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Low-energy photoelectron dynamics in Kr 3d5/2 photoionization followed by Auger decay
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The effects induced during the process of inner-shell photoionization followed by Auger decay are investigated
for the photoionization of Kr 3d5/2 in an extremely low photoelectron energy regime. Both the photoelectron
energy and relative angular distributions are calculated with a recently developed quantum-mechanical method
where all the Coulomb interactions between each pair of particles are fully considered. The photoelectron energy
distribution is asymmetric with respect to the initial photoelectron energy, and its peak shifts to a lower energy.
As the absorbed photon energy is reduced, the peak of the photoelectron energy distribution moves to the
negative energy range. As a manifestation of these dynamics, peak structures are observed in the relative angular
distribution. We also simulate the process with a classical-trajectory Monte Carlo method, obtaining similar
results to the quantum-mechanical ones.
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I. INTRODUCTION

The physical process of photoabsorption followed by
sequential double ionization has been studied extensively in
the past decades [1–17]. The first electron emitted from the
nucleus is called the photoelectron because its ionization is
due to photoabsorption. If the photoelectron originates from
an inner shell, a second electron may undergo an Auger decay
and be emitted (referred to as the Auger electron). How quickly
the photoelectron and Auger electron escape from the atom
and the period between the two ionizations are two important
factors in determining the subsequent dynamics. The initial
energy of the Auger electron E2 and the Auger width �

(proportional to the inverse of the time interval between the two
ionizations) depend upon only the chosen atomic system. The
initial photoelectron energy E1 is a function of the incident
photon energy and the ionization potential of the ionizing
electron. In summary, the atomic species and the incident
photon energy codetermine the whole physical process.

During the past decades, this problem has been investigated
within different atomic systems, namely, 4d3/2,5/2 photoion-
ization following N -OO Auger decay in Xe [1–7], Ar 3d

photoionization followed by Auger decay [12,13], 1s or 2s

photoionization with subsequent Auger decay in Ne [8–11,17],
and 3d5/2,3/2 photoionization followed by Auger decay in
Kr [15,16]. These papers covered a wide energy range. Xe is
one of the most frequently used atom species in studying this
problem. The 4d5/2 photoionization in xenon with subsequent
N5-O2,3O2,3 Auger decay was selected to study the energy
and/or angular distributions in Refs. [1–7]. For this system,
the initial energy of the Auger electron E2 was ∼30 eV, and
the Auger width � was ∼0.12 eV. The initial photoelectron
energy E1 was Ep − 67.548 eV, with a variable Ep (Ep is
the incident photon energy, and 67.548 eV is the binding
energy of 4d5/2 [18]). E1 was 27 eV in [1,2], where the
influences of the postcollision interaction (PCI) on the energy
and angular distributions for a particular ejection angular
range were studied. E1 was 30.0 eV in the work of Viefhaus
et al. [3]; they showed that the triple differential cross section
can fully vanish because of destructive interference. Scherer
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et al. [4] considered the energy distribution measurement of
two coincident electrons with nearly the same energy and
direction, and three different initial photoelectron energies,
28.97, 29.97, and 30.97 eV, were studied. The first coincident
angular distribution was measured in Ref. [6], where E1 was
29.9 eV. Sheinerman et al. experimentally and theoretically
investigated the PCI phenomena with the same atomic system
in Ref. [7], and the initial photoelectron energy was as low as
2.67 eV. In the same reference, other Xe systems, such as 4d3/2

photoionization with subsequent decays N4-O2,3O2,3 and
N4-O1O2,3, were also included in their investigations, where
E2 was ∼32 and 16 eV, respectively, the energy for 4d3/2 was
−69.537 eV, and � was ∼0.104 eV for the intermediate state.

Inner-shell photoionization followed by Auger decay is
a three-body problem and cannot be solved exactly in an
analytical way. However, some approximations can be made
to convert it to a two-body problem if neither of the two
electrons have low energies. If the energy of one of the
two electrons is low, for example, E1 is very low and the
Auger electron is ejected with a high velocity, the interaction
between the ion and photoelectron has to be fully considered
during the whole process. In this situation, this problem can
also be solved analytically by approximately treating the e-e
interaction and the interaction between the Auger electron
and ion. Different cases with low initial photoelectron energy
have been investigated in Refs. [8,12,13,15,16]. Because the
e-e interaction was not fully considered, only the energy
distribution was calculated, and the angular distribution was
rarely involved. The main purpose of this paper is to investigate
how the angular distribution behaves when the photoelectron
is emitted with extremely low energy.

To achieve this goal, we perform calculations with a
numerical method [17,19,20] and refer to this as the time-
dependent Schrödinger equation (TDSE) method in which all
Coulomb interactions between each pair of particles are fully
taken into account. To confirm the validity of the results, we
also redo the calculations with a classical-trajectory Monte
Carlo (CTMC) method. The chosen system in this paper is Kr
3d5/2 photoionization with subsequent M-NN Auger decay,
and the photoelectron energy is between 0.0 and 1.0 eV. We
select this system because it has small � (∼0.088 eV) and
lower E2 (∼2 a.u.), which are within the limitations of the
TDSE method; see the discussion in Sec. II.
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This paper is organized as follows: in Sec. II, we briefly
review the two theoretical methods used in this paper, TDSE
and CTMC; Sec. III shows the energy and angular distributions
for the system Kr 4d5/2 photoionization following M-NN

Auger decay. The last section presents the conclusion.
Atomic units are used throughout unless stated otherwise.

II. THEORETICAL METHODS

A. Quantum-mechanical method

The whole process can be divided into two steps, before
and after the Auger decay. For the quantum-mechanical
method [17,19,20] used in this paper, we use Eq. (1), a
time-independent inhomogeneous equation, to describe the
propagation of the photoelectron; the process after the Auger
decay is described by a time-dependent Schrödinger equation
with a source term for the two ionized electrons [Eq. (2)].
By solving the two equations, we can obtain the two-electron
wave function in real time [�(r1,r2,t)], from which different
physical quantities can be extracted.

The time-independent inhomogeneous equation for the
process before the Auger decay is(

E1 + i
�

2
− Hα

)
F1 = Dφg, (1)

where Dφg describes photon absorption of the electron, F1

is the photoelectron wave function, Hα is the Hamiltonian of
the photoelectron before the Auger decay, and � is the width
of the inner vacancy. The potential in Hα is taken as −1/r ,
Dφg is taken to be a simple short-range function, and � is
proportional to the inverse of the inner vacancy’s lifetime.

The time-dependent Schrödinger equation for the process
after the Auger decay is

i
∂�

∂t
− H� = S(t)F1(r1)F2(r2), (2)

where S(t) is the strength of the source, F2(r2) is the source
term for the Auger electron, and H is the total Hamiltonian. We
use S(t) = 1/{1 + exp[10(1 − 5t/tf )]}, where tf is the final
time of the calculation [17]. There are three parts in H : the
Hamiltonian for the photoelectron, the Auger electron, and the
interaction between the two ionized electrons. The potential
for the photoelectron and Auger electron is taken to be −2/r

because the ion is doubly charged after the Auger decay.
The two-electron wave function � can be expressed as

� =
∑
�1,�2

RLS
�1�2

(r1,r2,t)
∑

m1,m2

C
�1�2L
m1m20Y�1m1 (�1)Y�2m2 (�2), (3)

where C�1�2�3
m1m2m3

is a Clebsch-Gordan coefficient, � is the solid
angle, and Y�m(�) is a spherical harmonic. We assume that
the two electrons have zero total angular momentum (L = 0),
and the two electrons have the same angular momentum (�1 =
�2 = �). Then Eq. (3) is simplified as

� =
∑

�

(−1)�√
4π

R�(r1,r2,t)Y�0(cos θ12), (4)

where Y�0(cos θ12) is a spherical harmonic and θ12 is the relative
angle between the two ionized electrons.

The method to extract the photoelectron energy and angular
distributions [Pε1 and Dk(cos θ12)] with the total wave function
� was shown in Ref. [20]. One point that deserves emphasis
is that the angular distribution Dk counts only electrons
with positive energies, and those that are captured to the
bound states during the Auger process are excluded. Below
we describe how to calculate two other physical quantities
[the angular and photoelectron energy distribution (PED)
and the angular momentum distribution for those ionized
photoelectrons P�], which will also be used in the next section.

One quantity is the PED which is a probability distribution
for the photoelectron energy and relative angle. It can be
calculated via

A�(ε1,ε2) =
∫∫

dr1dr2φ
∗
ε1�

(r1)φ∗
ε2�

(r2)R�(r1,r2,t) (5)

and

PED =
∫

dε2

∣∣∣∣∣
�max∑
�=0

(−1)�Y ∗
�0(cos θ12)A�(ε1,ε2)

∣∣∣∣∣
2

, (6)

where 1 and 2 correspond to the photoelectron and Auger
electron, respectively, ε1,2 is positive energy, and φε1,2�(r1,2) is
the eigen wave function for the continuum electron; for the
photoelectron, the continuum wave is for a potential −2/r ,
while for the Auger electron the potential is −1/r .

The other quantity is the angular momentum distribution
for the ionized photoelectrons P�, which can be calculated via

P� =
∫

dε2

∫
dε1|A�(ε1,ε2)|2. (7)

Last, we discuss the approximations used in the TDSE
method. Our results are insensitive to different expressions for
the short-range functions Dφg and F2. −Z/r is the potential
we use in the Hamiltonians. The correlation with other
electrons cannot be neglected when the photoelectron or Auger
electron travels close to the nucleus. We redid our calculations
with the expression −[Z + (Zt − Z) exp(−r/ra)]/r for the
potential instead (ra and Zt are the atomic radius and number,
respectively, ra = 1.66 a.u. and Zt = 36 for Kr). Compared
with the previous results, there are only small changes in the
angular distributions for cases E1 = 0.0 and 0.1 eV and almost
no changes for other cases in this paper. We also suppose
that both emitted electrons start with zero angular momentum.
During the subsequent electron dynamics, the two electrons
have the same angular momentum magnitude because the
total angular momentum (which is zero) is conserved. Due
to the expected complexity, we did not perform calculations
for other total angular momentum values. This approximation
is expected to work well in the chosen system. The small Auger
width means that the photoelectron has a longer time to travel
away from the nucleus before the Auger decay. Meanwhile,
the initial Auger electron energy is not high, which postpones
the strongest interaction between the photoelectron and Auger
electron. The validity of the zero total angular momentum
approximation will be increased if the two electrons meet
far away from the nucleus. Moreover, we focus on those
electrons that remain ionized from the ion, which makes this
approximation more accurate.
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B. Classical-trajectory Monte Carlo method

The TDSE method described above has been proven to
be valid in studying inner-shell photoionization followed by
Auger decay problems [17,20]. However, we apply this method
to the extremely low photoelectron energy region, which is of
particular interest for the scenarios studied here, where the
calculated angular distributions have unusual shapes. Thus it
is desirable to check the results with a completely different
theoretical method. We simulate the process with a CTMC
approach [19].

In our classical simulation, the photoelectron is emitted
from the nucleus at t = 0, with a random energy selected from
a normal distribution exp[−(E − E1)2/2σ 2], where E1 is the
initial photoelectron energy used in the quantum-mechanical
method and σ equals �/2

√
2 ln 2, with a random direction

chosen from flat cos θ and flat φ; the Auger electron is launched
at t = t2, where t2 is chosen from an exponential distribution
� exp(−�t), with a random energy selected from a normal
distribution exp[−(E − E2)2/2σ 2], where E2 is the initial
Auger electron energy used in the TDSE method, with a fixed
direction θ = π/2 and φ = 0. Note that we make the two
electrons propagate from a small radius (0.001 a.u.) to avoid
the infinite Coulomb potential and velocity at the starting point,
and the two electrons’ positions are updated using Newton’s
second law until the relative angle distribution does not change.
The relative angle between the two electrons θ12 is calculated
via cos θ12 = �v1· �v2

v1v2
.

III. RESULTS AND DISCUSSION

The system chosen in this paper is Kr 3d5/2 photoionization
followed by M-NN Auger decay, where � is ∼0.088 eV and
E2 is ∼2 a.u. We will study the photoelectron energy and
angular distributions in this system by changing the photon
energy. The cases included in this paper are E1 = 1.0, 0.5,
0.25, 0.125, 0.1, and 0.0 eV. We first investigate in Sec. III A
the changes to the photoelectron energy distributions, and then
in Sec. III B we consider the changes to the relative angular
distributions.

A. The photoelectron energy distribution

Figure 1 displays the photoelectron energy distribution after
the Auger decay for different initial photoelectron energies.
Figure 1(a) is for cases E1 = 1.0 eV (dot-dashed line), 0.5
eV (dotted line), 0.25 eV (dashed line), 0.125 eV (thin solid
line), and 0.1 eV (thick solid line); Fig. 1(b) is for the
case E1 = 0.0 eV, which needs a greater energy range to
show the complete distribution. For each case, the energy
of the photoelectron might be expected to be symmetrically
centered on the initial photoelectron energy E1 before the
Auger decay [9]. After the Auger decay, the maximum of the
distribution is shifted to smaller energy, and the distribution
becomes asymmetric. As shown in Fig. 1(a), the shift of
the distribution peak is δE = 1.0 − 0.88 = 0.12 eV for the
case E1 = 1.0 eV, δE = 0.5 − 0.33 = 0.17 eV for the case
E1 = 0.5 eV, and δE = 0.25 − 0.05 = 0.2 eV for the case
E1 = 0.25 eV. The peaks for the other three cases are shifted
to the negative energy region; their shifts cannot be calculated
here.
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FIG. 1. The photoelectron energy distributions (normalized by
dividing by the maximum probability in positive energy range) for
cases (a) E1 = 1.0 eV (dot-dashed line), 0.5 eV (dotted line), 0.25 eV
(dashed line), 0.125 eV (thin solid line), and 0.1 eV (thick solid line)
and (b) E1 = 0.0 eV (thick solid line). The arrows point to the energy
with maximum probability, which is 0.88 eV for the case E1 = 1.0
eV, 0.33 eV for the case E1 = 0.5 eV, and 0.05 eV for the case
E1 = 0.25 eV.

This phenomenon is caused mainly by the abrupt change in
the ion’s charge when the Auger decay happens. The increase
in the ion charge reduces the ion potential by 1/r0, where
r0 is the distance the photoelectron travels away from the
nucleus before the Auger electron is launched. Cases with
larger initial photoelectron energy have smaller shifts of the
distribution peak because the lifetime of the intermediate state
is approximately the same for each case and the larger initial
photoelectron energy causes larger r0. Within the same case,
the shift in energy of 1/r0 is smaller if the photoelectron has
larger energy, which can explain why the energy distribution
is broader and asymmetric and why the tail of the left side of
the distribution lasts longer than that of the right side.

The interaction between the photoelectron and Auger
electron also has some influence on the shift of the energy
distribution. The Auger electron will transfer part of its energy
to the photoelectron when it passes by. The stronger the
interaction is, the more energy the photoelectron will obtain.
We have performed calculations for some cases with the same
initial photoelectron energy and Auger width but different
initial Auger energies. The shifts of the distribution peak δE

are not the same, although the energy shifts caused by the
change of the ion charge would be expected to be the same.
The reason is that their e-e interaction strengths are different.
Lower initial Auger energy means that the Auger electron can
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interact with the photoelectron for a longer time; more energy
will be transferred to the photoelectron energy, which makes
the shift δE smaller.

Figures 1(a) and 1(b) also show that a small portion of
photoelectrons are captured to bound states after the Auger
decay if the photoelectron has a relatively high initial energy
E1; however, when E1 becomes smaller, more and more
photoelectrons will stay at bound states. We expect that the
angular distribution profiles of cases E1 = 1.0 and 0.5 eV will
be determined by the strength of the interaction between the
photoelectron and Auger electron and have a normal profile,
while the captured photoelectrons will seriously distort the
angular distributions of the other four cases.

B. The angular distribution discussion

The electron-electron interaction is usually considered the
main factor in determining the shape of the relative angular
distribution. When the two ionized electrons travel in the
same direction, the fast Auger electron will push the slow
photoelectron away by a small relative angle and will pass by.
Thus in the angular distribution, the probability at cos θ12 = 1
is much lower than that of the other relative angular positions,
and the probability at a small nonzero relative angle is higher.
If the two ionized electrons travel with a larger relative angle,
they do not interact significantly with each other, making
the distribution flat at those angular positions. As shown in
Fig. 2, the curves for cases E1 = 1.0 eV (dot-dashed line) and
0.5 eV (dotted line) have the overall features stated above. The
strength of the interaction will change the depth of the hole at
cosθ12 = 1 and the height of the convexity nearby. This is not
the focus of this paper. Instead, we investigate the effects from
those captured photoelectrons, which affect the shape of the
angular distribution when E1 is extremely low.
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FIG. 2. The angular probability distributions calculated by the
TDSE method (normalized by dividing by the maximum probability)
for cases E1 = 1.0 eV (dot-dashed line, shifted up by 5.0), 0.5 eV
(dotted line, shifted up by 4.0), 0.25 eV (dashed line, shifted up by
3.0), 0.125 eV (thin solid line, shifted up by 2.0), 0.1 eV (medium
solid line, shifted up by 1.0), and 0.0 eV (thick solid line). The arrows
point to the angular positions of peak(s), which are cos θ12 = 0.74
for the case E1 = 0.25 eV, cos θ12 = 0.34 and 0.77 for the case E1 =
0.125 eV, cos θ12 = 0.36 and 0.791 for the case E1 = 0.1 eV, and
cos θ12 = 0.3 for the case E1 = 0.0 eV.

Next, we investigate how the capture of the photoelectrons
reshapes the angular distribution. We refer to this factor as
the capture factor below. As shown in Fig. 1, more and
more photoelectrons are captured by the ion as one decreases
the initial photoelectron energy. Correspondingly, the angular
distributions (shown in Fig. 2) are distorted by the capture
factor to varying degrees. The influence of this factor on the
angular distribution appears as a sharpening of the curve at
the angular position with the highest probability or in the
creation of a nearby peak. This phenomenon happens because
the angular distributions shown in Fig. 2 count only the photo-
electrons with positive energy and exclude those captured by
the nucleus which are distributed unevenly over the relative
angular position. The photoelectrons at the angular position
with the highest distribution probability are usually more
energetic because they have strongly interacted with the Auger
electron and have gained more energy. They are unlikely to be
captured to the nucleus, and the possibility for photoelectrons
at other angular position of being captured is high, which
results in one or two sharper peaks at the angular distribution.

We analyze the angular distributions displayed in Fig. 2 in
more detail. For the case E1 = 1.0 eV (dot-dashed line), almost
no photoelectrons are captured by the nucleus. Its angular
distribution has the expected shape. A small part of the pho-
toelectrons is captured for the case E1 = 0.5 eV (dotted line).
The capture factor exerts little influence on the angular distri-
bution, and the shape is close to a standard one. When the initial
photoelectron energy decreases to E1 = 0.25 eV (dashed line),
the angular distribution has a sharp peak in the angular position
near zero relative angle. The capture factor starts to play an
important role in the angular distribution shape. For cases
E1 = 0.125 eV (thin solid line), 0.1 eV (medium solid line),
and 0.0 eV (thick solid line), most photoelectrons do not have
enough energy to ionize. Their angular distributions show that
the probability of a large range of angular position is low
because only a small portion of the photoelectrons escapes the
capture of the nucleus and these electrons are largely centered
around the peak of the distribution. For cases E1 = 0.125 and
0.1 eV, the successfully ionized photoelectrons come from two
sources: one part (component 1) is those with positive energy at
the momentum when the Auger decay happens, and the other
part (component 2) is those with negative energy when the
Auger decay happens that gain enough energy for ionization
from the Auger electron while being passed. These two compo-
nents of the ionized photoelectrons correspond to the two peaks
in their angular distributions. The left peak in the angular distri-
bution is for component 2, and the right one is for component 1.
The reason for this conclusion is as follows. Those photoelec-
trons with negative energy at first will interact with the Auger
electron at a small radius, and they can be pushed to a larger
relative angular position. However, for the photoelectrons with
positive energy at first, the strongest e-e interaction happens
at a larger radius, and the interaction will disappear when the
photoelectrons are pushed to a small relative angle because
the distance between the two electrons is large. We believe the
two sources also exist in cases E1 = 0.25 and 0.0 eV, but only
one peak appears in their angular distributions because the
numbers of ionized photoelectrons from the two sources are
not comparable. Component 1 dominates among the ionized
photoelectrons for the case E1 = 0.25 eV, and most ionized
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FIG. 3. (Color online) The physical quantity PED for cases (top)
E1 = 0.125 eV and (bottom) 0.0 eV.

photoelectrons come from component 2 for the case E2 =
0.0 eV.

Two physical quantities may be helpful in demonstrating
the explanations above. One is the PED, which displays the
distribution of the photoelectron energy and relative angle,
and the other is the angular momentum distribution for those
ionized photoelectrons P�. We show PED for two cases in
Fig. 3; the top panel is for the case E1 = 0.125 eV, and the
bottom panel is for the case E1 = 0.0 eV. The color indicates
the size of the probability. There are two bright spots in the plot
for the case E1 = 0.125 eV and one bright spot for the case
E1 = 0.0 eV, which correspond to two peaks or one peak in
their angular distributions shown in Fig. 2. The main purpose
of this plot is to demonstrate that the photoelectrons with
higher energy are centered on the peak area for which the
capture factor plays an important role in reshaping the angular
distribution.

Figure 4 shows the angular momentum distributions for
the ionized photoelectrons of different cases, which include
E1 = 1.0 eV (red dot-dashed line), 0.5 eV (green dotted
line), 0.25 eV (blue dashed line), 0.125 eV (thin solid line),
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FIG. 4. (Color online) The angular momentum distributions for
the ionized photoelectrons (normalized by dividing by the maximum
probability) of cases E1 = 1.0 eV (red dot-dashed line), 0.5 eV (green
dotted line), 0.25 eV (blue dashed line), 0.125 eV (thin solid line),
0.1 eV (medium solid line), and 0.0 eV (thick solid line). The arrows
point to the angular momentum positions of the second peak, which
are � = 6 for the case E1 = 0.125 eV, � = 7 for the case E1 = 0.1
eV, and � = 4 for the case E1 = 0.0 eV.

0.1 eV (medium solid line), and 0.0 eV (thick solid line). For
all of the cases, the maximum probability in each angular
momentum distribution is at � = 0. This phenomenon is
reasonable because we assume that the photoelectron starts
with zero angular momentum and its angular momentum
remains the same during the following time propagation,
except for interacting with the Auger electron when both
particles are emitted in a similar direction. Figure 4 also
shows that the proportion of the ionized photoelectrons with
high angular momentum is larger in the low E1 cases, which
demonstrates our explanation for the unusual shape in the
angular distribution. For the cases with very low E1, a large
part of those photoelectrons that successfully escape from
the nucleus is due to the strong interaction with the Auger
electron, which leads to the phenomenon that more ionized
electrons are distributed at higher angular momenta. In the
angular momentum distribution, there is a second peak for
cases E1 = 0.0, 0.1, and 0.125 eV. The peak position is at
� = 4 for the case E1 = 0.0 eV, � = 7 for the case E1 = 0.1 eV,
and E1 = 6 for the case E1 = 0.125 eV. There is no regularity
for the position of the second peak, but we can conclude that
cases with lower E1 have a sharper second peak.

We simulate the whole process with a completely different
theory, the classical-trajectory Monte Carlo method. Figure 5
displays the angular distributions for cases E1 = 1.0 eV
(dot-dashed line), 0.5 eV (dotted line), 0.25 eV (dashed line),
0.125 eV (thin solid line), 0.1 eV (medium solid line), and
0.0 eV (thick solid line). The main differences between Figs. 5
and 2 lie in two points. One is that the probability at cos θ12 = 1
is not exactly zero in Fig. 2 for cases with nonzero initial
photoelectron energy; however, it is very close to zero in
Fig. 5. This difference comes from the different descriptions
of particles in quantum and classical mechanics. In quantum
mechanics, electrons are also waves which make it possible
for the two ionized electrons to move in the same direction,
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FIG. 5. The angular probability distributions calculated by the
CTMC method (normalized by dividing by the maximum probability)
for cases E1 = 1.0 eV (dot-dashed line, shifted up by 5.0), 0.5 eV
(dotted line, shifted up by 4.0), 0.25 eV (dashed line, shifted up by
3.0), 0.125 eV (thin solid line, shifted up by 2.0), 0.1 eV (medium
solid line, shifted up by 1.0), and 0.0 eV (thick solid line). The arrows
point to the angular positions of the peak(s), which are cos θ12 = 0.84
for the case E1 = 0.25 eV, cos θ12 = 0.298 and 0.88 for the case
E1 = 0.125 eV, cos θ12 = 0.3 and 0.89 for the case E1 = 0.1 eV, and
cos θ12 = 0.27 for the case E1 = 0.0 eV.

while in classical mechanics the photoelectron has to be pushed
aside and then the Auger electron can pass by. The other
point is that the angular positions of the peaks are slightly
different and the relative heights of the two peaks for the case
E1 = 0.125 eV are different. A possible explanation is that the
captured photoelectrons move in an elliptical orbit in quantum
mechanics, while in our classical theory they oscillate along
the radius.

There are two points that are worthy of note. One is
that the situation with two peaks in the angular distribution
does not always happen. We did not find cases with two

peaks in the angular distribution if they have a large �. A
possible reason is that the ionized photoelectrons from the two
sources are not separated far enough for the short traveling
time before the Auger decay, and components 1 and 2 of
the ionized photoelectrons mix together. The other point is
that the calculations performed in this paper do not consider
reemission of those nonionized photoelectrons, which may
happen during the experiment because the ion may be left
at an excited state and could transfer energy to the captured
photoelectrons to make them ionize. In order to obtain the
angular distribution with similar features shown in Fig. 2,
those reemitted photoelectrons have to be excluded.

IV. CONCLUSIONS

We investigated the scenario of photoionization followed by
Auger decay in the extremely low photoelectron energy region.
The system chosen was Kr 3d5/2 photoionization followed by
M-NN Auger decay in which � is ∼0.088 eV and E2 is
∼2 a.u.. We have performed calculations of the energy and
angular distributions for cases E1 = 1.0, 0.5, 0.25, 0.125, 0.1,
and 0.0 eV. The energy distribution shifts to smaller energies
because of the abrupt decrease in the ion potential. The
shift becomes larger when the initial photoelectron energy is
decreased. For the angular distribution, the capture factor plays
an increasingly important role in the shape of the distribution
with the decrease of the initial photoelectron energy, with a
peaked profile being predicted for very low energy cases.
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