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Linear and circular dichroism in photoelectron angular distributions caused by electron correlation
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Electron correlation can break the symmetry of photoelectron angular distribution upon two-step ionization
to a doubly degenerate ionic state via a doubly degenerate intermediate state. The interference between the
two components of the intermediate state prepared using linearly and circularly polarized light is discussed for
cyclopropane as an example.
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Although electron correlation plays a crucial role in
chemical reactions and bonding [1,2], it is difficult to identify
experimentally. Correlation energy, defined as the difference
between the true energy and the Hartree-Fock energy, cannot
be measured because the latter is a theoretical value estimated
by neglecting the electron correlation. On the other hand, the
occurrence of some electronic transitions, such as the satellite
bands [3–5] and non-Koopmans transitions [6] observed
with photoelectron spectroscopy, manifests the breakdown
of independent electron approximation due to the electron
correlation. Photoionization differential cross sections may
exhibit more details of the electron correlation; for example,
two photoelectrons in double photoionization [7] have been
simultaneously detected to examine the correlation between
two electrons. However, is it always a requirement to observe
two or more electrons to identify electron correlation? It is
noted that the violation of Kepler’s second law is identified
by observing a single planet; therefore, it should be possible
to identify the electron correlation by the observation of a
single electron in photoionization. The aim of this study is to
explore the possibility to detect electron correlation clearly by
the observation of single photoionization.

The theory of photoelectron angular distributions for atoms
and molecules has been developed for many decades [8–18].
However, most applications of these theories have dealt with
nondegenerate electronic states, which is one reason why the
independent electron theory can often predict photoelectron
angular distributions very well. In this study, we consider a
two-step ionization in the perturbation regime as shown in
Fig. 1(a) via a doubly degenerate state to a doubly degenerate
cation state. Let us specify the symmetry of the neutral and
cation states, respectively, by the irreducible representations
(irreps) � and �+, where

|�〉 + hν → |�+〉 + e−. (1)

The point group of the neutral and cation states is assumed
to be the same [19,20]. The symmetry of the ionized (Dyson)
orbital γt [21] must be contained in the direct product � ⊗ �+.

As an example, we consider the photoionization of cy-
clopropane (C3H6) via the 3s (1 1E′) and 3p (2 1E′) Ryd-
berg states to the ground (2E′) state of the cation [22,23].
Cyclopropane belongs to the D3h point group [Fig. 1(b)].
The 3s and 3p Rydberg states are mixed because they
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belong to the same irrep via the electron-electron interaction.
For those states, γt can be a′

1, a′
2, and e′ (i.e., E′ ⊗ E′),

whereas within the single configuration approximation, the
γt of the 3s and 3p Rydberg states, respectively, are a′

1 and
e′ alone. Therefore, the observables that are described by
the interference between γt and γ ′

t ( �= γt ) indicate mixing
of the configuration. The contribution of a′

2 symmetry is
small [22], which is probably ascribed to the a′

2 symmetry
appearing as an f or higher angular momentum state. Here we
consider only the electron correlation for bound states [1,2]
so that interchannel coupling [24] is not included. The strong
orthogonality [25,26] between continuum orbitals and a bound
state wave function is assumed to be preserved.

A general form of photoelectron angular distribution is
given by

I (θ,ϕ) =
∑
L�0

∑
|ML|�L

BLML
YLML

(θ,ϕ), (2)

where YLML
(θ,ϕ) represents the spherical harmonics. The

BLML
coefficients are dependent on the molecular state, light

polarization, and photoionization dynamics [27]. BLML
may

be zero, depending on whether the electron correlation is
taken into account or not. This is clearly different from other
observables, which manifest the electron correlation effects as
deviations from the expected values using the independent
electron approximation. In the following discussion, we
consider the two cases of a molecule fixed in space and an
isotropically distributed molecular ensemble (Table I).

The BLML
coefficients can be calculated from the wave

function of an N -electron eigenstate |�q〉 belonging to an irrep
� and its component q. |�q〉 may be expanded approximately
with (N − 1)-electron states |�+q+〉 and one-electron states
|γtqt 〉. (�+,q+) and (γt ,qt ) are the pairs of an irrep and its
component for the final cation state and the Dyson orbital,
respectively,

|�q〉 =
∑

γt∈�⊗�+

cγt

∑
q+,qt

|�+q+〉|γtqt 〉〈�+q+γtqt |�q〉, (3)

where 〈�+q+γtqt |�q〉 represent the Clebsch-Gordan coeffi-
cients [10,21,28]. The Dyson orbitals are defined as

〈r|�+q+; �q〉 =
∑
γt qt

cγt
〈r|γtqt 〉〈�+q+γtqt |�q〉, (4)

where r represents the spatial coordinates of an electron. This
equation is used to extract the cγt

coefficients from the Dyson
orbitals. For a short probe pulse with a bandwidth larger than
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FIG. 1. (Color online) (a) Two-step ionization scheme from the
ground state �0 to a cation state �+ via an intermediate state �.
The polarization of light for the excitation is linear or circular,
whereas linearly polarized light is assumed for the ionization. (b)
A cyclopropane molecule with molecular frame axes. The z axis is
parallel to the threefold symmetry axis (C3). Typical polarizations
of light for the first and second steps, respectively, are shown by
arrows E1 and E2. LDAD and CDAD represent linear and circular
dichroisms in the photoelectron angular distributions, respectively.

the rotational envelope of an ionization transition, the BLML

coefficients are expressed as

BLML
=

∑
q+

∑
qq ′

∑
γt qt

∑
γ ′

t q
′
t

∑
KQ�p

∑
k2q2

(−1)L−ML

× cγt
cγ ′

t
〈�+q+γtqt |�q〉〈�+q+γ ′

t q
′
t |�q ′〉∗

×
(

K L k2

Q −ML q2

)
ρ

(ν2)
k2q2

A
(q,q ′)
KQ�pb

(γt qt ,γ
′
t q

′
t )

KLk2�p , (5)

where ρ
(ν2)
k2q2

is the state multipole of the ionization laser

light [18]. A(q,q ′)
KQ�p’s describe the molecular axes alignment and

the polarization of a degenerate electronic state. b
(γt qt ,γ

′
t q

′
t )

KLk2�p ’s
represent the generalized anisotropy parameters that are
dependent on the photoionization transition dipole moments
and reflect the symmetry selection rules [18,29,30].

For fixed-in-space molecules, two types of phenomena are
identified in which the specific BLML

’s shown in Table I
are ascribed to electron correlation. These BLML

’s cause
symmetry breaking of the photoelectron angular distributions.
The patterns of symmetry breaking differ with the light
polarization so that these phenomena are distinguished as
LDAD and CDAD. Typical polarizations of light are shown in
Fig. 1(b).

For freely rotating molecules, most of the BLML
’s are

zero, whereas the exception is Im[B2±2] for the CDAD.
The derivation of BLML

’s shown in Table I is given in the
Appendices.

The physical origin of BLML
’s in Table I is the mixing

of different symmetry (irreps) in the generalized anisotropy

parameters b
(γt qt ,γ

′
t q

′
t )

KLk2�p , i.e., (a′
1,e

′) and (a′
2,e

′) for the LDAD
and (a′

1,a
′
2) for the CDAD (Table I). These pairs are related to

the electron correlation, whereas the mixing of (e′
x,e

′
y) for the

CDAD (Table I) is not related. It is noted that the pairs of irreps
in such an interference are different between the LDAD and the
CDAD. Thus, the LDAD and CDAD provide complementary
information on electron correlation.

Let us compare the present two-step scheme for the CDAD
and a conventional scheme for the CDAD [14,15,31]. In the
present scheme, circularly polarized light is used for excitation
and the intermediate state must be degenerate, whereas in the
conventional CDAD scheme, circular polarization is used for
ionization and the intermediate state can be nondegenerate.
The CDADs in both schemes give rise to nonzero Im[B2±2].

We now consider the case for cyclopropane. Calculations
are performed for the S0 equilibrium geometry optimized
using the second-order Møller-Plesset perturbation theory
with the cc-pVDZ basis set [32]. One-electron wave func-
tions are obtained using the state-average complete active
space level calculations with the basis set augmented with
a set of diffuse functions [22]. For continuum states, S-
matrix normalized one-electron wave functions are obtained
by continuum multiple scattering Xα calculations [33,34].
These one-electron functions are used to construct single-
and multiple-configuration wave functions, and then bound-
continuum transition dipoles are obtained using the electric
dipole approximation [35].

Figures 2(a) and 2(d) show the polarization and propagation
directions of laser light for the two-step ionization with
respect to the fixed-in-space molecule. Figures 2(b) and 2(e)
show calculated photoelectron angular distributions for the
3p Rydberg state using a single-configuration wave function,
whereas Figs. 2(c) and 2(f) show those using a multiple-
configuration wave function. These figures illustrate the strik-
ing effects of electron correlation on photoelectron angular
distribution. The threefold symmetry is preserved for the
single-configuration wave function and is independent of the
propagation direction of laser light. In contrast, the threefold
symmetry is broken in the photoelectron angular distributions
for the multiple-configuration wave function. The normalized
coefficients Re[BLML

]/B00 are as large as 0.17 and 0.08 for
(L,ML) = (1,1) and (3,1), respectively, in Fig. 2(c). These
asymmetries are sufficiently large to detect experimentally.
It is noted that the cγt

coefficients are independent of the
photoelectron kinetic energy. Nevertheless, the degree of

TABLE I. Photoelectron anisotropy coefficients for LDAD and CDAD that are induced by the interference of orbitals (γt ,γ
′
t ) in D3h. n and

n′ are integers.

Fixed-in-space molecules Isotropic ensemble of molecules (γt ,γ
′
t )

LDAD BL,3n±1, L + 3n ± 1 = 2n′ (a′
1,e

′),(a′
2,e

′)
CDAD Im[BLML

], L + ML = 2n′ Im[B2,±2] (a′
1,a

′
2),(e′

x,e
′
y)
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FIG. 2. (Color online) Linear dichroism in photoelectron angular
distributions. (a) A cyclopropane molecule and two linearly polarized
laser lights. The arrows indicate the propagation direction of the laser
lights. The electric-field vector for the excitation (ionization) light is
perpendicular (parallel) to the threefold symmetry axis. Molecular
frame photoelectron angular distributions are calculated with (b)
single-configuration (SC) and (c) multiple-configuration (MC) wave
functions of the 3p Rydberg state at a photoelectron kinetic energy
(PKE) of 0.1 eV. (d)–(f) are the same as (a)–(c), respectively, but with
the different propagation direction of laser light. The photon energies
are assumed to be 8.5 and 3.0 eV for hν1 and hν2, respectively.

symmetry breaking is dependent on the photoelectron kinetic
energy (Fig. 3) because at least the Coulomb phases of electron
partial waves vary with the energy [18].

In the case of photoexcitation of an isotropic ensemble
of molecules, the alignment-polarization parameters generally
become time dependent and are dependent on the initial
rotational state distribution. To eliminate this complexity for
the sake of the discussion, we assume that all molecules
are initially in the rotational ground state. In this case,
photoexcitation (1A′

1 − 1E′) produces two degenerate states
(N = 1,κ = ±1), where N and κ denote the molecular
angular momentum and its projection on the molecular C3

FIG. 3. (Color online) Photoelectron angular distributions for
different photoelectron kinetic energies. The molecular and laser
configurations are the same as Fig. 2(a), and the wave function is
the multiple-configuration wave function of the 3p Rydberg state.

symmetry axis. This assumption makes the axis alignment
time independent.

Figures 4(b) and 4(c) show the photoelectron angular
distributions of the two-step ionization via the 3s and 3p

Rydberg states, respectively. The 3s Rydberg state does not
exhibit a CDAD in the single-configuration approximation
as indicated by the red solid line in Fig. 4(b). The nonzero
Im[B22] in Fig. 4(b) arises from electron correlation (blue
dashed line). In this example Im[B22] is the largest at a
photoelectron kinetic energy of 0.3 eV. However, Im[B22] in
Fig. 4(b) is extremely small because a′

2 orbitals play almost no
role in this ionization: The coefficient of ca′

2
= 0.012 is much

smaller than ca′
1
= 0.977 and ce′ = 0.157 for the 3s Rydberg

state. In contrast, the photoelectron angular distribution of the
3p Rydberg state exhibits large left-right asymmetry due to
interference between the e′

x and the e′
y components in Fig. 4(c).

The discussions can be extended with slight modifications
to ionizations from the doubly degenerate to the doubly

FIG. 4. (Color online) Circular dichroism in photoelectron an-
gular distributions. (a) Excitation scheme for the randomly oriented
molecular ensemble. Calculated difference of anisotropy parameter
� Im(B22)/B00 = Im(B left

22 )/B left
00 − Im(B right

22 )/B right
00 for the (b) 3s and

(c) 3p Rydberg states as a function of the photoelectron kinetic
energy. The solid and dashed lines indicate the results for single-
and multiple-configuration wave functions, respectively. The inset of
(b) defines the axes. The excitation laser light is circularly polarized
and propagates along the laboratory Z axis, whereas the ionization
laser light is linearly polarized parallel to the X axis and propagates
in the same direction of excitation laser light. The photon energies
of hν2 are assumed to be hν2 = PKE + IE − hν1 eV, where IE is the
ionization potential of cyclopropane 11.4 eV [23] and hν2 are the
excitation energies for the Rydberg states (7.9 and 8.5 eV for 3s and
3p, respectively).
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degenerate states of most point groups. For C∞v , however,
there is no one-electron function that belongs to σ− (a′

2 in D3h).
Therefore, the CDAD cannot be used to examine the effect of
electron correlation in the 1-2 ionization, for instance.

From an experimental perspective, the photoelectron an-
gular distributions for the fixed-in-space molecules are dif-
ficult to observe, especially for polyatomic molecules. One
possible solution would be molecular adsorption on a solid
surface [36,37]. Although the wave functions for excited
states would be substantially deformed upon adsorption, the
symmetry-breaking phenomena can be observed assuming that
the system, the surface, and a molecule have well-defined
symmetry with degenerate states. Another solution would be
to use the dissociative ionization for linear molecules and
methyl halides [34,38] under the axial recoil approximation.
Our preliminary calculations show that electron correlation
can still cause the symmetry breaking of photoelectron angular
distributions for such an axially averaged system.

To summarize, symmetry breaking in photoelectron angular
distributions upon single photoionization can reveal electron
correlation. As an example, our calculations indicate large
asymmetry in the photoelectron angular distributions upon
photoionization from a doubly degenerate 3p Rydberg state to
a doubly degenerate cation state for a cyclopropane molecule
fixed in space. The weak circular dichroism for the 3s

Rydberg state reflects very weak mixing of a′
2 symmetry.

The interference effects between the components that belong
to different irreps can provide relative phase information
for different electronic configurations, which is useful for
experimental characterization and a deeper understanding of
many-electron wave functions.
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APPENDIX A: NONZERO BL ML FOR CORRELATED WAVE
FUNCTIONS

In this Appendix, we provide a detailed explanation for the
BLML

parameters in Table I. We first consider the excitation
of a molecule fixed in space with either linearly or circularly
polarized light in which the linearly polarized light propagates
perpendicular to the C3 axis, whereas the circularly polarized
light propagates parallel with the C3 axis. In these cases, the
alignment-polarization parameters can be expressed as

A
(q,q ′)
KQ�p = AKQ�pμ(ν1)

q μ
(ν1)∗
q ′ , (A1)

where AKQ�p is an alignment parameter [18,29] and μ(ν1)
q and

μ
(ν1)
q ′ are the coefficients for the superposition of an interme-

diate state μ(ν1)
x |Ex〉 + μ(ν1)

y |Ey〉, which are dependent on the
light polarization for excitation. The sum over q+, q, q ′, qt ,
and q ′

t in Eq. (5) can be performed using μ(ν1)
q and μ

(ν1)
q ′ and

the Clebsch-Gordan coefficients for D3h.

For linearly polarized light, if the electron correlation is
negligible, i.e., γt = γ ′

t , then the sum over q+, q, q ′, qt , and
q ′

t results in an incoherent sum over qt ,

∑
q+

∑
qq ′

∑
qt q

′
t

〈�+q+γtqt |�q〉

× 〈�+q+γtq
′
t |�q ′〉∗b(γt qt γt q

′
t )

KLk2�p μ(ν1)
q μ

(ν1)∗
q ′

= 1

d

(∣∣μ(ν1)
x

∣∣2 + ∣∣μ(ν1)
y

∣∣2)∑
qt

b
(γt qt γt qt )
KLk2�p , (A2)

where �+ = � = E′, d = 1 for γt = a′
1 and a′

2 and d = 2 for
e′. An incoherent sum over qt with equal weights in Eq. (A2)
results in photoelectron angular distributions with threefold
symmetry when the polarization of light for ionization is linear
and parallel to the C3 axis (the proof is provided in the next
section). Hence, the BLML

coefficients with ML = 3n ± 1 (n is
an integer) vanish when the electron correlation is negligible.
On the other hand, the electron correlation gives rise to

additional terms that contain b
(γt qt ,γ

′
t q

′
t )

KLk�p with (γtqt ,γ
′
t q

′
t ) of

(a′
1,e

′
x), (a′

2,e
′
y), (a′

1,e
′
y), and (a′

2,e
′
x). The threefold symmetry

in the photoelectron angular distribution will then be broken
by symmetry mixing of (a′

1,e
′) and (a′

2,e
′), which results in

nonzero BLML
of ML = 3n ± 1. The values of these BLML

’s
are dependent on the polarization of the pump light. Thus, the
electron correlation exhibits LDAD as shown in the second
row of Table I.

For circularly polarized light and without electron correla-

tion, a cross term of e′
x-e′

y, ρb
(e′

x ,e
′
y )

KLk�p is to be added to Eq. (A2)
for γt = e′, whereas the sum is identical to Eq. (A2) for
γt = a′

1 and a′
2. Here, ρ is defined as μ(ν1)∗

x μ(ν1)
y − μ(ν1)

x μ(ν1)∗
y .

An additional term ρb
(a′

1,a
′
2)

KLk�p appears when electron correlation
is strong. The terms depending on ρ indicate the occurrence of
CDAD [12,14,15,31] because the sign of the factor ρ changes
for the left and the right circularly polarized light. Im[BLML

]’s
are not zero if the ionization laser light is linearly polarized
and propagates parallel to the pump light along the C3 axis. In
addition, those generalized anisotropy parameters show that
the circular dichroism is a result of mixing (e′

x,e
′
y) and (a′

1,a
′
2)

(third row of Table I).
For freely rotating molecules, Eq. (A1) cannot be used. The

alignment-polarization parameters are proportional to the state
multipole of ρ

(ν1)
KQ for the excitation laser light [39],

A
(ν1,q,q ′)
KQ�p = a

(q,q ′)
K�p ρ

(ν1)
KQ. (A3)

The coefficients a
(q,q ′)
K�p can be classified into one of the irreps

of the “four” group by the parities of K + p and � [39] as
ee, eo, oe, and oo. The circularly polarized light is described
by the sign of ρ

(ν1)
10 . There are three expansion coefficients

a
(q,q ′)
100 , a

(q,q ′)
110 , and a

(q,q ′)
111 because � and p must be in the

range of 0 � � � K, p = 0 for � = 0 and p = 0,1 for
� > 0. These three a

(q,q ′)
K�p parameters are classified by K + p

and � as oe, oo, and eo, respectively, but not the totally
symmetric ee. Those a

(q,q ′)
K�p can arise from the coherence of

two rotational states created upon the A′
1 → E′ electronic

transition, resulting in nonzero Im[B2±2].
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APPENDIX B: A SYMMETRY PROPERTY OF BL M

1. Selection rules for one-electron wave functions

We assume that φe,x(r,θ,ϕ) and φe,y(r,θ,ϕ) are the one-electron functions that belong to two-dimensional irreps e for molecules
with an n-fold symmetry axis. Because those two functions can be a basis set for the irreps e, they are mutually related by a
rotation operator Ĉn as

Ĉnφe,x(r) = cos ϕnφe,x(r) − sin ϕnφe,y(r),

where ϕn = 2π
n

and r = (r,θ,ϕ) are polar coordinates. The effect of Ĉn on the S-matrix normalized continuum wave function

ψ
(−)
lλ (r; E) [33] is a factor eiλϕn since the Hamiltonian commutes with Ĉn and the function changes by Ĉn from Ylλ(θ,ϕ) to

Ylλ(θ,ϕ + ϕn) at the boundary (r → ∞). E is the photoelectron kinetic energy, and Ylλ(θ,ϕ) is a spherical harmonics with
angular momentum l and its projection on the molecular z axis λ,

Ĉnψ
(−)
lλ (r; E) = eiλϕnψ

(−)
lλ (r; E).

Therefore, we obtain a relation in transition dipole moments I
(γt qt )
lλs (E),

I
(e,x)
lλs (E) = ĈnI

(e,x)
lλs (E) = ei(s−λ)ϕn

∫
ψ

(−)∗
lλ (r; E)rY1s(θ,ϕ)[cos ϕnφe,x(r) − sin ϕnφe,y(r)]d r

= ei(s−λ)ϕn
[

cos ϕnI
(e,x)
lλs (E) − sin ϕnI

(e,y)
lλs (E)

]
,

and, hence,

I
(e,y)
lλs (E) = e−i(s−λ)ϕn − cos ϕn

− sin ϕn

I
(e,x)
lλs (E). (B1)

Similarly, we obtain

I
(e,y)
lλs (E) = ei(s−λ)ϕn − cos ϕn

sin ϕn

I
(e,x)
lλs (E), (B2)

using Ĉ−1
n . When I

(e,x)
lλs �= 0, the following relation must hold:

e−i(s−λ)ϕn − cos ϕn

− sin ϕn

= ei(s−λ)ϕn − cos ϕn

sin ϕn

,

which can be simplified as

s − λ = nN ± 1, N ∈ integer. (B3)

For n = 3, those equations can be summarized as

I
(e,y)
lλs =

⎧⎨
⎩

0, s − λ = 3N,

iI
(e,x)
lλs , s − λ = 3N + 1,

−iI
(e,x)
lλs , s − λ = 3N + 2, N ∈ integer.

(B4)

These relations hold for the irreps e′ and e′′ of the D3h point group as well as e of C3v .

2. Symmetry of small b parameters

The generalized anisotropy parameters [18,29] can be written as

b
(γt qt ,γ

′
t q

′
t )

KLk2�p (E) =
∑
ll′

∑
λλ′

∑
ss ′

√
3[l][l′][L][k2]

(−1)1+s+λ′+K

√
2(1 + δ0�)

(
l l′ L

0 0 0

) ∑
�Lλ2

[(
L K kγ

�L � λγ

)
+ (−1)p

(
L K k2

�L −� λ2

)]

×
(

l l′ L

λ −λ′ �L

)(
1 1 k2

−s s ′ λ2

)
J

(γt qt )
lλs (E)J

(γ ′
t q

′
t )∗

l′λ′s ′ (E), (B5)

where

J
(γt qt )
lλs (E) = i−leiηl (E)I

(γt qt )
lλs (E),
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and ηl(E) is the Coulomb phase. The essential part of the incoherent sum of b
(γt qt ,γ

′
t q

′
t )

KLk2�p (E) over qt for e′ orbitals can be calculated
using Eq. (B4),

J
(e′x)
lλs (E)J (e′x)∗

l′λ′s ′ (E) + J
(e′y)
lλs (E)J (e′y)∗

l′λ′s ′ (E) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s − λ = 3n or s ′ − λ′ = 3n′
0, or (s − λ = 3n ± 1 and

s ′ − λ′ = 3n′ ∓ 1),

2J
(ex)
lλs (E)J (ex)∗

l′λ′s ′ (E), s − λ = 3n ± 1 and
s ′ − λ′ = 3n′ ± 1,

(B6)

where n and n′ are arbitrary integers. From the 3j symbols in Eq. (B5), b
(eqt ,eqt )
KLk2�p(E) becomes zero unless

� = ±(�L + λ2) = ±(−λ + λ′ + s − s ′). (B7)

Combining Eqs. (B6) and (B7), we have ∑
qt

b
(eqt ,eqt )
KLk2�p(E) = 0, � �= 3n. (B8)

Similarly, we can obtain

b
(γt qt ,γt qt )
KLk2�p (E) = 0, � �= 3n (B9)

for γt = a′
1 or a′

2 from Eq. (B5) and I
(a′

j )
lλs = 0 (j = 1,2) for s − λ �= 3N .

3. Anisotropy parameters BL ML

In the single-configuration approximation, Eq. (5) can be written as

BLML
=

∑
q+

∑
qt

∑
KQ

∑
k2q2

∑
�p

(−1)L−ML

(
K L k2

Q −ML q2

)
ρ

(ν2)
k2q2

AKQ�p

(∣∣μ(ν1)
x

∣∣2 + ∣∣μ(ν2)
y

∣∣2)
b

(γt qt ,γt qt )
KLk2�p (E),

where we used Eq. (A1). When the light polarization for ionization is linear and parallel to the C3 axis, the q2 of nonzero ρ
(ν2)
k2q2

is
zero. For the molecules whose xyz axes coincide the laboratory frame XYZ axes [18,29], the alignment parameters are given by

AKQ�p = 2K + 1

8π2

1√
2(1 + δ0�)

[δQ� + (−1)pδQ,−�].

Therefore, we obtain

BLML
=

∑
q+

∑
qt

∑
KQ

∑
k2

∑
�p

(−1)L−ML

(
K L k2

Q −ML 0

)
ρ

(ν2)
k2,0

2K + 1

8π2

1√
2(1 + δ0�)

[δQ� + (−1)pδQ,−�]

× (∣∣μ(ν1)
x

∣∣2 + ∣∣μ(ν2)
y

∣∣2)
b

(γt qt ,γt qt )
KLk2�p (E).

From this equation and Eqs. (B8) and (B9), we obtain that BLML
is zero unless

ML = Q = ±� = ±3n,

i.e., the photoelectron angular distribution has a threefold symmetry.
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