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Analytical expressions are derived for sums of matrix elements and their squared moduli over many-body
states with given total spin—the states built from spin and spatial wave functions belonging to multidimensional
irreducible representations of the symmetric group, unless the total spin has the maximal allowed value. For
spin-dependent one-body interactions with external fields and spin-independent two-body ones between the
particles, the sum dependence on the many-body states is given by universal factors, which are independent of
the interaction details and Hamiltonians of noninteracting particles. The sum rules are applied to perturbative
analysis of energy spectra.
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I. INTRODUCTION

Calculations of quantum-mechanical system properties re-
quire matrix elements between its states. For complex systems,
even a calculation of the matrix elements can constitute a
complicated problem. However, in certain cases, sum rules
can be derived from general principles, providing analytical
expressions for sums of matrix elements or their products.
The Thomas-Reiche-Kuhn and the Bethe sum rules were
obtained at early years of quantum mechanics. These and
similar rules (see [1]) are formulated for weighted sums of
oscillator strengths, which are proportional to squared moduli
of transition matrix elements, over certain sets of eigenstates.
The rules were applied to radiative transitions and scattering
problems. Sum rules for dynamic structure factors (see [2])
are employed to obtain information on collective behavior of
many-body systems. Various sum rules are also used in nuclear
and solid-state physics, as well as in quantum field theory.

The present work derives sum rules for many-body systems
of indistinguishable spinor particles. The particles can be
composite, e.g., atoms or molecules, and the spin can be either
a real angular momentum of the particle or a formal spin,
whose projections are attributed to the particle’s internal states
(e.g., hyperfine states of atoms). In the latter case, the particle
spin 1

2 means that only two internal states are present in the
system. This formal spin is not related to the real, physical,
spin of the particles, which can be either bosons or fermions.

Many-body states of spinor particles can be described in two
ways (see [3]). In the first one, each particle is characterized
by its spin projection and coordinate, and the total wave
function is symmetrized for bosons or antisymmetrized for
fermions over permutations of all particles [see Eq. (19) in
Sec. II below]. The second approach is based on collective
spin and spatial wave functions. These wave functions depend
on spins or coordinates, respectively, of all particles and form
representations of the symmetric group (see [4–7]). In the case
of spin- 1

2 particles, the representation is unambiguously related
to the total many-body spin. If the total spin is less than the
maximal allowed one (N/2 for N particles), the wave functions
belong to multidimensional, non-Abelian, irreducible repre-
sentations of the symmetric group (see [4–7]), beyond the
conventional paradigm of symmetric-antisymmetric functions.
The symmetric or antisymmetric total wave function—such
functions only are allowed by the Pauli exclusion principle—is

represented as a sum of products of the spin and spatial wave
functions [see Eq. (2) in Sec. II below].

In the case of noninteracting particles in spin-independent
potentials, all states with the given set of spatial quantum
numbers are energy-degenerate and the two kinds of wave
functions are applicable, related by a linear transforma-
tion. The effect of spin-independent interactions between
particles was analyzed by Heitler [8] using the theory of
the symmetric group irreducible representations. That work
demonstrates that the average energy of states within given
irreducible representation is proportional to a certain sum of
the representation characters. The character dependence on the
representation lifts the degeneracy of states related to different
representations, and the wave functions with defined individual
spin projections become inapplicable. It is a generalization of
the well-known energy splitting between the singlet and triplet
states in two-electron problems.

Although the derivation [8], being done in the early years
of quantum mechanics, did not take into account spin degrees
of freedom and supposed that total wave functions can have
arbitrary permutation symmetry, the results remain valid for
symmetric or antisymmetric total wave functions, composed
from spin and spatial functions of arbitrary symmetry. Matrix
elements of spin-independent Hamiltonians between the latter
wave functions can be reduced to the matrix elements between
spatial wave functions due to orthogonality of the spin wave
functions (see Sec. IV). Besides justification of the Heitler
results, this reduction provides the basis for spin-free quantum
chemistry (see [6,7])—the method of calculations of energies
and other properties of atoms and molecules.

Spinor quantum gases are intensively studied starting from
the first experimental [9,10] and theoretical [11,12] works
(see book [2], reviews [13,14], and references therein). The
collective spin and spatial wave functions were used in the
derivation of exact quantum solutions for one-dimensional
homogeneous gas [15,16] and in analyses of selection rules
and correlations [17]. SU(M)-symmetric gases, introduced
in Refs. [18–20] and recently observed in Refs. [21,22], are
described in a similar way [19], where the total wave function
is composed of spin and electronic functions.

Other forms of many-body wave functions with defined
total spin have been employed as well. The Lieb-Mattis
theorem for ordering of energy levels in fermionic systems
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has been derived in Ref. [23]. One-dimensional gas of spin- 1
2

fermions in arbitrary potential has been analyzed for hard-core
zero-range interactions in Ref. [24], where an exact solution
was derived, and for zero-range interactions of arbitrary
strength in Ref. [25], where qualitative properties of energy
spectra are presented. An exact solution for one-dimensional
hard-core Bose-Fermi mixture was derived in Ref. [26].
Intersystem degeneracies in spin- 1

2 Fermi gases and energy
spectra for certain few-body systems have been obtained
in Ref. [27]. Symmetries of trapped and interacting bosons
and fermions and qualitative behavior of the energy spectra
at intermediate interaction strengths were analyzed in Refs.
[28,29].

The sum of matrix elements of spin-independent interpar-
ticle interactions directly follows from the Heitler results [8].
The present paper provides the sums of squared moduli of
these matrix elements, as well as sums of matrix elements
and their squared moduli for spin-dependent external fields.
Such fields can be used for transfer of population between
states with different total spins, as described in [17]. Besides,
spin-changing matrix elements can provide an estimate of
stability of the well-defined-spin states.

Section II sets the analyzed problem and provides represen-
tations of spin, spatial, and total wave functions for separable
spin and spatial degrees of freedom and for noninteracting
particles. Wave functions with defined particle spin projections
are discussed in this section too. Section III contains derivation
of the sum rules. Matrix elements of spin-dependent external
fields for different total spin projections are related using the
Wigner-Eckart theorem. Then sums of these matrix elements
and their squared moduli are calculated for the maximal
allowed spin projections. Sum rules for spin-independent
interactions between particles are provided in Sec. IV. The
sum rules are applied to description of the shifts and splittings
of energy levels in Sec. V. The quantitative properties of energy
spectra are provided for an arbitrary number of particles in the
regime of weak interactions using perturbation theory. The
Appendix contains calculation of sums, used in Sec. III.

II. HAMILTONIAN AND WAVE FUNCTIONS

Consider a system of N particles with the Hamiltonian

Ĥ = Ĥspat + Ĥspin (1)

being a sum of the spin-independent Ĥspat and coordinate-
independent Ĥspin. Each of Ĥspat and Ĥspin is permutation-
invariant.

The total wave function is expressed in the form

�
(S)
nl = f

−1/2
S

∑
t

�
(S)
tn �

(S)
t l . (2)

Here spatial �
(S)
tn and spin �

(S)
t l functions form bases

of irreducible representations of the symmetric group
SN of N -symbol permutations [4–7]. This means that
a permutation P of the particles transforms each func-
tion to a linear combination of functions in the same

representation,

P�
(S)
tn = sgn(P)

∑
t ′

D
[λ]
t ′t (P)�(S)

t ′n ,

P�
(S)
t l =

∑
t ′

D
[λ]
t ′t (P)�(S)

t ′l .

Here the factor sgn(P) is the permutation parity for fermions
and sgn(P) ≡ 1 is for bosons. This factor provides the proper
permutation symmetry of the total wave function

P�
(S)
nl = sgn(P)�(S)

nl . (3)

The matrices of the Young orthogonal representation [4–7]
D

[λ]
t ′t (P) of the symmetric group SN are associated with the

two-row Young diagrams λ = [N/2 + S,N/2 − S], which
are unambiguously related to the total spin S. Different
representations, associated with the same Young diagram,
are labeled by multi-indices n and l for the spatial and spin
functions, respectively. The representation basis functions are
labeled by the standard Young tableaux t and t ′ of the shape
λ. The dimension of the representation is equal to the number
of different tableaux,

fS = N !(2S + 1)

(N/2 + S + 1)!(N/2 − S)!
. (4)

If S = N/2, fS = 1, D
[λ]
t ′t (P) = 1, and the functions �

(S)
tn and

�
(S)
t l remain unchanged on permutations of particles or change

their sign (�(S)
tn for fermions). Otherwise, the functions belong

to multidimensional, non-Abelian irreducible representations
of the symmetric group. For example, the states of N = 3
particles with S = 1/2 are associated with the Young diagram
[2,1] and there are fS = 2 standard Young tableaux with the
Yamanouchi symbols (see [4,5]) (2,1,1) and (1,2,1).

The Young orthogonal matrices obey the orthogonality
relation [6,7]∑

P
D

[λ′]
t ′r ′ (P)D[λ]

tr (P) = N !

fS

δtt ′δrr ′δλλ′ , (5)

the general relation for representation matrices,∑
t

D
[λ]
r ′t (P)D[λ]

tr (Q) = D
[λ]
r ′r (PQ), (6)

and the relation for orthogonal matrices,

D[λ]
tr (P−1) = D[λ]

rt (P). (7)

Additional relations can be obtained for elements of the
first column D

[λ]
t[0](P) of the Young orthogonal matrices. Here

[0] is the first Young tableau, in which the symbols are
arranged by rows in the sequence of natural numbers. For
example, the Young tableaux [0] have Yamanouchi symbols
(2,1,1), (2,2,1,1), and (2,1,1,1) for the Young diagrams
[2,1], [22], and [3,1], respectively. Each permutation involving
symbols between jmin and jmax can be written as a product
of elementary transpositions Pjj+1 with jmin � j < jmax (see
[5–7]). According to the Young orthogonal matrix calculation
rules (see [5–7]), D

[λ]
rt (Pjj+1) = δrt if j and j + 1 are in

the same row of the Young tableau t . Then Eq. (6) leads to
D

[λ]
t[0](P) = δt[0] if the permutation P involves the symbols in

one row only and can be, therefore, written as a product of
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elementary transpositions of symbols in the same row. Let P ′
and P ′′ be, respectively, arbitrary permutations of the symbols
in the first and in the second row of the Young tableau [0],
which do not permute symbols between the rows. Then we
get, using Eq. (6),

D
[λ]
t[0](PP ′P ′′) =

∑
r

D[λ]
tr (P)D[λ′]

r[0](P ′P ′′) = D
[λ]
t[0](P). (8)

The spatial and spin wave functions form orthonormal basis
sets, 〈

�
(S ′)
t ′n′

∣∣�(S)
tn

〉 = δS ′Sδt ′t δn′n, (9)

〈
�

(S ′)
t ′l′

∣∣�(S)
t l

〉 = δS ′Sδt ′t δl′l . (10)

The spatial functions of noninteracting particles are ex-
pressed as [6,7]

�̃
(S)
tr{n} =

(
fS

N !

)1/2 ∑
P

sgn(P)D[λ]
tr (P)

N∏
j=1

ϕnj
(rPj ) (11)

in terms of the spatial orbitals—the eigenfunctions ϕn(r) of
the one-body Hamiltonian of noninteracting particle Ĥ0(j ),

Ĥ0(j )ϕn(rj ) = εnϕn(rj ), (12)

where rj is the D-dimensional coordinate of the j th particle
(D can be either 1, 2, or 3 in real physical systems). The
representation is determined by the set of the spatial quantum
numbers {n} and the Young tableau r , which can take one
of fS values. Then the multi-index n is specifically chosen
as r{n}. All quantum numbers nj in the set {n} are supposed
to be different. This situation takes place in nondegenerate
gases, when probabilities of multiple occupation of spatial
states are negligibly small, although the multiple occupation
is not forbidden by itself. Another example is an optical lattice
in the unit-filling regime [17].

The functions (11) satisfy the Schrödinger equation

N∑
j=1

Ĥ0(j )�̃(S)
tr{n} =

N∑
j=1

εnj
�̃

(S)
tr{n}.

Their eigenenergies are independent of r . Therefore, there
are fS degenerate states of noninteracting particles for each
set {n}. The tilde denotes wave functions corresponding to
the spatial Hamiltonian without interactions between particles.
Then Eq. (2) gives us the total wave functions of particles with
no coordinate-dependent interactions,

�̃
(S)
r{n}l = f

−1/2
S

∑
t

�̃
(S)
tr{n}�

(S)
t l . (13)

In the absence of interactions between spins, the spin
wave functions are eigenfunctions of the total spin projection
operator Ŝz and can be expressed as

�
(S)
tSz

= CSSz

∑
P

D
[λ]
t[0](P)

N/2+Sz∏
j=1

|↑(Pj )〉

×
N∏

j=N/2+Sz+1

|↓(Pj )〉. (14)

Here the multi-index l is specifically chosen as the total spin
projection Sz. In the case of the spin wave function, each of
two spin states, |↑〉 and |↓〉, has to be occupied by several
particles, if N > 2. Hence the normalization factor [30]

CSSz
= 1

(N/2 + Sz)!(N/2 − S)!

×
√

(2S + 1)(S + Sz)!

(N/2 + S + 1)(2S)!(S − Sz)!
(15)

differs from the one in the spatial wave function (11). Besides,
the Young tableau r can take now only the value of [0]. As a
result, only one representation is associated with given total
spin S and its projection Sz. The total wave function with the
defined Sz is then expressed as

�
(S)
nSz

= f
−1/2
S

∑
t

�
(S)
tn �

(S)
tSz

. (16)

In combination with the spatial wave function (11), the
spin wave functions lead to the total wave functions of
noninteracting particles,

�̃
(S)
r{n}Sz

= f
−1/2
S

∑
t

�̃
(S)
tr{n}�

(S)
tSz

(17)

(again, the tilde denotes that the wave functions involve spatial
orbitals ϕn(r) of noninteracting particles). There are fS wave
functions, labeled by the Young tableau r , having the total spin
S and the set of spatial quantum numbers {n}. Then the total
number of wave functions with the given total spin projection
Sz will be

N/2∑
S=Sz

fS = N !/[(N/2 + Sz)!(N/2 − Sz)!]. (18)

In the alternative approach, mentioned in Introduction, each
particle has a given spin projection and the total many-body
wave function is represented as (see [3])

�̃{n}{σ } = (N !)−1/2
∑
P

sgn(P)
N∏

j=1

ϕnj
(rPj )|σj (Pj )〉, (19)

where the spin projection σj can be either ↑ or ↓ and given
total spin projection Sz, the set {σ } contains N/2 + Sz spins ↑
and N/2 − Sz spins ↓. For a fixed set of spatial quantum
numbers {n}, the number of such states is the number of
distinct choices of N/2 + Sz particles with spin up, and is
then equal to the number (18) of the states (17). Then the sets
of degenerate states �̃

(S)
r{n}Sz

and �̃{n}{σ } can be related by a
unitary transformation. For interacting particles, the energy
degeneracy of states �̃

(S)
r{n}Sz

is lifted, as shown by Heitler
[8] and will be discussed in Sec. V, and such transformation
becomes impossible.
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III. SUM RULES FOR ONE-BODY INTERACTIONS

A. Spin-projection dependence

Permutation-invariant interactions of particles with external
fields can be expressed in terms of the spherical scalar

Û =
∑

j

U (rj ) (20)

and three spherical vector components

Û0 =
∑

j

U (rj )ŝz(j ), Û±1 = ∓ 1√
2

∑
j

U (rj )ŝ±(j ), (21)

(see [31]). Here

ŝz(j ) = 1
2 [|↑(j )〉〈↑(j )| − |↓(j )〉〈↓(j )|]

is the z component of the spin and

ŝ+(j ) = |↑(j )〉〈↓(j )|, ŝ−(j ) = |↓(j )〉〈↑(j )|
are the spin raising and lowering operators for the j th particle.
The interaction Û0 conserves the z projection of the total many-
body spin, while Û±1 raises or lowers it. The interaction of the
spin-up or spin-down state can be expressed in terms of Û0

and the scalar Û ,

Û↑ ≡
∑

j

U (rj )|↑(j )〉〈↑(j )| = Û0 + 1

2
Û ,

Û↓ ≡
∑

j

U (rj )|↓(j )〉〈↓(j )| = −Û0 + 1

2
Û .

(22)

Consider matrix elements of the spherical vector and
scalar interactions between eigenfunctions (16) of Ŝz. Their
dependence on Sz follows from the Wigner-Eckart theorem
(see [32]). The matrix elements of the spherical scalar (20) are
diagonal in spins and independent of the spin projection,〈

�
(S ′)
n′S ′

z

∣∣Û |�(S)
nSz

〉 = δSS ′δSzS ′
z

〈
�

(S)
n′S

∣∣Û ∣∣�(S)
nS

〉
.

According to the Wigner-Eckart theorem, the matrix elements
of the spherical vector components (21) can be factorized into
the 3j -Wigner symbols and the reduced matrix elements〈

�
(S ′)
n′S ′

z

∣∣Ûk

∣∣�(S)
nSz

〉
= (−1)S

′−S ′
z

(
S ′ 1 S

−S ′
z k Sz

)
〈n′,S ′||Û ||n,S〉.

Then the reduced matrix elements are expressed in terms of the
matrix elements of Ûk for the maximal allowed spin projection

〈n′,S ′||Û ||n,S〉

=
(

S ′ 1 S

−S ′ S ′ − S S

)−1 〈
�

(S ′)
n′S ′

∣∣ÛS ′−S

∣∣�(S)
nS

〉
,

and the matrix elements with arbitrary spin projections can be
expressed as〈

�
(S ′)
n′S ′

z

∣∣Ûk

∣∣�(S)
nSz

〉 = δS ′
zSz+kX

(S,S ′,1)
Szk

〈
�

(S ′)
n′S ′

∣∣ÛS ′−S

∣∣�(S)
nS

〉
(23)

with the factors

X
(S,S ′,q)
Szk

= (−1)S
′−Sz−k

(
S S ′ q

Sz −Sz − k k

)

×
(

S S ′ q

S −S ′ S ′ − S

)−1

TABLE I. Coefficients X
(S,S′,1)
Szk

in Eq. (23).

k S − S ′

0 1

−1
√

(S−Sz+1)(S+Sz)√
2S

√
(S+Sz−1)(S+Sz)

2S(2S−1)

0 Sz

S
−

√
S2−S2

z

S(2S−1)

1 −
√

(S−Sz)(S+Sz+1)√
2S

√
(S−Sz−1)(S−Sz)

2S(2S−1)

Here S ′ � S and, according to the properties of the 3j -Wigner
symbols, the matrix elements (23) vanish if |S − S ′| > 1 (in
agreement to the selection rules [17]). Values of nonvanishing
coefficients, calculated with the 3j -Wigner symbols [3,32],
are presented in Table I. The Hermitian conjugate of Eq. (23),
together with relations Û+1 = −Û

†
−1 and Û0 = Û

†
0 , gives us

the matrix elements for S ′ = S + 1.
Thus, each matrix element of a spin-dependent one-body

interaction with an external field is related to matrix elements
for the maximal allowed spin projections, which will be
evaluated in the next section.

B. Matrix elements for noninteracting particles

Matrix elements of the spherical scalar (20) can be
evaluated exactly for general spin wave functions. Due to
the orthogonality of the spin wave functions (10), the matrix
elements are diagonal in spin quantum numbers and can be
reduced to the matrix elements between spatial wave functions,〈

�̃
(S ′)
r ′{n′}l′

∣∣Û ∣∣�̃(S)
r{n}l

〉
= δSS ′δll′

1

fS

∑
t

∑
i

〈
�̃

(S)
tr ′{n′}

∣∣U (ri)
∣∣�̃(S)

tr{n}
〉
. (24)

Let us calculate the spatial matrix element for the general case,
S 
= S ′, having in mind further analysis of spherical vectors.
Equations (11) and (7) lead to〈

�̃
(S ′)
t ′r ′{n′}

∣∣U (ri)
∣∣�̃(S)

tr{n}
〉

=
√

fSfS ′

N !

∑
R,Q

sgn(Q)D[λ′]
r ′t ′ (Q)sgn(R)D[λ]

rt (R)

× 〈
ϕn′

Qi

∣∣U (ri)
∣∣ϕnRi

〉 ∏
i ′ 
=i

δn′
Qi′ ,nRi′ .

The Kronecker δ symbols appear here due to the orthogonality
of the spatial orbitals ϕn and the absence of equal quantum
numbers in each of the sets {n} and {n′}. Due to the δ symbols,
all but one spatial quantum number remain unchanging.
Supposing that the unchanged nj ′ are in the same positions in
the sets {n} and {n′}, one can see that the Kronecker symbols
lead to Q = R, and, therefore,〈

�̃
(S ′)
t ′r ′{n′}

∣∣U (ri)
∣∣�̃(S)

tr{n}
〉

=
√

fSfS ′

N !

∑
R

D
[λ′]
r ′t ′ (R)D[λ]

rt (R)〈n′
Ri |U |nRi〉

∏
j ′ 
=Ri

δn′
j ′ ,nj ′ ,

(25)
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where 〈n′|U |n〉 = ∫
dDrϕ∗

n′(r)U (r)ϕn(r). Then, substituting
this expression into (24), using (6), (7), and the property
of representations D

[λ]
r ′r (E) = δr ′r , where E is the identity

permutation, one finally gets

〈
�̃

(S ′)
r ′{n′}l′

∣∣Û ∣∣�̃(S)
r{n}l

〉 = δSS ′δll′δr ′r

N∑
j=1

〈n′
j |U |nj 〉

∏
j ′ 
=j

δn′
j ′ ,nj ′ ,

(26)

It is a special case of the matrix elements obtained by Heitler
[8] and Kaplan [6].

For the spherical vector interactions (21), the matrix
elements cannot be represented in so simple a form. However,
rather simple expressions can be derived for sums and sums of
squared moduli of the matrix elements between eigenfunctions
of Ŝz. It is enough to consider matrix elements of Û−1 and
the spin-up state interaction Û↑ for the maximal allowed spin
projection, S ′

z = S ′, Sz = S, as Eq. (22) and the Wigner-Eckart
theorem (23) relate to them each matrix element of each
interaction. In the basis of the noninteracting particle wave
functions (17), the matrix elements of Û↑ can be decomposed
into the spatial and spin parts,〈

�̃
(S ′)
r ′{n′}S ′

∣∣Û↑
∣∣�̃(S)

r{n}S
〉

= (fSfS ′ )−1/2
∑
t,t ′,i

〈
�̃

(S ′)
t ′r ′{n′}

∣∣U (ri)
∣∣�̃(S)

tr{n}
〉〈
�

(S ′)
t ′S ′

∣∣↑(i)
〉

× 〈↑(i)
∣∣�(S)

tS

〉
. (27)

The spatial matrix elements are given by Eq. (25). The
spin matrix elements include projections of the spin wave
functions (14)

〈↑(i)
∣∣�(S)

tS

〉 = CSS

∑
P

D
[λ]
t[0](P)

λ1∑
l=1

δiPl

×
λ1∏

j 
=l

|↑(Pj )〉
N∏

j=λ1+1

|↓(Pj )〉.

Substituting P = QPlλ1 we get

〈↑(i)
∣∣�(S)

tS

〉 = CSS

∑
Q

λ1∑
l=1

D
[λ]
t[0]

(
QPlλ1

)
δiQλ1

×
λ1−1∏
j=1

|↑(Qj )〉
N∏

j=λ1+1

|↓(Qj )〉.

The permutation Plλ1 permute symbols in the first row of the
Young tableau [0]. Therefore, D

[λ]
t[0](QPlλ1 ) = D

[λ]
t[0](Q) [see

Eq. (8)], the summand in the equation above is independent of
l, and the projection can be expressed as〈↑(i)

∣∣�(S)
tS

〉 = λ1CSS

∑
Q

D
[λ]
t[0](Q)δiQλ1

×
λ1−1∏
j=1

|↑(Qj )〉
N∏

j=λ1+1

|↓(Qj )〉.

The projection involved into matrix elements of Û−1 is
evaluated in the same way,〈↓(i)

∣∣�(S)
tS

〉 = λ2CSS

∑
Q

D
[λ]
t[0](Q)δiQ(λ1+1)

×
λ1∏

j=1

|↑(Qj )〉
N∏

j=λ1+2

|↓(Qj )〉.

In the spin matrix elements of Û↑,〈
�

(S ′)
t ′S ′

∣∣↑(i)
〉〈↑(i)

∣∣�(S)
tS

〉 = δSS ′ [λ1CSS]2
∑
Q

D
[λ]
t[0](Q)δiQλ1

×
∑
R

D
[λ]
t ′[0](R)δiRλ1

∑
P ′,P ′′

δR,QP ′P ′′ ,

the permutations R and Q can be different by permutations
P ′ of the first λ1 − 1 symbols and P ′′ of the last λ2 ones. As
the permutations P ′ and P ′′ do not permute symbols between
rows in the Young tableau [0], we have D

[λ]
t ′[0](R) = D

[λ]
t ′[0](Q)

[see Eq. (8)]. Since the numbers of permutations P ′ and P ′′
are (λ1 − 1)! and λ2!, respectively, the spin matrix elements
take the form〈

�
(S)
t ′S

∣∣↑(i)
〉〈↑(i)

∣∣�(S)
tS

〉 = (λ1 − 1)!λ2!λ2
1C

2
SS

×
∑
Q

D
[λ]
t[0](Q)D[λ]

t ′[0](Q)δiQλ1 .

Let us substitute this equation and (25) into (27), perform the
summation over t and t ′ using Eq. (6), and substitute P =
Q−1R−1, j = Ri. Then the Kronecker symbol leads to Pj =
Q−1i = λ1, and we get〈
�̃

(S)
r ′{n′}S

∣∣Û↑
∣∣�̃(S)

r{n}S
〉 = λ1!λ2!λ1C

2
SS

∑
P

D
[λ]
[0]r ′(P)D[λ]

[0]r (P)

×
N∑

j=1

δλ1Pj 〈n′
j |U |nj 〉

∏
j ′ 
=j

δn′
j ′ ,nj ′ . (28)

The matrix element〈
�̃

(S−1)
r ′{n′}S−1

∣∣Û−1

∣∣�̃(S)
r{n}S

〉
= 1√

2
λ1!λ2!(λ2 + 1)CSSCS−1S−1

∑
P

D
[λ′]
[0]r ′(P)D[λ]

[0]r (P)

×
N∑

j=1

δλ1Pj 〈n′
j |U |nj 〉

∏
j ′ 
=j

δn′
j ′ ,nj ′ ,

(29)

where λ′ = [λ1 − 1,λ2 + 1], is calculated in a similar way.
The explicit expressions (28) and (29) are rather com-

plicated as they include Young orthogonal matrices and
summation over all permutations. The next section provides
expressions for sums of the matrix elements and their squared
moduli, which are much simpler.

C. Sum rules

The sum of diagonal in total spin S and r matrix elements
can be written out as
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∑
r

〈
�̃

(S)
r ′{n′}S

∣∣Ûa

∣∣�̃(S)
r{n}S

〉

= Y (S)[Ûa]
fS

N

N∑
j=1

〈n′
j |U |nj 〉

∏
j ′ 
=j

δn′
j ′ ,nj ′ . (30a)

The universal factors Y (S) are independent of the matrix
elements 〈n′

j |U |nj 〉. For Û↑, the factor Y (S)[Û↑] can be

derived from (28) using the equalities
∑

r D
[λ]
[0]r (P)D[λ]

[0]r (P) =
D

[λ]
[0][0](E) = 1 [obtained with (6) and (7) ] and

∑
P δλ1Pj =

(N − 1)!, as

Y (S)[Û↑] = N

2
+ S. (30b)

It is equal to the number of the spin-up atoms. For the spherical
vector component Û0, the factor Y (S)[Û0] is obtained using Eq.
(22),

Y (S)[Û0] = S. (30c)

Equation (26) leads to

Y (S)[Û ] = N. (30d)

The sum of squared moduli of the matrix elements (28) and
(29) can be expressed, using Eqs. (4) and (15), as∑

r,r ′

∣∣〈�̃(S)
r ′{n′}S

∣∣Û↑
∣∣�̃(S)

r{n}S
〉∣∣2

=
(

λ1fS

N !

)2 ∑
jj ′

Σ
(S,S)
jj ′ 〈n′

j |U |nj 〉〈nj ′ |U |n′
j ′ 〉

×
∏
j ′′ 
=j

δn′
j ′′ ,nj ′′

∏
j ′′′ 
=j ′

δn′
j ′′′ ,nj ′′′ , (31)

∑
r,r ′

∣∣〈�̃(S−1)
r ′{n′}S−1

∣∣Û−1

∣∣�̃(S)
r{n}S

〉∣∣2

= λ1(λ2 + 1)fSfS−1

2(N !)2

∑
jj ′

Σ
(S−1,S)
jj ′ 〈n′

j |U |nj 〉〈nj ′ |U |n′
j ′ 〉

×
∏
j ′′ 
=j

δn′
j ′′ ,nj ′′

∏
j ′′′ 
=j ′

δn′
j ′′′ ,nj ′′′ , (32)

where

Σ
(S ′,S)
jj ′ =

∑
r,r ′

∑
P

D
[λ′]
[0]r ′ (P)D[λ]

[0]r (P)δλ1Pj

×
∑
Q

D
[λ′]
[0]r ′ (Q)D[λ]

[0]r (Q)δλ1Qj ′ . (33)

These sums are calculated in the Appendix. It is shown that

Σ
(S,S)
jj = N !(N − 1)!

fSλ
2
1

[
λ1 − λ2

λ1 − λ2 + 2

]
, (34)

Σ
(S−1,S)
jj = N !(N − 1)!

fSλ1
(35)

are independent of j , and

Σ
(S ′,S)
jj ′ = N !(N − 2)!

fS

δSS ′ − 1

N − 1
Σ

(S ′,S)
jj (36)

for any j ′ 
= j .
If the sets of spatial quantum numbers {n} and {n′} are

different, the product of Kronecker symbols in (31) and (32)
does not vanish only if j = j ′. Then the sum of squared moduli
of the matrix elements can be written out as∑

r,r ′

∣∣〈�̃(S ′)
r ′{n′}S

∣∣Ûa

∣∣�̃(S)
r{n}S

〉∣∣2

= Y (S,1)[Ûa,Ûa]
fS ′

N

N∑
j=1

|〈n′
j |U |nj 〉|2

∏
j ′ 
=j

δn′
j ′ ,nj ′ , (37a)

where S ′ � S and the difference S − S ′ is unambiguously
determined by the operator Ûa . Each term in the sum
here changes one spatial quantum number, conserving other
ones. If U (r) = const, the sums vanish since 〈ϕn′ |U |ϕn〉 =
U 〈ϕn′ |ϕn〉 = 0 for n 
= n′. The universal factors Y (S,1)[Ûa,Ûa],
which are independent of the matrix elements 〈n′

j |U |nj 〉, are

expressed in terms of Σ
(S ′,S)
jj . Then Eqs. (34) and (35) lead to

Y (S,1)[Û↑,Û↑] = N

2
+ S − N − 2S

4(S + 1)
, (37b)

Y (S,1)[Û−1,Û−1] = N − 2S + 2

4
, (37c)

and Eq. (26) gives

Y (S,1)[Û ,Û ] = N.

The factor Y (S,1)[Û0,Û0] for the spherical vector component
Û0 is obtained using (22). Since the matrix elements of Û are
diagonal in r [see Eq. (26)], one gets

Y (S,1)[Û0,Û0] = S(N + 2)

4(S + 1)
. (37d)

For transitions conserving the spatial quantum numbers,
{n′} = {n} and the Kronecker symbols in (31) and (32) are
equal to 1 for any j and j ′. Then sums of squared moduli of
the matrix elements can be represented as∑

r,r ′

∣∣〈�̃(S ′)
r ′{n}S ′

∣∣Ûa

∣∣�̃(S)
r{n}S

〉∣∣2

= fS ′
[
Y

(S,0)
0 [Ûa,Ûa]〈U 〉2 + Y

(S,0)
1 [Ûa,Ûa]〈�U 〉2

]
, (38a)

where

〈U 〉 = 1

N

N∑
j=1

〈nj |U |nj 〉

is the average matrix element and

〈�U 〉 =
⎡
⎣ 1

N

N∑
j=1

(〈nj |U |nj 〉 − 〈U 〉)2

⎤
⎦

1/2

is the average deviation of the matrix elements of U (r).
The universal factors Y

(S,0)
0 [Ûa,Ûa] and Y

(S,0)
1 [Ûa,Ûa] are
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independent of the matrix elements 〈nj |U |nj 〉. Equations
(34)–(36) lead to

Y
(S,0)
0 [Ûa,Ûa] = (

Y (S)[Ûa]
)2

(38b)

[where we define Y (S)[Û−1] = 0, in addition to Eq. (30)], and

Y
(S,0)
1 [Û−1,Û−1] = N (N − 2S + 2)

4(N − 1)
, (38c)

Y
(S,0)
1 [Û↑,Û↑] = Y

(S,0)
1 [Û0,Û0]

= S(N − 2S)(N + 2S + 2)

4(S + 1)(N − 1)
. (38d)

If U (r) = const, �U = 0, and, therefore,∑
r,r ′ |〈�̃(S−1)

r ′{n}S−1|Û−1|�̃(S)
r{n}S〉|2 = 0. Indeed, in this case,

the spatial matrix elements (25) are equal to zero due to the
orthogonality of the spatial wave functions with different spins.

Thus, sums of matrix elements and their squared moduli are
expressed in terms of universal factors, which are independent
of the spatial orbitals and details of the external fields,
and sums of one-body matrix elements (or their squared
moduli), which are independent of many-body spins. The
sum rules, combined with the spin-projection dependence
(23), provide information on each matrix element for an
one-body spin-dependent interaction with an external field.

IV. SUM RULES FOR TWO-BODY SPIN-INDEPENDENT
INTERACTIONS

The permutation-invariant interaction between particles is
given by

V̂ =
∑
j 
=j ′

V (rj − rj ′ ). (39)

Without loss of generality, we can restrict consideration to even
potential functions, V (r) = V (−r), since their odd parts are
canceled. Matrix elements of this interaction can be evaluated
for general spin wave functions. Due to the orthogonality of
the spin wave functions (10), the matrix elements are diagonal
in spin quantum numbers and can be reduced to the matrix
elements between spatial wave functions,〈

�̃
(S ′)
r ′{n′}l′

∣∣V̂ ∣∣�̃(S)
r{n}l

〉
= δSS ′δll′

2

fS

∑
t

∑
i<i ′

〈
�̃

(S)
tr ′{n′}

∣∣V (ri − ri ′ )
∣∣�̃(S)

tr{n}
〉

(40)

(this reduction is used in spin-free quantum chemistry [6,7]).
Then, using (11), (39), and the property (7) of the Young
orthogonal matrices, the spatial matrix elements can be
expressed as

〈
�̃

(S)
tr ′{n′}

∣∣V (ri − ri ′ )
∣∣�̃(S)

tr{n}
〉 = fS

N !

∑
R,Q

sgn(Q)D[λ]
r ′t (Q)sgn(R)D[λ]

rt (R)

×
∫

dDrid
Dri ′ϕ

∗
n′
Qi

(ri)ϕ
∗
n′
Qi′

(ri ′ )V (ri − ri ′ )ϕnRi
(ri)ϕnRi′ (ri ′)

∏
i ′ 
=i ′′ 
=i

δn′
Qi′′ ,nRi′′ . (41)

The Kronecker δ symbols appear here due to the orthogonality of the spatial orbitals ϕn and the absence of equal quantum numbers
in each of the sets {n} and {n′}. Due to the δ symbols, all but two spatial quantum numbers remain unchanging. Supposing that
the unchanged ni ′′ are in the same positions in the sets {n} and {n′}, one can see that the Kronecker symbols allow only Q = R
or Q = RPii ′ . Then substitution of (41) into (40), using (6) and (7), leads to〈

�̃
(S ′)
r ′{n′}l′

∣∣V̂ ∣∣�̃(S)
r{n}l

〉
= 2δSS ′δll′

1

N !

∑
R

∑
i<i ′

∏
Ri ′ 
=j ′′ 
=Ri

δn′
j ′′ ,nj ′′

[
δr ′r〈n′

Rin
′
Ri ′ |V |nRinRi ′ 〉 + sgn(Pii ′)D

[λ]
r ′r (RPii ′R−1)〈n′

Ri ′n
′
Ri |V |nRinRi ′ 〉

]
, (42)

where 〈n′
1n

′
2|V |n1n2〉 = ∫

dDr1d
Dr2ϕ

∗
n′

1
(r1)ϕ∗

n′
2
(r2)V (r1 − r2)ϕn1 (r1)ϕn2 (r2).

Taking into account that

PPii ′P−1 = PPiPi ′ (43)

(see [7]) and substituting Ri = j , one finally gets〈
�̃

(S ′)
r ′{n′}l′

∣∣V̂ ∣∣�̃(S)
r{n}l

〉 = 2δSS ′δll′
∑
j<j ′

∏
j ′ 
=j ′′ 
=j

δn′
j ′′ ,nj ′′

[
δr ′r〈n′

j n
′
j ′ |V |njnj ′ 〉 + sgn(Pjj ′)D[λ]

r ′r (Pjj ′)〈n′
j ′n

′
j |V |njnj ′ 〉]. (44)

It is a special case of the matrix elements obtained by Heitler
[8] and Kaplan [6].

The sum of diagonal elements of the representation matrix,
the character

χS(C) ≡
∑

r

D[λ]
rr (P),

is the same for all permutations P , which form the class of
conjugate elements C [4–7]. Table II presents the characters
for the classes appearing here. (Supplemental material for [17]
contains a code based on the explicit expressions [34] for the
characters.) The conjugated classes of the symmetric groupSN

are characterized by the cyclic structure of the permutations.
All permutations in the class C = {NνN . . . 2ν2} have νl cycles
of length l. This class notation omits lνl if νl = 0 and the
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TABLE II. Characters χS(C) of the classes C of conjugate
elements of the symmetric group SN of permutations of N symbols
in the irreducible representations, corresponding to the spin S. The
characters are calculated with the Frobenius formula [7,33] and scaled
to the representation dimension fS .

C χS(C)/fS

{2} 4S2+N2+4S−4N

2N(N−1)

{3} 12S2+N2+12S−10N

4N(N−1)

{4} N4−24N3+4N2(6S2+6S+29)−16N(10S2+10S+9)+16S(S+1)(S2+S+12)
8N(N−1)(N−2)(N−3)

{22} N4−12N3+8N2(S2+S+7)+8N(10S2+10S+9)+16S(S+1)(S2+S+6)
4N(N−1)(N−2)(N−3)

number of cycles of the length one, i.e., the number of symbols
which are not affected by the permutations in the class.
This number is determined by the condition

∑N
l=1 lνl = N .

Permutations of two symbols form the class {2}. This leads to
the sum of diagonal in r matrix elements∑

r

〈
�̃

(S)
r{n′}l

∣∣V̂ ∣∣�̃(S)
r{n}l

〉
= 2

∑
j<j ′

[
fS〈n′

j n
′
j ′ |V |njnj ′ 〉 ± χS({2})〈n′

j ′n
′
j |V |njnj ′ 〉]

×
∏

j ′ 
=j ′′ 
=j

δn′
j ′′ ,nj ′′ , (45a)

where the sign + or − is taken for bosons or fermions,
respectively. Similar expressions have been obtained for the
total energy [8] and arbitrary observables [17]. If {n′} = {n},
the Kronecker symbols are equal to 1 for any j and j ′ and the
sum can be transformed to the form∑

r

〈
�̃

(S)
r{n}l

∣∣V̂ ∣∣�̃(S)
r{n}l

〉

= N (N − 1)fS

(
〈V 〉dir ± χS({2})

fS

〈V 〉ex

)
. (45b)

Here and above, the dependence on many-body states is given
by universal functions fS and χS({2}), which are independent
of the matrix elements 〈n′

1n
′
2|V |n1n2〉, while the average

matrix elements

〈V 〉dir = 2

N (N − 1)

∑
j<j ′

〈njnj ′ |V |njnj ′ 〉,
(46)

〈V 〉ex = 2

N (N − 1)

∑
j<j ′

〈nj ′nj |V |njnj ′ 〉

of the direct and exchange interactions, respectively, are
independent of the many-body states.

Calculating the sum of squared moduli of the matrix
elements (44), one can see that if the sets of spatial quantum
numbers {n} and {n′} are different by two elements, the product
of Kronecker symbols in the product of the matrix elements
does not vanish only if the pair j , j ′ is the same in both matrix
elements. Then the sum can be expressed as

∑
r,r ′

∣∣〈�̃(S)
r ′{n′}l

∣∣V̂ ∣∣�̃(S)
r{n}l

〉∣∣2 = 4fS

∑
j<j ′

∏
j ′ 
=j ′′ 
=j

δn′
j ′′ ,nj ′′

[
|〈n′

jn
′
j ′ |V |njnj ′ 〉|2 + |〈n′

j ′n
′
j |V |njnj ′ 〉|2

± 2
χS({2})

fS

Re(〈n′
j n

′
j ′ |V |njnj ′ 〉〈n′

j ′n
′
j |V |njnj ′ 〉∗)

]
. (47a)

Here the equality
∑

rr ′ D
[λ]
r ′r (Pjj ′)D[λ]

r ′r (Pjj ′) = ∑
r D[λ]

rr (E) = fS was used. Each term in the sum above changes two of the spatial
quantum numbers, conserving other ones. The case of a single changed quantum number will be considered elsewhere.

For transitions conserving the spatial quantum numbers, {n′} = {n} and the Kronecker symbols in (44) are equal to 1 for any
j and j ′. Then ∑

r,r ′

∣∣〈�̃(S)
r ′{n}l

∣∣V̂ ∣∣�̃(S)
r{n}l

〉∣∣2 =
[
fSN

2(N − 1)2〈V 〉2
dir ± 2χS({2})N2(N − 1)2〈V 〉dir〈V 〉ex

+
∑
j1 
=j ′

1

∑
j2 
=j ′

2

∑
r

D[λ]
rr

(
Pj1j

′
1
Pj2j

′
2

)〈
nj ′

1
nj1

∣∣V ∣∣nj1nj ′
1

〉〈
nj ′

2
nj2

∣∣V ∣∣nj2nj ′
2

〉]

The trace of the Young matrix can be transformed in the following way (since j1 
= j ′
1 and j2 
= j ′

2):∑
r

D[λ]
rr

(
Pj1j

′
1
Pj2j

′
2

) = χS({22}) + (
δj1j2 + δj1j

′
2
+ δj ′

1j2 + δj ′
1j

′
2

)
[χS({3}) − χS({22})]

+ (
δj1j2δj ′

1j
′
2
+ δj1j

′
2
δj ′

1j2

)
[fS − 2χS({3}) + χS({22})],

since Pj1j
′
1
Pj1j

′
2
∈ {3} for j ′

1 
= j ′
2, Pj1j

′
1
Pj1j

′
1
= E , and χS(E) = fS . Here and in what follows, χS({3}) and χS({22}) have to

be equated to zero at N < 3 and N < 4, respectively, when the corresponding permutations do not exist. Using the identity
2fS + 4(N − 2)χS({3}) + (N − 2)(N − 3)χS({22}) = N (N − 1)χ2

S ({2})/fS (it can be directly proved with the characters in
Table II), the sum of squared moduli of the matrix elements can be represented as

∑
r,r ′

∣∣〈�̃(S)
r ′{n}l

∣∣V̂ ∣∣�̃(S)
r{n}l

〉∣∣2 = fS

(
Y

(S,0)
1 [V̂ ,V̂ ]〈�1V 〉2 + Y

(S,0)
2 [V̂ ,V̂ ]〈�2V 〉2

) + 1

fS

(∑
r

〈
�̃

(S)
r{n}l

∣∣V̂ ∣∣�̃(S)
r{n}l

〉)2

(47b)
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with the universal factors

Y
(S,0)
1 [V̂ ,V̂ ] = 4N (N − 1)2 χS({3}) − χS({22})

fS

, Y
(S,0)
2 [V̂ ,V̂ ] = 2N (N − 1)

(
1 − 2χS({3}) − χS({22})

fS

)
. (47c)

Here

〈�1V 〉2 = 1

N

N∑
j=1

⎛
⎝ 1

N − 1

∑
j ′ 
=j

〈nj ′nj |V |njnj ′ 〉 − 〈V 〉ex

⎞
⎠

2

,

〈�2V 〉2 = 2

N (N − 1)

∑
j<j ′

(〈nj ′nj |V |njnj ′ 〉 − 〈V 〉ex)2 (48)

measure the average deviation of the exchange matrix ele-
ments.

Thus, sums of matrix elements and their squared moduli are
expressed in terms of universal factors, which are independent
of the spatial orbitals and interaction potentials, and sums of
two-body matrix elements (or their squared moduli), which are
independent of the many-body spins. The universal factors are
expressed in terms of characters of irreducible representations
of the symmetric group. The characters are functions of the
total spin and the number of particles.

V. MULTIPLET ENERGIES FOR WEAKLY INTERACTING
GASES

As an example of applications of the sum rules, consider
splitting of degenerate energy levels due to weak two-body
spin-independent interactions. The Hamiltonian of the system
is a sum of one-body Hamiltonians Ĥ0(j ) of noninteracting
particles and two-body interactions (39),

Ĥspat =
N∑

j=1

Ĥ0(j ) + V̂ . (49)

The interactions split energies of the degenerate states (13). In
the zero order of the degenerate perturbation theory [3], the
eigenenergies ESn (counted from the multiplet-independent
energy of noninteracting particles

∑N
j=1 εnj

) are determined
by the secular equation∑

r ′
V

(S)
rr ′ A

(S)
nr ′ = ESnA

(S)
nr , (50)

where A(S)
nr are the expansion coefficients of the wave function

(16) in terms of the wave functions of noninteracting particles
(17),

�
(S)
nSz

=
∑

r

A(S)
nr �̃

(S)
r{n}Sz

(51)

and the matrix elements of the spin-independent two-body
interaction (44)

V
(S)
rr ′ = 〈

�̃
(S)
r ′{n}Sz

∣∣V̂ ∣∣�̃(S)
r{n}Sz

〉
do not couple states with different spins.

Consider at first the case when the matrix elements Vdir =
〈n1n2|V̂ |n1n2〉 and Vex = 〈n1n2|V̂ |n2n1〉 are independent of
the spatial quantum numbers. E.g., this can take place in the
case of zero-range interactions V (r) = V δ(r), if the spatial

orbitals have a form of plane waves. In this case, the summation
over R in the matrix element (42) for {n} = {n′} can be
performed using Eqs. (6), (7), and the orthogonality relation
(5) in the following way [5]:∑

R
D

[λ]
r ′r (RPii ′R−1) =

∑
t,t ′

D
[λ]
t ′t (Pii ′)

∑
R

D
[λ]
r ′t ′(R)D[λ]

rt (R)

= N !

fS

δr ′rχS({2}).

Then the matrix elements become diagonal in r ,

V
(S)
rr ′ = δrr ′N (N − 1)

(
Vdir ± χS({2})

fS

Vex

)
,

where the character χS({2}) is given in Table II and the sign +
or − is taken for bosons or fermions, respectively. The secular
equation (50) is then satisfied by the eigenvectors A(S)

nr = δnr

and eigenvalues ESn = V (S)
rr . Then all eigenstates with the

given spin remain degenerate in energy. However, states with
different total spins have different energies.

In the general case, when the matrix elements of V̂ depend
on the spatial quantum numbers, the energies ESn cannot be
expressed in a simple form. However, using the equivalence
of the sum of matrix eigenvalues to its trace and the sum of
matrix elements (45b), the average multiplet energy can be
expressed as

ĒS ≡ 1

fS

∑
n

ESn = 1

fS

∑
r

Vrr

= N (N − 1)

(
〈V 〉dir ± χS({2})

fS

〈V 〉ex

)
, (52)

where the average interactions 〈V 〉dir and 〈V 〉ex are defined
by (46). (Here and below, the summation over n means the
summation over states of interacting particles in a given spin
multiplet with a given set {n}.) It is a particular case of
the general expression obtained by Heitler [8]. The average
energies are plotted in Fig. 1.

As the interaction lifts degeneracy of states with different
total spins, transformation of the set of states with defined
total spins to the set of states with given spin projections of
particles becomes impossible. Then the former set remains the
only valid set of eigenstates of interacting particles.

For fermions, the average multiplet energy decreases
with S. The Lieb-Mattis theorem [23] predicts opposite
dependence. However, this theorem is formulated for the
lowest-energy states with given S, which can involve different
sets of {n} and have multiple occupation of spatial orbitals. In
contrast, the average energies (52) are obtained for the fixed
set of {n} and single occupations.

The root-mean-square energy width of the spin-S multiplet
〈�ES〉 is defined by

〈�ES〉2 ≡ 1

fS

∑
n

(ESn − ĒS)2 = 1

fS

∑
n

E2
Sn − Ē2

S.
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FIG. 1. (Color online) Scaled average multiplet energies ĒS as
functions of the multiplet spin S for N bosons or fermions. The
energies are calculated with Eq. (52) and scaled characters from
Table II, assuming 〈V 〉dir = 〈V 〉ex = 〈V 〉.

Due to orthogonality of the expansion coefficients, the
secular equation (50) can be rewritten in the form ESnδn′n =∑

rr ′ A∗
nrVrr ′An′r ′ , leading to

1

fS

∑
n,n′

|ESnδn′n|2 = 1

fS

∑
r,r ′

V ∗
rr ′Vr ′r .

Then Eq. (47b) gives us

〈�ES〉2 = Y
(S,0)
1 [V̂ ,V̂ ]〈�1V 〉2 + Y

(S,0)
2 [V̂ ,V̂ ]〈�2V 〉2, (53)

where the universal factors Y
(S,0)
1 [V̂ ,V̂ ] and Y

(S,0)
2 [V̂ ,V̂ ]

are expressed in terms of the representation characters by
Eq. (47c), and the matrix element deviations 〈�1V 〉 and 〈�2V 〉
are defined by Eq. (48). The multiplet energy widths are
plotted in Fig. 2. If the matrix elements of V̂ are independent
of the spatial quantum numbers, 〈�1V 〉 = 〈�2V 〉 = 0 and,
therefore, 〈�ES〉 = 0, in agreement with the above-mentioned
degeneracy of states with given S in this case. The energy
width is determined by characters, which were identified
by Dirac [35] as constants of motions, corresponding to

0
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N=10, 〈Δ2V〉=2 〈Δ1V〉

FIG. 2. (Color online) Scaled root-mean-square energy widths
of multiplets as functions of the multiplet spin S for N particles,
calculated with Eq. (53).

permutation symmetry, according to generalized Noether’ s
theorem. Therefore, the energy width can be considered as a
conserved physical observable, related to this symmetry, as
well as the average multiplet energy and correlations [17].

Using characters from Table II, the exact expression can be
approximated at N  1 by

〈�ES〉2 ≈ N2 − 4S2

2N2
V 2

1D[2N (4S2 − 3N )〈�1V 〉2

+ (3N2 − 4S2)〈�2V 〉2].

Consider now external fields described by one-body inter-
actions. Matrix elements of a spin-independent field (26) are
independent of r and spin quantum numbers. Therefore, this
field leads to the same shift for all states, corresponding to the
given set of spatial quantum numbers {n}. In the first order
of the perturbation theory, this shift will be

∑N
j=1〈nj |U |nj 〉.

Even a strong spin-independent field leads to the same shift
of all states, as it can be incorporated into the Hamiltonian of
noninteracting particles. Then, the Schrödinger equation (12)
will contain Ĥ0(j ) + U (rj ). This leads to different one-body
eigenfunctions ϕn(r) and eigenvalues εn, but does not change
the form of many-body wave functions.

Spin-dependent spatially homogeneous interactions
[Eqs. (21) and (22) with U = const ] commute with the spatial
Hamiltonian of interacting particles (49). Since the spin
wave functions (14) are eigenfunctions of such interactions,
the eigenfunctions �

(S)
nSz

of Ĥspat will be eigenfunctions of

the Hamiltonian Ĥspat + Û0. The energy shift of the states
of noninteracting particles due to the field Û0 is equal
to the matrix element 〈�̃(S)

r ′{n}Sz
|Û0|�̃(S)

r{n}Sz
〉 = δr ′rSzU . It

is determined by Eqs. (22), (23), (26), and (28), taking
into account that 〈n′|U |n〉 = Uδnn′ . The energy shift of
the states of interacting particles (51) will be the same, as
〈�(S)

nSz
|Û0|�(S)

nSz
〉 = SzU

∑
r A∗

nrAnr = SzU .
The spin-independent inhomogeneous and spin-dependent

homogeneous fields, considered above, are consistent with
the separation (1) of the spin and spatial Hamiltonians. If
the external field depends both on spins and coordinates,
this separation is violated, invalidating the use of collective
spin and spatial wave functions for noninteracting particles.
Nevertheless, these wave functions remain applicable to inter-
acting particles whenever the external field is weak enough,
and the energy shift can be estimated in the first order of
the perturbation theory. The average shift is calculated using
orthogonality of the coefficients Anr , Eqs. (23) and (30) in the
following way:

1

fS

∑
n

〈
�

(S)
nSz

∣∣Û0

∣∣�(S)
nSz

〉

= 1

fS

∑
n

A∗
nr ′Anr

〈
�̃

(S)
r ′{n}Sz

∣∣Û0

∣∣�̃(S)
r{n}Sz

〉

= X
(S,S,1)
Sz0 Y (S)[Û0]

1

N

N∑
j=1

〈nj |U |nj 〉

= Sz

N

N∑
j=1

〈nj |U |nj 〉. (54)
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VI. CONCLUSIONS

The symmetric group methods allow us to evaluate the
matrix elements of spin-dependent external fields (21) and
spin-independent two-body interactions (39) in the basis
with collective spin and spatial wave functions (2). These
matrix elements agree to the selection rules [17]. For the
matrix elements of spin-dependent external fields, explicit
dependence on the total spin projection (23) is obtained
using the Wigner-Eckart theorem. Analytical expressions
are derived for sums of these matrix elements (30) and
their squared moduli [Eqs. (37) and (38)] over irreducible
representations for both spin-conserving and spin-changing
transitions. Dependence on the many-body states in these sums
is given by the 3j Wigner symbols and the universal factors
Y (S), Y (S,1), Y

(S,0)
0 , and Y

(S,0)
1 . These factors are independent

of details of one-body Hamiltonians and external fields and
are expressed in a rather simple form in terms of the total
spin and number of particles. For spin-independent two-body
interactions, the sums of matrix elements (45) and their
squared moduli (47) depend on the many-body states only
through the representation characters, which were identified
by Dirac [35] as constants of motions, corresponding to
permutation symmetry. The sum rules can be applied to the
evaluation of energy-level shifts (54), splitting of states with
different total spins (52), and spin-multiplet energy widths
(53). Other possible applications of the sum rules include
estimates of the spin-multiplet depletion rates due to spin-
dependent perturbations, as well as the population transfer
rates between spin-multiplets using the spatially homogeneous
spin-changing and spatially inhomogeneous spin-conserving
pulses [17].
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APPENDIX: CALCULATION OF THE SUMS (33)

Using the relations (6) and (7) and substitutionR = QP−1,
the sum (33) can be represented in the following form:

Σ
(S ′,S)
jj ′ =

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)
∑
P

δλ1,Pj δλ1,RPj ′ ,

where λ = [N/2 + S,N/2 − S] and λ′ = [N/2 + S ′, N/2 −
S ′].

For j = j ′, there are (N − 1)! permutations P such that
Pj = λ1. Then

Σ
(S ′,S)
jj = (N − 1)!

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)δλ1,Rλ1 (A1)

is independent of j .
For j 
= j ′, we have∑

P
δλ1,Pj δλ1,RPj ′ =

∑
l 
=λ1

δλ1,Rl

∑
P

δl,Pj ′δλ1,Pj

= (N − 2)!
∑

l

δλ1,Rl

(
1 − δλ1l

)
= (N − 2)!

(
1 − δλ1,Rλ1

)
.

Then

Σ
(S ′,S)
jj ′ =

∑
R

D
[λ′]
[0][0](R)D[λ]

[0][0](R)(N − 2)!
(
1 − δλ1,Rλ1

)

= N !(N − 2)!

fS

δλλ′ − 1

N − 1
Σ

(S ′,S)
jj , (A2)

where the last transformation uses Eqs. (5) and (A1). The last
expression in (A2) is independent of j and j ′ and equivalent
to (36).

The Young orthogonal matrix elements in (A1) have been
calculated by Goddard [36] in the following way. Each
permutation R can be represented as

R =
nex∏
k=1

Pi ′k i
′′
k
P ′P ′′,

where P ′ are permutations of symbols in the first row of the
Young tableau [0] (λ1 first symbols), P ′′ are permutations
of symbols in the second row (λ2 last symbols), and Pi ′k i

′′
k

transpose symbols between the rows as i ′k � λ1 and i ′′k > λ1.
Then [36]

D
[λ]
[0][0](R) = (−1)nex

(
λ1

nex

)−1

= (−1)nex
nex!(λ1 − nex)!

λ1!
.

Due to the Kronecker symbols in Eq. (A1), the permutations
P ′ do not affect λ1 and i ′k � λ1 − 1. Therefore there are
(λ1 − 1)! permutations P ′, λ2! permutations P ′′, and number
of distinct choices of the sets of i ′k and i ′′k are given by the

binomial coefficients (λ1 − 1
nex

) and (λ2
nex

), respectively. Then for
S = S ′ Eq. (A1) can be transformed as follows:

Σ
(S,S)
jj = (N − 1)!

λ2∑
nex=0

(λ1 − 1)!λ2!

(
λ1 − 1

nex

)(
λ2

nex

)(
λ1

nex

)−2

= (N − 1)!(λ2!)2

λ2
1

λ2∑
nex=0

(λ1 − nex)!

(λ2 − nex)!
(λ1 − nex).

The sum over nex can be calculated, leading to (34).
If S ′ = S − 1 we have

Σ
(S−1,S)
jj = (N − 1)!

λ2∑
nex=0

(λ1 − 1)!λ2!

(
λ1 − 1

nex

)

×
(

λ2

nex

)(
λ1

nex

)−1(
λ1 − 1

nex

)−1

= (N − 1)!(λ2!)2

λ1

λ2∑
nex=0

(λ1 − nex)!

(λ2 − nex)!
,

giving (35).
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