)
the laboratory frame. The red, green, blue, purple, and orange lines
correspond to branches with winding numbers |W | = 0,1,2,3, and 4,
respectively. Open (solid) symbols represent nonpositive (positive)
winding numbers. The dashed black lines in (a) and (b) indicate
P = 0 and PLab = −Nmv, respectively, which represent the velocity
dependence of normal fluids.
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FIG. 3. (Color online) Magnified view of the W = 0 branch in
Fig. 2(a) near the critical velocity.

can be calculated through the following relations [63,67]:

ρs

ρ
≡ 1

Nm

∂P (v)

∂v

∣∣∣∣
v→0

= 1

Nm

∂2E(v)

∂v2

∣∣∣∣
v→0

, (28)

where we used the relation P (v) = ∂E(v)/∂v. The calculated
value of the superfluid fraction is ρs/ρ = 0.9598298(5) for
(L,U0,d) = (32ξ,5ε0,2.5ξ ) [68]. If we consider a uniform
system, the superfluid fraction becomes unity because the total
momentum is given by P (v) = Nmv. The deviation from unity
for our system is due to the presence of the external potential.
From Eq. (28) and Ref. [69], we can show that the effective
mass m∗(v) at v = 0 is related to m/m∗(v = 0) = ρs/ρ. In the
presence of the external potential, usually m∗(v = 0)/m > 1
holds and hence ρs/ρ < 1.

Figure 3 shows a blowup of the region near the critical
velocity for the W = 0 branch. We note that the effective
mass [(m/m∗) = (1/Nm)∂P (v)/∂v < 0] becomes negative
near the critical velocity; this implies that the mass flow of the
condensate in the moving frame decreases while the velocity
of the moving defect becomes larger. Negative effective-mass
states have been found in the GP equation for a BEC in an
optical lattice near the critical velocity (see Fig. 7 in Ref. [56]).
However, negative effective-mass states in an optical lattice are
subject to dynamical instability (DI) [49–52,55,56], while they
are metastable in our case. This difference comes from that the
DI in the optical lattice systems is due to the formation of the
long-period structures such as period-doubling solutions [53]
or bright gap solitons [70,71]. These structures are prohibited
in a torus and thus the negative-effective mass states maintain
metastability.

We note that the qualitatively same behavior for negative
effective-mass states is found for other values of the param-
eters, as follows: L/ξ = 24,32,48,64, U/ε0 = 1,10,20, and
d/ξ = 1,2,2.5,5. We thus believe that the results in this section
are generic for a superfluid in a torus near the critical velocity
in the presence of a moving defect.

B. Density and phase profile

We next consider the spatial profiles of the density and the
phase of the condensate wave function for a strong potential
U0 = 10ε0 and a weak potential U0 = ε0.
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FIG. 4. (Color online) (a) Density profile and (b) phase pro-
file, for (L,U0,d) = (48ξ,10ε0,2.5ξ ) and v = 0.4303400vs 	
0.9999907vc. White and black circles represent the position of
the GVP.

Figures 4(a) and 4(b) show the spatial profiles of the
density and phase, respectively, of the condensate wave func-
tion for (L,U0,d) = (48ξ,10ε0,2.5ξ ) and v = 0.4303400vs 	
0.9999907vc. We find a vortex pair in the low-density region;
this is called a ghost vortex pair (GVP) [72–74]. This is a
(meta)stable stationary solution, because no DI occurs in the
solution (see Sec. III C). The GVP is regarded as being pinned
to the defect potential, and thus it could be depinned above the
critical velocity. In fact, we calculated the real-time dynamics
above the critical velocity and found that vortex nucleation
occurred as shown in Figs. 5(a) and 5(b). We generated the
real-time dynamics by the Crank-Nicholson scheme.

Ghost vortices were first reported in Refs. [72,73], where
vortex invasions of rotating condensates were numerically
studied. A GVP was found in a numerical study of condensates
in the presence of an oscillating defect [74]. Our result yields
an example of a GVP accompanying a defect moving with a
constant subcritical velocity.

A GVP does not appear in the presence of a weak potential;
this is shown in Figs. 6(a) and 6(b), where we present the den-
sity and phase profiles for (L,U0,d) = (48ξ,ε0,2.5ξ ) and v =
0.4608505vs 	 0.9999984vc. Typically, investigations are for
a velocity in the range of 10−6 � |(vc − v)/vc| � 1. The
dynamics above the critical velocity in the weak-potential case
are shown in Figs. 7(a) and 7(b). These figures clearly show that
vortices nucleate even when the initial state contains no GVPs.

C. Excitations

We next present the results for excitations. Figure 8 shows
energy spectra of the Bogoliubov equation as a function of v. In
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FIG. 5. (Color online) Snapshot of the density for (L,U0,d) =
(48ξ,10ε0,2.5ξ ) and v = 0.8vs 	 1.8590vc, at (a) t = 20τ and (b)
t = 50τ . The initial condition is the stationary solution for v =
0.4vs 	 0.92950vc, which contains the GVP.
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FIG. 6. (Color online) (a) Density profile and (b) phase profile,
for (L,U0,d) = (48ξ,ε0,2.5ξ ) and v = 0.4608505vs 	 0.9999984vc.
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FIG. 7. (Color online) Snapshot of the density for (L,U0,d) =
(48ξ,ε0,2.5ξ ) and v = 0.8vs 	 1.73590vc, at (a) t = 20τ and (b) t =
50τ . The initial condition is the stationary solution for v = 0.4vs 	
0.867959vc.
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FIG. 8. (Color online) Velocity dependence of the excitation
energy for (a) (L,U0,d) = (32ξ,10ε0,2.5ξ ); and (b) (L,U0,d) =
(48ξ,10ε0,2.5ξ ). Up to the seventh excitation energy is shown.
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FIG. 9. (Color online) (a) Velocity dependence of the energy gap
for L = 32ξ and U0 = 10ε0. The solid black line shows the energy
gap for U0 = 0. (b) Fitting results for (a). The solid purple line
represents [(vc − v)/vc]1/4.

systems of finite size, the Bogoliubov spectra are discretized.
The excitation energy is always positive, and thus the solutions
shown in the figure are stable or metastable.

We now focus on the first excited energy, which we call an
energy gap (denoted by 
). Figures 9(a) and 10(a) show the
energy gap as a function of the velocity.

We first notice a linear decrease in the region in which
the velocity is small. This reflects the energy gap in uniform
systems, and it is given by 
uni/ε0 = 2π/(L/ξ )[−v/vs +√

π2/(L/ξ )2 + 1]. In fact, the solid black line in Fig. 9(a),
which represents 
uni, almost overlaps the numerical data for
U0 
= 0 when the velocity is small, except near v = 0. The
deviation between 
uni and the numerical data near v = 0 is
due to the splitting of levels, since the first excited state in a
uniform system is fourfold degenerate.

We also notice a sharp decrease in the energy gap near
the critical velocity. To characterize this behavior, we used
the function 
 = 
0[(vc − v)/vc]c, where 
0,vc, and c are
parameters to fit four sets of data points near the critical
velocity. The detailed data are shown in Table 1 of Ref. [60].
Figures 9(b) and 10(b) show the results. We determined that
the scaling for the energy gap 
 = 
0[(vc − v)/vc]1/4 near
the critical velocity.

D. Fluctuations

So far we have shown only the excitation spectra. We will
show the wave functions for excited states in this subsection.
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FIG. 10. (Color online) (a) Velocity dependence of the energy
gap for U0 = 10ε0 and d = 2.5ξ . (b) Fitting results for (a). The solid
purple line represents [(vc − v)/vc]1/4.

Using the wave functions of the excited states, we can
obtain the properties of the fluctuations. Substituting Eq. (16)
into n(r,t) = |�(r,t)|2 and �(r,t)/|�(r,t)|, and neglecting
the higher-order terms of ui(r) and vi(r), we obtain

n(r,t) = |�(r)|2 + 2Re[δni(r)e−iεi t/�], (29)

�(r,t)
|�(r,t)| = e−iμt/�eiϕ(r)

×
{

1 + i

|�(r)|2 Im[δPi(r)e−iεi t/�]

}
, (30)

where the local density fluctuation δni(r) and the local phase
fluctuation δPi(r) for mode i are defined by [75,76]

δni(r) = �∗(r)ui(r) − �(r)vi(r), (31)

δPi(r) = �∗(r)ui(r) + �(r)vi(r). (32)

In Fig. 11, we show the spatial profiles of the density
and phase fluctuations for the first excited state. We can see
that both the density and phase fluctuations are enhanced
when the velocity of the moving defect becomes larger. The
enhancement for the density fluctuation is a few orders of
magnitude greater than that for the phase fluctuation. We plot
the energy dependence of the density fluctuations in Fig. 12,
where the spectral intensity shifts to lower energy and is
enhanced when the velocity approaches the critical value.
Similar behavior was observed in one-dimensional systems,
and was related to soliton nucleation [77,78].
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FIG. 11. (Color online) (a)–(c) Spatial profiles of the density fluctuation for (L,U0,d) = (48ξ,5ε0,2.5ξ ) by the first excited state for
v = 0.1vs,0.42vs, and v = 0.42655vs, respectively. (d)–(f) Spatial profiles of the phase fluctuation for (L,U0,d) = (48ξ,5ε0,2.5ξ ), for the first
excited state for v = 0.1vs, v = 0.42vs, and v = 0.42655vs, respectively. The white circles represent the position of the GVP. Here, we set
1/

√
n0ξ 2 = 0.1.

We briefly remark on the effect of the existence or absence
of a GVP on the fluctuations. For the weak potential case,
there is no GVP near the critical velocity, as described in
Sec. III B. In this case, the spatial patterns of the density
and phase fluctuations are slightly different (data not depicted
here). However, enhancement of the density fluctuation also
occurs in the absence of a GVP.

E. Quantum depletion

We will present the results for quantum depletion (QD),
which represents the number of atoms not in the condensate.

The expression for the QD is

Ndep

N
= 1

N

∑
i

∫
d r|vi(r)|2. (33)

The condition for the GP and Bogoliubov approximations to
be valid is Ndep/N � 1. Therefore, we can check the self-
consistency of these approximations by examining the QD.

In previous works, QD in nonuniform systems was calcu-
lated in the following cases: These studies used perturbative
approaches [79–81] and many-body calculations for the
ground state [82,83]. Our results presented below are the first
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FIG. 12. (Color online) Energy and y dependence of the density fluctuations for (L,U0,d) = (48ξ,5ε0,2.5ξ ), (a) v = 0.1vs, (b) v = 0.42vs,

and (c) v = 0.42655vs, at x = 0. Here, we set 1/
√

n0ξ 2 = 0.1.
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FIG. 13. (Color online) Velocity dependence of the QD for (a)
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purple line represents the QD in the absence of the defect potential.
(c) Normalized velocity dependence of the QD. In all cases, we set
1/

√
n0ξ 2 = 0.1.

examples of the QD near the critical velocity in the presence
of a moving defect.

We show the velocity dependence of the QD in Fig. 13 [84].
If the system is uniform (U = 0) and does not exhibit
spontaneous translational symmetry breaking, the QD does
not depend on the velocity because the velocity dependence of
vi(r) is present only in the plane wave component (e−imv·r/�).
Our results show that the QD depends on the velocity, due
to the presence of the defect potential. When the velocity is
small, the QD is almost the same as that for uniform systems.
It is consistent with that for the energy gap when the velocity is
small. Near the critical velocity, we find that the QD increases
steeply and attribute it to enhancement of the low-energy
density of states and density fluctuations. Within the range
of v used in our calculations, we do not find power-law scaling
of the QD, in contrast to that found for the energy gap; see
Fig. 13(c), and note that the curves are not straight lines in the
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FIG. 14. (Color online) Velocity dependence of the quantum
depletion for (L,U0,d) = (48ξ,ε0,2.5ξ ), for four different values of δ.

log-log plot near the critical velocity. There may be a narrow
scaling region for the QD in this system.

Although the QD increases near the critical velocity, the
value of Ndep/N is still much smaller than unity for δ ≡
1/

√
n0ξ 2 = 0.1 and (vc − v)/vc � 10−6; see Fig. 13(c). Here,

δ is the ratio between the healing length and the mean particle
distance. A small δ corresponds to a weakly interacting case.
This shows that the GP and Bogoliubov approximations are
valid even near the critical velocity, for sufficiently small δ.
We can easily obtain the QD for other values of δ, because the
δ dependence of vi(r) is given by vi(r; δ) = δ × vi(r; δ = 1).
Figure 14 shows the δ dependence of the QD. These results
show that the QD is much smaller than unity near the
critical velocity for δ � 0.5, and for δ > 1, the Bogoliubov
approximation breaks down near the critical velocity.

IV. RESULTS FOR UNSTABLE BRANCHES

In this section, we will present the results for unsta-
ble branches, which we calculated by the pseudo-arclength
continuation method [85]. The details are summarized in
Appendix B.

Figure 15 shows the energy diagram containing the stable
and the unstable branches for (L,U0,d) = (32ξ,5ε0,2.5ξ ). Our
results do not exhibit the conventional swallowtail structure
but a multiple structure of the unstable branches, in contrast
to one-dimensional lattices [48–53,55,56] and ring systems
[57–59]. We call it the multiple-swallowtail structure. The
branch (a) in the inset of Fig. 15 continuously connects the
stable branch with W = 0 at the critical velocity and contains
one vortex pair as shown in Fig. 16(a). The upper (lower) vortex
has negative (positive) vorticity. This solution is similar to the
unstable solution reported in Ref. [33]. At the left termination
point, the branch (a) folds back and connects with the branch
(b) in the energy diagram. We have two pairs of vortices in the
branch (b). At v = v0/2 on the top of the unstable branch (d),
the self-induced phase slip [57,86] occurs due to formation of
the dark soliton [see Figs. 16(d) and 16(h)]. Consequently, the
winding number changes from W = 0 to W = −1 [57,58,86].
After the self-induced phase slip, finally, the unstable branch
(g) connects with the stable branch for W = −1.

In Fig. 17, we show the energy diagram for a larger system
with (L,U0,d) = (48ξ,5ε0,2.5ξ ). There are more unstable
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FIG. 18. (Color online) Velocity dependence of the excitation
energy near the critical velocity for (L,U0,d) = (32ξ,5ε0,2.5ξ ). The
solid red curve represents the excitation energy of the stable branch.
The green circle and the blue square represent the real and imaginary
part of the excitation energy for branch (a) in Fig. 15, respectively.

branches with more pairs of vortices compared to the case of
(L,U0,d) = (32ξ,5ε0,2.5ξ ). We consider that the number of
the branches of the multiple-swallowtail structure is sensitive
to the width of the superflow path (spatial extension in the y

direction). We expect that the number of the unstable branches
reduces to unity in systems with a narrow path of superflow
comparable to the healing length and the multiple swallowtail
becomes conventional swallowtail.

We show the excitation spectra for an unstable branch (a)
and the stable branch near the critical velocity in Fig. 18. As
expected, the DI occurs in the unstable branch (a). We confirm
that the DI occurs in other unstable branches (b)–(g) in Fig. 15
(data not depicted here).

V. DISCUSSION

In this section, we will discuss the bifurcation structure of
the system, the relation between the fluctuation and the energy
landscape, and effects of the multiple-swallowtail structure on
the superfluidity based on the results presented in Secs. III
and IV.

From the results for the stable and unstable stationary
solutions and their excitation spectra, we can discuss the
bifurcation structures of the system. As shown in Figs. 15
and 17, the stable and the unstable branches merge at the
critical velocity. It implies that a saddle-node (SN) type
bifurcation, i.e., either conventional SN or Hamiltonian SN,
occurs in this system. The energy diagram and the scaling law
shown in Sec. III C are consistent with the Hamiltonian saddle
node (HSN) bifurcation [33,35]. The normal form of the HSN
bifurcation is given by

d2

dt2
u(t) = λ − βu(t)2, (34)

where u(t) is the amplitude of the critical mode, t is the
time, λ ∝ 1 − v/vc denotes a bifurcation parameter, and β

is a constant related to the system parameters. The linear
stability analysis around the stationary solution of Eq. (34)
(u(t) = √

λ) shows that the frequency is proportional to
λ1/4 ∝ (1 − v/vc)1/4. This is the same behavior of our systems.

E
ne

rg
y

Ψ

v<vc
v=vc
v>vc

FIG. 19. (Color online) Schematic picture of the energy land-
scape in the vicinity of the critical velocity. Each local minimum and
maximum corresponds to a stationary solution of the GP equation.
Filled (open) symbols represent local minima (maxima).

Physically, the normal form (34) shows that the breakdown of
the metastable state is caused by the disappearance of the
energy barrier, as described in Fig. 19.

We note that a similar mechanism for the destabilization
of the metastable state has been found in attractive BECs
in harmonic traps [87]. The attractive BEC collapses when
the number of atoms in the harmonic trap exceeds a critical
value. Near the collapse point, the monopole mode, which is a
low-lying excitation in the attractive BEC, obeys a one-fourth
power law, as found by variational calculations [87] and
numerical calculations [88]. In Ref. [88], the HSN bifurcation
was reported to occur in this system. We anticipate that the
origin of the scaling law is the same as that for our system.

However, there is some evidence for the conventional SN
bifurcation near the critical velocity of a superfluid in the
presence of an obstacle [33,35,77,78]. The time scale charac-
teristic to the conventional SN bifurcation is proportional to
the square root of the distance from the bifurcation points. In
future work, we will seek to determine under what conditions
the bifurcation near the critical velocity of a superfluid is a
conventional SN or a Hamiltonian SN. Another area of future
work is to derive the normal form given by Eq. (34), starting
from the GP and Bogoliubov equations.

We can also discuss the relation between the fluctuations
and the energy landscape. The dynamics near the critical
velocity are often discussed in terms of the energy landscape,
which is schematically depicted in Fig. 19. Near the critical
velocity, the metastable and unstable states approach each
other in the configuration space, and thus the landscape
around the local minimum becomes flat along a particular
direction in the coordinate space. This results in the gap
closing in the excitation spectrum, as shown in Sec. III C.
The meaning of the abscissa in the energy landscape (i.e.,
coordinate of configuration space) is not generally clear except
for a few cases where it was associated with collective
coordinates [22,48]. In the present case, we can identify the
abscissa with the amplitude of the Bogoliubov eigenstate that
has the lowest excitation energy. On the basis of the results in
Sec. III D, we see that the motion of � from the metastable state
to the unstable state is accompanied by a density fluctuation
near the defect potential.
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The decay of supercurrent is frequently understood on the
basis of the energy landscape as shown in Fig. 19. Recall
that the phase slip rate for one-dimensional ring systems has
been calculated in [89,90], where the conventional swallowtail
structure plays a crucial role.

Our results imply that the conventional energy landscape,
i.e., the two local minima are separated by one local maximum,
is valid only in the vicinity of the critical velocity (see Figs. 15
and 17). Away from the critical velocity, the energy landscape
cannot be written in the form shown in Fig. 19 and we expect
that the multiple-swallowtail structure affects the phase slip
rate.

VI. SUMMARY

In summary, we investigated the metastability, excitations,
fluctuations, and swallowtail structures of the BEC with a
uniformly moving defect in a two-dimensional torus system.
We first calculated the total energy and the total momentum
as functions of the driving velocity of the moving defect.
A negative effective-mass region appears near the critical
velocity, as is the case for optical lattice systems. In contrast
to optical lattice systems, the negative effective-mass states
are metastable. This difference comes from that the DI in
the optical lattice systems is due to the formation of the
long-period structures, such as the period-doubling states and
the bright gap solitons, which are prohibited in the torus
systems. We also found GVPs in stationary states in the
presence of a strong defect.

Using the results of the GP equation, we solved the
Bogoliubov equation and obtained the excitation spectra. We
determined that near the critical velocity, the scaling of the
energy gap followed a one-fourth power law. This implies an
algebraic divergence of the characteristic time scale toward the
critical velocity and a violation of the adiabaticity condition at
the critical velocity.

From wave functions of the excited states ui(r) and vi(r),
we obtained the fluctuation properties and showed that the
density (amplitude of the order parameter) fluctuations are
enhanced near the critical velocity.

We also calculated the QD and found that it increased near
the critical velocity. We confirmed the validity of the GP and
the Bogoliubov approximations on the basis of these results.

We found unconventional swallowtail structures (multiple-
swallowtail structure) by the direct calculations of the unstable
solutions. We discussed that the number of unstable branches
depends on the width of the superflow path and expect that the
multiple-swallowtail structure reduces to the conventional one
in the narrow superflow path limit.

We discussed the bifurcation structure of the system. The
results for the one-fourth power-law scaling near the critical
velocity and the unstable branches imply that the HSN bifurca-
tion occurs in the system, which describes the disappearance of
the energy barrier that protects a metastable state. We pointed
out that the same scaling law appears in the attractive BEC in
a harmonic trap near the collapse point. We also discussed the
effects of the multiple-swallowtail structure on the calculations
for the phase slip rate.

In future work, we will attempt to determine why the
Hamiltonian saddle-node bifurcation appears at the critical

velocity and to derive the normal form from the GP and
Bogoliubov equations. The energy landscape away from the
critical velocity remains open. Full knowledge of the energy
landscape of the multiple-swallowtail structures will serve as
the understanding of the breakdown of the superfluidity due to
the vortex nucleations.

A possible further extension of the present work is to
study the effects of quantum fluctuations on the metastability
of superfluidity. In particular, these effects are crucial for
cases that are not weakly interacting and that are near the
critical velocity. In fact, a nonzero drag force acting on a
defect below the critical velocity in a one-dimensional system
has been reported in Ref. [91]. This phenomenon is due to
quantum fluctuations. It is important to understand the effects
of quantum fluctuations on vortex nucleation.

Another extension of the present work is to study multicom-
ponent systems, such as spinor BECs [92,93], and to reveal the
effects of the internal degrees of freedom on the metastability
of the superfluidity.
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APPENDIX A: METHODS OF NUMERICAL
CALCULATIONS

In this Appendix, we explain the methods used for the
numerical calculations. Similar methods were used in our
previous work [94].

In order to obtain the solutions of the time-independent
GP equation (14), we used imaginary time propagation. The
imaginary-time GP equation is given by

−�
∂

∂t
�(r,t) = − �

2

2m
∇2�(r,t) + U (r)�(r)

− μ(t)�(r,t) + g|�(r,t)|2�(r,t), (A1)

where μ(t) is the time-dependent chemical potential, whose
time dependence is determined by the total number of
particles (15). The time-independent solution of Eq. (A1)
coincides with the original GP equation (14).

From the twisted periodic boundary conditions (12)
and (13), we can expand the condensate wave function as
a series of plane waves, as follows:

�(r,t) = √
n0

∑
G

Cq+G(t)ei(q+G)·r , (A2)

G ≡ 2π

L
(n1ex + n2ey), (A3)

where Cq+G(t) is an expansion coefficient, q ≡ mv/�, and n1

and n2 ∈ Z. Substituting Eq. (A2) into Eq. (A1) and using the
orthonormal condition

∫
d rei(G−G′)·r = SδG,G′ , we obtain the
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imaginary time GP equation for Cq+G(t):

−�
∂

∂t
Cq+G(t) =

[
�

2

2m
(q + G)2 − μ(t)

]
Cq+G(t)

+ 1

S

∑
G′

Ū (G − G′)Cq+G′ (t) + gn0

∑
G,
G

× C∗
q+G′+
G(t)Cq+G′(t)Cq+G+
G(t),

(A4)

where Ū (k) is the Fourier transformation of the external
potential:

Ū (k) ≡
∫

d re−ik·rU (r). (A5)

The total particle number condition for Cq+G(t) is given by

1 =
∑

G

|Cq+G(t)|2. (A6)

From the boundary conditions (19), (20), (21), and (22), the
wave functions ui(r) and vi(r) can be expanded as a series of
plane waves, as follows:

ui(r) = 1√
S

∑
G

Aq+G,ie
+i(q+G)·r , (A7)

vi(r) = 1√
S

∑
G

Bq+G,ie
−i(q+G)·r , (A8)

where Aq+G,i and Bq+G,i are the expansion coefficients of
mode i. The normalization condition for the wave functions of
the excited states becomes

∑
G

[|Aq+G,i |2 − |Bq+G,i |2] = 1. (A9)

Substituting Eqs. (A2), (A7), and (A8) into Eq. (17), we obtain
the Bogoliubov equation for the expansion coefficients:

DGAq+G,i + 1

S

∑
G′

Ū (G−G′)Aq+G′,i

+ 2gn0

∑
G′

SG,G′Aq+G′,i

− gn0

∑
G′

WG,G′Bq+G′,i = εiAq+G,i , (A10)

− DGBq+G,i − 1

S

∑
G′

Ū ∗(G − G′)Bq+G′,i

− 2gn0

∑
G′

S∗
G,G′Bq+G′,i

+ gn0

∑
G′

W ∗
G,G′Aq+G′,i = εiBq+G,i , (A11)

where we have introduced the following variables in order to
simplify the notation:

DG ≡ �
2

2m
(q + G)2 − μ, (A12)

SG,G′ ≡
∑
G′′

C∗
q+G′′+G′−GCq+G′′ , (A13)

WG,G′ ≡
∑
G′′

Cq+G−G′′+G′Cq+G′′ . (A14)

Numerically diagonalizing Eqs. (A10) and (A11), we obtain
the excitation spectra and the wave functions of the excited
states.

We introduced the cutoff Gc to calculate the summation of
G. We used the cutoff wave number (the number of bases)
Gcξ = 7.82(4973),10.1(8227), and 11.4(10557) for L = 32ξ

and 6.71(8227),7.59(10557), and 8.38(12893) for L = 48ξ .
We checked that the cutoff dependence of the present results is
negligibly small, other than for the calculation of the quantum
depletion (see Ref. [84]).

APPENDIX B: PSEUDO-ARCLENGTH
CONTINUATION METHOD

In this appendix, we explain the pseudo-arclength continu-
ation method (PACM) [85]. We used this method to obtain the
unstable solutions. This method was applied to the spin-1 GP
equation in Ref. [95,96].

We consider nonlinear algebraic equations,

Gi(u,λ) = 0, (i = 1, . . . ,M), (B1)

where u ∈ RM and λ ∈ R is a parameter. One way to solve
this equation is the Newton method:

M∑
j=1

∂Gi(u,λ)

∂uj

∣∣∣∣
u=u0

δuj = −Gi(u0,λ), (B2)

u1 = u0 + δu, (B3)

where u0 and u1 are the initial and next values of u,
respectively. Solving Eq. (B2) until convergence, we can
obtain a solution for Eq. (B1). However, this method fails if the
saddle-node bifurcation point exists. To avoid this difficulty,
we use the PCAM method.

In the PCAM method, instead of solving Eq. (B1) for fixed
λ, we regard λ as a variable and solve the following equations:

Gi(u,λ) = 0, (i = 1, . . . ,M), (B4)

N (u,λ) = 0, (B5)

N (u,λ) ≡ u̇0 · (u − u0) + λ̇0(λ − λ0) − 
s, (B6)

where u0 is a solution of Eq. (B1) for λ = λ0, u̇0 and λ̇0

are the normalized tangent vector in the (u,λ) space at the
point (u0,λ0), and 
s is the arclength (see Fig. 20). Equation
N (u,λ)=0 represents the plane that is perpendicular to the
tangent vector (u̇0,λ̇0) and is separated by the distance 
s from
the point (u0,λ0). The tangent vector (u̇0,λ̇0) is determined
by the following way: Let s be a parameter that assigns the
position of the orbit in the space (u,λ). The tangent vector can
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λ

u

Δs

N(u, λ) = 0

(u0, λ0)
(u(0), λ(0))

Gi(u, λ) = 0

FIG. 20. Schematic picture for the PCAM.

be obtained by solving the following equation:

d

ds
Gi(u(s),λ(s))

∣∣∣∣
s=s0

= 0, (B7)

where s0 is the value of s at the point (u0,λ0). Equation (B7)
reduces to

M∑
j=1

∂Gi(u,λ)

∂uj

∣∣∣∣
u=u0,λ=λ0

u̇0,j + ∂Gi(u,λ)

∂λ

∣∣∣∣
u=u0,λ=λ0

λ̇0 = 0,

(B8)

u̇0,j ≡ ∂u0,j (s)

∂s

∣∣∣∣
s=s0

, λ̇0 ≡ ∂λ(s)

∂s

∣∣∣∣
s=s0

. (B9)

The normalization condition for the tangent vector is given
by

u̇2 + λ̇2 = 1. (B10)

From the normalization condition, the overall sign of the
tangent vector is not determined. The overall sign can be
determined so that the following condition is satisfied:

u̇p · u̇0 + λ̇pλ̇0 > 0, (B11)

where (u̇p,λ̇p) is the tangent vector of the previous step.
We summarize the procedure for the PACM as follows:
(i) Prepare (u0,λ0).
(ii) Set the appropriate value of 
s.
(iii) Calculate the tangent vector (u̇0,λ̇0) from

Eqs. (B8), (B10), and (B11).
(iv) Calculate (u(0),λ(0)) ≡ (u0 + 
s u̇0,λ0 + 
sλ̇0) (Eu-

ler predictor). This is the initial condition of the Newton
method (see Fig. 20).

(v) Solve Eq. (B5) by the Newton method:

M∑
j=1

∂Gi(u,λ)

∂uj

∣∣∣∣
u=u(0),λ=λ(0)

δuj + ∂Gi(u,λ)

∂λ

∣∣∣∣
u=u(0),λ=λ(0)

δλ

= −Gi(u(0),λ(0)), (B12)

M∑
j=1

u̇0,j δuj + λ̇0δλ = −N (u(0),λ(0)), (B13)

u(1) = u(0) + δu, λ(1) = λ(0) + δλ. (B14)
(iv) Iterate (v) until convergence.
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C. Weitenberg, S. Nascimbène, J. Dalibard, and J. Beugnon,
Phys. Rev. Lett. 113, 135302 (2014).

[26] T. Frisch, Y. Pomeau, and S. Rica, Phys. Rev. Lett. 69, 1644
(1992).

[27] Y. Pomeau and S. Rica, Comptes Rendus Acad. Sc. (Paris)
t. 316 Série II, 1523 (1993).

[28] V. Hakim, Phys. Rev. E 55, 2835 (1997).
[29] B. Jackson, J. F. McCann, and C. S. Adams, Phys. Rev. Lett. 80,

3903 (1998).
[30] C. Josserand, Y. Pomeau, and S. Rica, Physica D 134, 111

(1999).
[31] T. Winiecki, J. F. McCann, and C. S. Adams, Phys. Rev. Lett.

82, 5186 (1999).
[32] B. Jackson, J. F. McCann, and C. S. Adams, Phys. Rev. A 61,

051603 (2000).
[33] C. Huepe and M-E. Brachet, Physica D 140, 126 (2000).
[34] J. Brand and W. P. Reinhardt, J. Phys. B: At. Mol. Opt. Phys.

34, L113 (2001).
[35] C. T. Pham and M. Brachet, Physica D 163, 127 (2002).
[36] N. Pavloff, Phys. Rev. A 66, 013610 (2002).
[37] A. Aftalion, Q. Du, and Y. Pomeau, Phys. Rev. Lett. 91, 090407

(2003).
[38] G. A. El, A. Gammal, and A. M. Kamchatnov, Phys. Rev. Lett.

97, 180405 (2006).
[39] F. Piazza, L. A. Collins, and A. Smerzi, Phys. Rev. A 80,

021601(R) (2009).
[40] K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. Lett. 104, 150404

(2010).
[41] T. Aioi, T. Kadokura, T. Kishimoto, and H. Saito, Phys. Rev. X

1, 021003 (2011).
[42] S. J. Woo and Y. W. Son, Phys. Rev. A 86, 011604(R) (2012).
[43] R. Dubessy, T. Liennard, P. Pedri, and H. Perrin, Phys. Rev. A

86, 011602 (2012).
[44] F. Piazza, L. A. Collins, and A. Smerzi, J. Phys. B: At. Mol.

Opt. Phys. 46, 095302 (2013).
[45] E. P. Gross, Nuovo Cimento 20, 454 (1961).
[46] L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).
[47] D. Diakonov, L. M. Jensen, C. J. Pethick, and H. Smith, Phys.

Rev. A 66, 013604 (2002).
[48] E. J. Mueller, Phys. Rev. A 66, 063603 (2002).
[49] M. Machholm, C. J. Pethick, and H. Smith, Phys. Rev. A 67,

053613 (2003).
[50] B. Wu and Q. Niu, New. J. Phys. 5, 104 (2003).
[51] C. Menotti, A. Smerzi, and A. Trombettoni, New. J. Phys. 5, 112

(2003).
[52] E. Taylor and E. Zaremba, Phys. Rev. A 68, 053611 (2003).
[53] M. Machholm, A. Nicolin, C. J. Pethick, and H. Smith, Phys.

Rev. A 69, 043604 (2004).
[54] B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A 71,

033622 (2005).
[55] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179

(2006).
[56] I. Danshita and S. Tsuchiya, Phys. Rev. A 75, 033612 (2007).

[57] R. Kanamoto, L. D. Carr, and M. Ueda, Phys. Rev. A 79, 063616
(2009).

[58] O. Fialko, M.-C. Delattre, J. Brand, and A. R. Kolovsky, Phys.
Rev. Lett. 108, 250402 (2012).

[59] S. Baharian and G. Baym, Phys. Rev. A 87, 013619 (2013).
[60] M. Kunimi and Y. Kato, J. Low Temp. Phys. 175, 201 (2014).
[61] N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).
[62] A. L. Fetter, Ann. Phys. 70, 67 (1972).
[63] E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. B 66,

134529 (2002).
[64] J. Liu, B. Wu, and Q. Niu, Phys. Rev. Lett. 90, 170404 (2003).
[65] P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966).
[66] J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560 (1967).
[67] G. Baym, in Mathematical Methods in Solid State and Superfluid

Theory, edited by R. C. Clark and G. H. Derrick (Oliver and
Boyd, Edinburgh, 1969).

[68] To obtain this value, we use a linear fit to more than 10 data
points of the total momentum for v < 0.05v0.
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