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Fast expansions and compressions of trapped-ion chains
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We investigate the dynamics under diabatic expansions or compressions of linear ion chains. Combining
a dynamical normal-mode harmonic approximation with the invariant-based inverse-engineering technique, we
design protocols that minimize the final motional excitation of the ions. This can substantially reduce the transition
time between high and low trap-frequency operations, potentially contributing to the development of scalable
quantum information processing.
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I. INTRODUCTION

Trapped-ion chains provide currently a leading architecture
to test and develop quantum information processing proto-
cols [1–3]. A toolbox of fundamental ion manipulations is
required to implement the logical operations or simulations.
This comprises procedures to control the ions’ internal
(electronic) and external (motional) degrees of freedom, and
also to couple them together. Such procedures should be not
only feasible but also fast. Achieving high speeds is important
in itself, to allow for more operations per unit time, but it
is also instrumental in suppressing the effects of noise and
decoherence.

Regarding motional control, a number of operations have
been identified as relevant for different scalable trapped-
ion quantum information architectures [4–6], including ion
transport [7–12], and ion-chain splitting and recombination
[10,13–15]. These operations can be performed on single or
mixed-species ion chains [16], allowing for sympathetic ion
cooling or quantum-logic spectroscopy [17].

The physical operation that we consider here is fast control
of the motional frequencies of the trapped ions, which in
the case of multiple ions leads to chain expansions and
compressions. Several elementary protocols benefit from a
high trap frequency, whereas others are better performed with
low frequencies. Therefore, a fast transition between them
without inducing final excitations is a worthwhile goal.

Operations that benefit from high motional frequencies (i.e.,
large potential curvature, small interion distance, and small
Lamb-Dicke parameters) include the following: Doppler laser
cooling, since the mean phonon number is lower for tighter
traps [18]; any operation where a single motional normal
mode (NM) of an ion chain needs to be spectrally resolved,
since the NM frequency splitting is proportional to the trap
curvature [13]; and operations which make use of motional
sidebands and whose fidelity is limited by off-resonantly
driving carrier transitions on the qubit.

On the other hand, operations where a lower motional
frequency is desired include the following: single-ion address-
ing in a multi-ion crystal; resolved sideband cooling, which
cools at a rate proportional to the square of the Lamb-Dicke
parameter [19]; and geometric phase gates [20], which are
faster for larger Lamb-Dicke parameters. In many cases a
compromise will be optimal, depending on the dominant
limitations for a particular experiment.

Fast expansions or compressions without final excitation
have been designed in a number of different ways [21–27].
Invariant-based engineering or scaling methods [24,25]
were realized experimentally for a noninteracting cold-atom
cloud [28] and a Bose-Einstein condensate [28,29]. However,
the methods used rely on single particles, BEC dynamics, or
equal masses, and are not directly applicable to an arbitrary
interacting ion chain. We propose here a method to design
trap expansions and compressions faster than adiabatically
and without final motional excitation. Specifically we define
dynamical normal modes similar to the ones defined for
shuttling ion chains in Ref. [9] and apply invariant-based
inverse-engineering techniques by either exact or approximate
methods.

We first discuss two-ion chains in Sec. II, both for ions
of equal mass, and ions of different mass, and then extend
the analysis in Sec. III to longer chains. In the examples
only expansions of the trapping potential are considered, as
compressions may be performed with the same time evolution
of the spring constant, only time reversed.

II. TWO-ION CHAIN EXPANSION

We will deal with a one-dimensional trap containing an
N -ion chain whose Hamiltonian in terms of the positions {qi}
and momenta {pi} of the ions in the laboratory frame is

H =
N∑

i=1

p2
i

2mi

+
N∑

i=1

1

2
u0(t)q2

i +
N−1∑
i=1

N∑
j=i+1

Cc

qi − qj

, (1)

where Cc = e2

4πε0
, with ε0 the vacuum permittivity. u0(t) is

the common (time-dependent) spring constant that defines the
oscillation frequencies ωj (t)/(2π ) for the different ions in the
absence of Coulomb coupling: u0(t) = m1ω

2
1(t) = m2ω

2
2(t) =

· · · = mNω2
N (t). All ions are assumed to have the same charge

e, and be ordered as q1 > q2 > · · · > qN , with negligible
overlap of probability densities as a result of the Coulomb
repulsion. The potential term V (q1,q2) = H − ∑

i p
2
i /2mi in

the Hamiltonian (1) for two ions is minimal at the equilib-
rium points q

(0)
1 = x0/2, q

(0)
2 = −x0/2, where x0 ≡ x0(t) =

2 3
√

Cc
4u0(t) is the equilibrium distance between the two ions.

Instantaneous, mass-weighted, NM coordinates are defined
by diagonalizing the matrix Vij = 1√

mimj

∂2V
∂qi∂qj

(q(0)
i ,q

(0)
j ) [9].
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The time-dependent eigenvalues are [30]

λ± =
(

1 + 1

μ
±

√
1 − 1

μ
+ 1

μ2

)
ω2

1, (2)

where we have relabeled m1 → m and m2 → μm, and omitted
the explicit time dependences to avoid a cumbersome notation,
i.e., λ± ≡ λ±(t) and ω1 ≡ ω1(t). The time-dependent angular
frequencies for each mode are

�± ≡ �±(t) =
√

λ± =
(

1 + 1

μ
±

√
1 − 1

μ
+ 1

μ2

)1/2

ω1,

(3)

and the eigenvectors corresponding to these eigenvalues are
v± = (a±,b±)T , where

a+ =
⎛
⎝ 1

1 + (
1 − 1

μ
−

√
1 − 1

μ
+ 1

μ2

)2
μ

⎞
⎠

1/2

,

b+ =
(

1 − 1

μ
−

√
1 − 1

μ
+ 1

μ2

)
√

μa+,

(4)

a− =
⎛
⎝ 1

1 + (
1 − 1

μ
+

√
1 − 1

μ
+ 1

μ2

)2
μ

⎞
⎠

1/2

,

b− =
(

1 − 1

μ
+

√
1 − 1

μ
+ 1

μ2

)
√

μa−.

The instantaneous, dynamical normal-mode (mass weighted)
coordinates are finally

q+ = a+
√

m

(
q1 − x0

2

)
+ b+

√
μm

(
q2 + x0

2

)
,

(5)

q− = a−
√

m

(
q1 − x0

2

)
+ b−

√
μm

(
q2 + x0

2

)
.

The quantum dynamics of a state |ψ〉 governed by H in the
laboratory frame may be transformed into the moving frame
of NM coordinates by the unitary operator

U =
∫

dq+dq−dq1dq2|q+,q−〉〈q+,q−|q1,q2〉〈q1,q2|, (6)

where 〈q+,q−|q1,q2〉 = δ[q1 − q1(q+,q−)]δ[q2 − q2(q+,

q−)]. The Hamiltonian in the dynamical equation for
|ψ ′〉 = U |ψ〉 is given by

H ′ = UHU † − i�U (∂tU
†)

=
∑

ν

(
p2

ν

2
− p0νpν + 1

2
�2

νq2
ν

)
, (7)

where cubic and higher-order terms in the coordinates have
been neglected, ν = ±, p± are (mass weighted) momenta
conjugate to q±, and

p0± = −q̇± = 2

3
(−a±

√
m1 + b±

√
m2) 3

√
Cc

4m1ω
5
1

ω̇1 (8)

are functions of time with the same dimensions as the
mass weighted momenta. They appear because of the time
dependence of the NM coordinates through x0, which is a
function of ω1(t). These p0± functions act as momentum shifts
in a further unitary transformation which suppresses the terms
linear in p±,

U = e−i(p0+q++p0−q−)/�,

|ψ ′′〉 = U |ψ ′〉,
H ′′ = UH ′U† − i�U(∂tU†)

=
∑

ν

[
p2

ν

2
+ 1

2
�ν

(
qν + ṗ0ν

�2
ν

)2
]

. (9)

This Hamiltonian corresponds to two effective harmonic oscil-
lators with time-dependent frequencies and a time-dependent
moving center. Note that the “motion” of the harmonic
oscillators is in the normal-mode-coordinate space, and that
the actual center of the external trap in the laboratory frame
is fixed. According to Eqs. (3) and (8) both the NM harmonic
oscillators’ centers (−ṗ0±/�2

±) and the frequencies (�±)
depend on ω1(t). This is important as, to solve the dynamics
for given ω1(t), the oscillators are effectively independent.
However, from an inverse-engineering perspective, their time-
dependent parameters cannot be designed independently. This
“coupling” is here more involved than for the transport of two
ions in a rigidly moving harmonic trap [9], where p0±(t) take
different forms which depend on the trap position but not on
the trap frequency. A different approach is thus required.

The Lewis-Riesenfeld invariants [31] of the two oscillators
are

I± = 1

2
[ρ±(p± − α̇±) − ρ̇±(q± − α±)]2

+ 1

2
�2

0±

(
q± − α±

ρ±

)2

, (10)

where �0± = �±(0). The invariants depend on the auxiliary
functions ρ± (scaling factors of the expansion modes) and α±
(mass-scaled centers of the dynamical modes of the invariant).
They satisfy the auxiliary (Ermakov and Newton) equations

ρ̈± + �2
±ρ± = �2

0±
ρ3±

, (11)

α̈± + �2
±α± = ṗ0±. (12)

Dynamical expansion modes |ψ ′′
n±〉 (not to be confused with

normal modes) may be found. These are exact time-dependent
solutions of the Schrödinger equation and also instantaneous
eigenstates of the invariant [7],

〈q±|ψ ′′
n±〉 = e

i
�

[
ρ̇±q2±
2ρ± +(α̇±ρ±−α±ρ̇±) q±

ρ± ] n(σ±)

ρ
1/2
±

, (13)

where σ± = q±−α±
ρ±

and n(σ±) are the eigenfunctions of the
static harmonic oscillator at time t = 0. Within the harmonic
approximation the NM wave functions |ψ ′′

±〉 evolve indepen-
dently with H ′′. They may be written as combinations of the
expansion modes, |ψ ′′

±(t)〉 = ∑
n cn±|ψ ′′

n±〉 with normalized
constant amplitudes. The average energies of the nth expansion

053411-2



FAST EXPANSIONS AND COMPRESSIONS OF TRAPPED- . . . PHYSICAL REVIEW A 91, 053411 (2015)

mode for two NM are

E′′
n± = 〈ψ ′′

n±|H ′′|ψ ′′
n±〉

= (2n + 1)�

4�0±

(
ρ̇2

± + �2
±ρ2

± + �2
0±

ρ2±

)

+ 1

2
α̇2

± + 1

2
�2

±
(
α± − ṗ0±/�2

0±
)2

. (14)

In numerical examples the initial ground state is, in the
harmonic approximation, of the form |ψ ′′

0+(0)〉|ψ ′′
0−(0)〉, so

the time-dependent energy is given by E′′(t) = E′′
0+ + E′′

0−.
Note that if we impose both unitary operators U (t) and U(t)
to be 1 at t = 0 and tf , the transformed wave function |ψ ′′〉
and the laboratory wave function |ψ〉 will be the same at both
these times and the energy E′′(t = 0,tf ) will be the same as the
laboratory-frame energy. Both unitary transformations satisfy
this provided that ω̇1(tb) = 0, where tb = 0,tf , as long as the
quadratic approximation in the Hamiltonian (9) is valid.

For a single harmonic oscillator without the independent
term in Eq. (12), i.e., with a fixed center, the frequency in a
trap expansion was already inverse engineered in Ref. [25].
For this case we can use the same notation as before but
no subindices for the auxiliary functions. α is zero for all
times, and in the Ermakov equation the conditions ρ(0) = 1,
ρ(tf ) = γ = √

ω0/ωf , and ρ̇(tb) = ρ̈(tb) = 0 suffice to avoid
any excitation (since [H (tb),I (tb)] = 0) and ensure continuity
of the oscillator frequency. Any interpolated function ρ(t)
satisfying these conditions provides a valid �(t). Similarly,
in harmonic transport of an ion (with the trap moving
rigidly from zero to d with a constant frequency [7]) the
auxiliary equation for ρ becomes trivially satisfied by ρ = 1
and, to avoid excitations and ensure continuity, α may be
any interpolated function satisfying α(0) = 0, α(tf ) = d, and
α̇(tb) = α̈(tb) = 0 [7]. Instead of these simpler settings, when
inverse engineering the expansion of the ion chain the auxiliary
equations (11) are nontrivially coupled and have to be solved
consistently with Eq. (12), since �± and p0± are functions
of the same frequency ω1. In other words, only interpolated
auxiliary functions ρ±(t), α±(t) consistent with the same ω1(t)
are valid.

For both NM, we impose for Eq. (11) the boundary condi-
tions (BC) ρ±(0) = 1, ρ±(tf ) = γ , and ρ̇±(tb) = ρ̈±(tb) = 0.
Here ω0 = ω1(0) and ωf = ω1(tf ). The BC for the second set
of equations are α±(tb) = α̇±(tb) = α̈±(tb) = 0. Equation (12)
with Eq. (8) implies that at the boundaries we must have
5
3

ω̇2
1(tb)

w1(tb) − ω̈1(tb) = 0. This is satisfied by imposing ω̇1(tb) = 0
and ω̈1(tb) = 0. Substituting these conditions in Eq. (11) we
finally get the extra BC ρ

(3)
± (tb) = ρ

(4)
± (tb) = 0.

To engineer the auxiliary functions we proceed as follows:
first we design ρ−(t)1 so as to satisfy the 10 BC for ρ−(tb) and
their derivatives. They could be satisfied with a ninth-order
polynomial, but we shall use higher-order polynomials so
that free parameters are left. These may be chosen to satisfy

1We choose ρ− instead of ρ+ since �+ > �−. The effective trap for
the plus (+) mode is thus tighter and less prone to excitation than the
minus (−) mode. Designing first ρ− guarantees that this “weakest”
minus mode will not be excited.

FIG. 1. (Color online) Final excitation energy at tf for the ex-
pansion of two 40Ca+ ions, with respect to the final ground state
(quantum) or the final equilibrium energy (classical). The initial state
is the ground state (quantum) or the equilibrium state (classical) for
the initial trap. The dashed red line is the excitation in the harmonic
approximation, using Eq. (14) for the NM energies, with the protocol
obtained by the shooting method; the solid blue line (classical) and
black triangles (quantum) are for the same protocol but with the
dynamics driven by the full Hamiltonian (1). The dotted green line is
for the protocol (16) with the full Hamiltonian. The parameters used
are ω0/(2π ) = 1.2 MHz and γ 2 = 3.

the equations for the remaining BC for α± and ρ+. ω1(t) is
deduced from the polynomial using Eq. (11) so it becomes
a function of the free parameters. There are different ways
to fix the free parameters so as to satisfy the remaining
BC and design the other auxiliary functions. In practice
we have used a shooting method [32]. The BC used for
the shooting are α±(0) = α̇±(0) = ρ̇+ = 0 and ρ+(0) = 1.
Note that if α±(tb) = 0, then α̈±(tb) = 0 since we impose
ω̇1(tb) = ω̈1(tb) = 0. The differential equations (11) for ρ+(t)
and (12) for α± are now solved forward in time.

In the following one must distinguish between single-
species and mixed-species ion chains. A consequence of
having equal mass ions is that α−(t) is zero at all times (because
the ion chain is symmetric, and thus the center of mass remains
static) so we only have to design the three auxiliary functions
ρ±(t) and α+(t). When both ions are of different species, the
chain is not symmetric anymore, so we also need to design α−
taking into account its BC.

The MatLab function “fminsearch” [32] is used to find the
free parameters that minimize the total final energy for the
approximate Hamiltonian, E′′

0+(tf ) + E′′
0−(tf ); see Eq. (14).

For equal mass ions, an 11th-order polynomial ρ−(t) =∑11
n=0 ant

n/tnf , i.e., two free parameters, is enough to achieve
negligible excitation in a range of times for which the harmonic
approximation is valid. Only two free parameters are needed
to satisfy the BC α+(tf ) = α̇+(tf ) = 0, whereas ρ+(tf ) = γ

is also nearly satisfied for all values of these free parameters
because the evolution of this scaling factor is close to being
adiabatic. ω1(t) is then a function of the free parameters
a10,a11. Figure 1 depicts the final excitation energy for
optimized parameters in the harmonic approximation, using
Eq. (9), and with the full Hamiltonian (1), whereas in Fig. 2
the values of the optimizing free parameters are represented.
The quantum simulations (triangles in Fig. 1) are performed
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FIG. 2. (Color online) Values of the optimizing free parameters
in the two-ion expansion a10 (solid blue line) and a11 (dashed red
line) in the expansion of two 40Ca+ ions starting in the ground state.
ω0/(2π ) = 1.2 MHz; γ 2 = 3.

starting from the ground state of the Hamiltonian (1) at
t = 0, which is calculated numerically. For the corresponding
classical simulations we solve Hamilton’s equations for the
two ions in the laboratory frame with Eq. (1): the excitation
energy is calculated as the total energy minus the minimal
energy of the ions in equilibrium. The initial conditions
correspond as well to the ions in equilibrium. As the potential is
effectively nearly harmonic and the evolution of wave-packet’s
width (ρ±) is close to being adiabatic, the classical excitation
energy reproduces accurately the quantum excitation energy,
as demonstrated in Fig. 1. Quantum calculations are very
demanding, in particular with three or more ions, so that we
shall only perform classical calculations from now on.

For two different ions, we use a 13th-order polynomial
ρ−(t) = ∑13

n=0 ant
n/tnf , which is enough to nearly satisfy

α±(tf ) = α̇±(tf ) = 0 and ρ+(tf ) = γ by finding suitable
values for the four free parameters a10−13. As before, ρ+(tf ) =
γ is nearly satisfied without any special design. Figure 3
shows the final excitation for a chain of two different ions.
The excitation is higher than for equal masses. Both for
the equal mass and different mass expansions, the (exact)
excitation energy increases at short times, where the quadratic
approximation to set the NM Hamiltonians fails; see Figs. 1
and 3. Further simulations indicate that the larger the ratio
between the masses, the higher the excitation.

A less accurate, approximate treatment is based on the
simpler polynomial ansatz ρ− = ∑9

n=0 ant
n without free

parameters,2

ρ− = 126(γ − 1)s5 − 420(γ − 1)s6 + 540(γ − 1)s7

− 315(γ − 1)s8 + 70(γ − 1)s9 + 1, (15)

s = t/tf . While the BC of ρ+ and α± are in general not
accounted for exactly, an advantage of this procedure is that
there is no need to perform any numerical minimization. This

2As in the transport of two ions [9], an alternative ansatz to the
polynomial is ρ−(t) = 1+γ

2 + γ−1
256

∑3
n=1 an cos( (2n−1)πt

tf
), where an =

(−150,25,−3). In numerical calculations the polynomial ansatz (15)
performs slightly better than the cosine-based one.

FIG. 3. (Color online) Final excitation energy for the expansion
of a 9Be+-40Ca+ ion chain (solid blue line) and a 9Be+-40Ca+-9Be+

chain (dashed red line) starting in the equilibrium configuration. The
protocols are optimized with four (for 9Be+-40Ca+) and two (for
9Be+-40Ca+-9Be+) free parameters; see the main text. ω0/(2π ) = 1.2
MHz; γ 2 = 3.

is useful to generalize the method for larger ion chains. For
equal masses, both α− = 0 and ρ−(t) are correctly designed,
so that the center of mass is not excited. From Eq. (11), ω1(t)
is given by

ω1 =
√

ω2
0

ρ4−
− ρ̈−

A2−ρ−
, (16)

where A− = �−/ω1 is a constant; see Eq. (3). In Fig. 1 we
compare the performance of this approximate protocol and the
one that satisfies all the BC in the two-equal-ion expansion.

III. N-ION CHAIN EXPANSION

We now proceed to extend the results in the previous section
to larger ion chains governed by the Hamiltonian (1). The
equilibrium positions can be written in the form [33]

q
(0)
i (t) = l(t)ui, (17)

where

l3(t) = Cc

u0(t)
(18)

and the ui are the solutions of the system

ui −
i−1∑
j=1

1

(ui − uj )2
+

N∑
j=i+1

1

(ui − uj )2
= 0. (19)

The NM coordinates are thus defined as [16]

qν =
∑

i

aνi

√
mj

(
qi − q

(0)
i

)
, (20)

where the NM subscript ν runs now from 1 to N . Conven-
tionally the ν are ordered from the lowest to the highest
frequency [33]. As for two ions we define V (q1,q2,q3, . . . ,qN )
as the coordinate-dependent part of the Hamiltonian (1).
The aνi are the components of the νth eigenvector of the
symmetric matrix Vij = 1√

mimj

∂2V
∂qi∂qj

(q(0)
i ,q

(0)
j ), that, together

with the eigenvalues λν = �2
ν , will usually be determined
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FIG. 4. (Color online) Final excitation vs final times for expan-
sions of two equal ions (solid blue line), four equal ions (red dots),
and eight equal ions (dash-dotted black line). The simulations are
performed according to the approximate protocol in Eq. (16) and by
solving the classical equations of motion for 40Ca+ ions. The initial
ion chain is at equilibrium. ω0/(2π ) = 1.2 MHz; γ 2 = 3.

numerically [33]. They are normalized as
∑

i a
2
νi = 1. As u0

is common to all ions, it can be shown that �ν(t) = Aνω1(t),
where Aν is a constant.

Generalizing the steps leading to Eq. (7), the Hamiltonian
in a NM frame up to quadratic terms becomes

H ′ =
∑

ν

[
p2

ν

2
+ 1

2
�2

νq2
ν + p0νpν

]
, (21)

where the pν are momenta conjugate to the qν , and p0ν =
− ∑

i aνi

√
miq̇

(0)
i . As for two ions, all the p0ν are proportional

to ω̇1/ω
5/3
1 . We now apply the unitary transformation U =

e−i
∑

ν p0νqν/� and find the effective Hamiltonian

H ′′ =
∑

ν

[
p2

ν

2
+ 1

2
�2

ν

(
qν + ṗ0ν

�2+

)2 ]
. (22)

This Hamiltonian is similar to the one for two ions (9). The
corresponding set of auxiliary equations is also similar to
Eqs. (11) and (12),

ρ̈ν + �2
νρν = �2

0ν

ρ3
ν

,

(23)
α̈ν + �2

να = ṗ0ν .

The BC for inverse engineering read ρν(0) = 1, ρν(tf ) = γ ,
ρ̇ν(tb) = ρ̈ν(tb) = 0, and αν(tb) = α̇ν(tb) = α̈ν(tb) = 0. When
introducing the BC for the αν in the set of Newton’s equations,
we get from all of them the same condition ω̇1(tb)

ω1(tb) + ω̈1(tb) = 0,
which is satisfied for ω̇1(tb) = ω̈1(tb) = 0.

Figure 4 depicts the excitation for expansions of single-
species ion chains, with approximate (nonoptimized) protocols
that use Eqs. (15) and (16), but with the lowest-frequency
mode, ν = 1, instead of the minus (−) mode. The longer the
chain, the lower the fidelity of the protocol, as more terms are
neglected in the NM approximation and more boundary condi-
tions are disregarded. However, the protocol still provides little
excitation at long enough final times in the most demanding
simulation that we examined, N = 8. Figure 5 shows the
position of the ions, and the trap frequency along the evolution

FIG. 5. (Color online) Classical trajectories of eight expanding
40Ca+ ions. The evolution is performed according to Eq. (16).
ω0/(2π ) = 1.2 MHz, γ 2 = 3, and tf = 4.4 μs.

time for the eight-ion chain, ending up with a separation
between ions twice as large as the initial one, in times shorter
than 4 μs (Fig. 4) without any significant final excitation.

In Fig. 3 the excitation for an expansion of the two-
species chain 9Be+-40Ca+-9Be+ is depicted. The minimization
technique was used with two free parameters, that is, with an
11th-order polynomial ansatz for ρν=1(t). The excitation is
smaller than for the shorter chain 9Be+-40Ca+ (with a 13th-
order polynomial for ρ−) due to the symmetry in the three-ion
chain, which leaves two of the NM static and unexcited.

IV. DISCUSSION

We have designed fast diabatic protocols for the time
dependence of the trap frequency that suppress the final
excitation of different ion-chain expansions or compressions.
Unlike the simpler single-ion expansion [25], the inverse
design problem of the trap frequency for an ion chain involves
coupled Newton and Ermakov equations for each dynamical
normal mode. We found ways to deal with this inverse
problem by applying a shooting technique in the most accurate
protocols, and effective, simplifying approximations.

These protocols work for process times for which the
quadratic approximation for the Hamiltonian is valid. Longer
and more asymmetric chains need larger times than shorter
and symmetrical ones. The examples show that these times
are compatible with current quantum information protocols, so
many processes may benefit by the described trap-frequency
time dependencies.

The designed protocols provide a considerable improve-
ment in final time and excitation energy with respect to simple,
naive protocols. For the expansion of two 40Ca+ considered
in Fig. 1 we compare in Fig. 6 the excitation energy of the
shooting protocol with two simple protocols that drive the
frequency ω1 linearly,

ω1(t) = ω0 + ωf − ω0

tf
t, (24)

and following a cosine function,

ω1(t) = ω0 + ωf

2
+ ω0 − ωf

2
cos

(
πt

tf

)
. (25)
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FIG. 6. (Color online) Comparison of final excitation quanta (classical simulation as in Fig. 1) vs final time in the expansion of two 40Ca+

ions following the shooting protocol (solid blue), linear protocol in Eq. (24) (dotted green), and cosine protocol in Eq. (25) (dashed red). In
(a) we plot in logarithmic scale up to times where only the shooting protocol reaches the level of 0.1 excitation quanta. In (b) we extend the
analysis up to longer final times, so that the best of the cosine protocol reaches also 0.1 final excitation quanta. ω0/(2π ) = 1.2 MHz; γ 2 = 3.

The simulations are classical, as described in Sec. II.
Figure 6(a) compares the excitations at short times. For
tf ∼ 2.5 μs, the shooting protocol reaches a low excitation
of 0.1 vibrational quanta, four orders of magnitude smaller
than the excitations due to the simple methods. In Fig. 6(b)
the excitations are represented for longer protocol times. The
smoother cosine protocol behaves better than the linear one
and finally reaches an excitation of approximately 0.1 quanta
for tf ∼ 20 μs.
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A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, Xi Chen, and
J. G. Muga, Adv. At. Mol. Opt. Phys. 62, 117 (2013).

053411-6

http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/10.1088/1367-2630/14/9/095024
http://dx.doi.org/10.1088/1367-2630/14/9/095024
http://dx.doi.org/10.1088/1367-2630/14/9/095024
http://dx.doi.org/10.1088/1367-2630/14/9/095024
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1038/35007021
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1103/PhysRevA.83.013415
http://dx.doi.org/10.1103/PhysRevA.83.013415
http://dx.doi.org/10.1103/PhysRevA.83.013415
http://dx.doi.org/10.1103/PhysRevA.83.013415
http://dx.doi.org/10.1103/PhysRevA.88.053423
http://dx.doi.org/10.1103/PhysRevA.88.053423
http://dx.doi.org/10.1103/PhysRevA.88.053423
http://dx.doi.org/10.1103/PhysRevA.88.053423
http://dx.doi.org/10.1103/PhysRevA.90.053408
http://dx.doi.org/10.1103/PhysRevA.90.053408
http://dx.doi.org/10.1103/PhysRevA.90.053408
http://dx.doi.org/10.1103/PhysRevA.90.053408
http://dx.doi.org/10.1103/PhysRevLett.109.080502
http://dx.doi.org/10.1103/PhysRevLett.109.080502
http://dx.doi.org/10.1103/PhysRevLett.109.080502
http://dx.doi.org/10.1103/PhysRevLett.109.080502
http://dx.doi.org/10.1103/PhysRevLett.109.080501
http://dx.doi.org/10.1103/PhysRevLett.109.080501
http://dx.doi.org/10.1103/PhysRevLett.109.080501
http://dx.doi.org/10.1103/PhysRevLett.109.080501
http://dx.doi.org/10.1088/1367-2630/15/2/023001
http://dx.doi.org/10.1088/1367-2630/15/2/023001
http://dx.doi.org/10.1088/1367-2630/15/2/023001
http://dx.doi.org/10.1088/1367-2630/15/2/023001
http://dx.doi.org/10.1088/1367-2630/13/7/073026
http://dx.doi.org/10.1088/1367-2630/13/7/073026
http://dx.doi.org/10.1088/1367-2630/13/7/073026
http://dx.doi.org/10.1088/1367-2630/13/7/073026
http://dx.doi.org/10.1088/1367-2630/16/7/073012
http://dx.doi.org/10.1088/1367-2630/16/7/073012
http://dx.doi.org/10.1088/1367-2630/16/7/073012
http://dx.doi.org/10.1088/1367-2630/16/7/073012
http://dx.doi.org/10.1103/PhysRevA.90.033410
http://dx.doi.org/10.1103/PhysRevA.90.033410
http://dx.doi.org/10.1103/PhysRevA.90.033410
http://dx.doi.org/10.1103/PhysRevA.90.033410
http://dx.doi.org/10.1016/B978-0-12-408090-4.00004-9
http://dx.doi.org/10.1016/B978-0-12-408090-4.00004-9
http://dx.doi.org/10.1016/B978-0-12-408090-4.00004-9
http://dx.doi.org/10.1016/B978-0-12-408090-4.00004-9
http://dx.doi.org/10.1126/science.1114375
http://dx.doi.org/10.1126/science.1114375
http://dx.doi.org/10.1126/science.1114375
http://dx.doi.org/10.1126/science.1114375
http://dx.doi.org/10.1103/RevModPhys.58.699
http://dx.doi.org/10.1103/RevModPhys.58.699
http://dx.doi.org/10.1103/RevModPhys.58.699
http://dx.doi.org/10.1103/RevModPhys.58.699
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1038/nature01492
http://dx.doi.org/10.1088/1742-5468/2009/07/P07013
http://dx.doi.org/10.1088/1742-5468/2009/07/P07013
http://dx.doi.org/10.1088/1742-5468/2009/07/P07013
http://dx.doi.org/10.1098/rspa.2009.0446
http://dx.doi.org/10.1098/rspa.2009.0446
http://dx.doi.org/10.1098/rspa.2009.0446
http://dx.doi.org/10.1098/rspa.2009.0446
http://dx.doi.org/10.1039/B816102J
http://dx.doi.org/10.1039/B816102J
http://dx.doi.org/10.1039/B816102J
http://dx.doi.org/10.1039/B816102J
http://dx.doi.org/10.1088/0953-4075/42/24/241001
http://dx.doi.org/10.1088/0953-4075/42/24/241001
http://dx.doi.org/10.1088/0953-4075/42/24/241001
http://dx.doi.org/10.1088/0953-4075/42/24/241001
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5


FAST EXPANSIONS AND COMPRESSIONS OF TRAPPED- . . . PHYSICAL REVIEW A 91, 053411 (2015)

[27] A. del Campo and M. G. Boshier, Sci. Rep. 2, 648
(2012).

[28] J. F. Schaff, X. L. Song, P. Vignolo, and G. Labeyrie, Phys. Rev.
A 82, 033430 (2010); ,83, 059911(E) (2011).

[29] J. F. Schaff, X. L. Song, P. Capuzzi, P. Vignolo, and G. Labeyrie,
Europhys. Lett. 93, 23001 (2011).

[30] G. Morigi and H. Walther, Eur. Phys. J. D 13, 261 (2001).
[31] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458

(1969).
[32] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,

SIAM J. Optim. 9, 112 (1998).
[33] D. F. V. James, Appl. Phys. B 66, 181 (1998).

053411-7

http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1103/PhysRevA.82.033430
http://dx.doi.org/10.1103/PhysRevA.82.033430
http://dx.doi.org/10.1103/PhysRevA.82.033430
http://dx.doi.org/10.1103/PhysRevA.82.033430
http://dx.doi.org/10.1103/PhysRevA.83.059911
http://dx.doi.org/10.1103/PhysRevA.83.059911
http://dx.doi.org/10.1103/PhysRevA.83.059911
http://dx.doi.org/10.1209/0295-5075/93/23001
http://dx.doi.org/10.1209/0295-5075/93/23001
http://dx.doi.org/10.1209/0295-5075/93/23001
http://dx.doi.org/10.1209/0295-5075/93/23001
http://dx.doi.org/10.1007/s100530170275
http://dx.doi.org/10.1007/s100530170275
http://dx.doi.org/10.1007/s100530170275
http://dx.doi.org/10.1007/s100530170275
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1007/s003400050373
http://dx.doi.org/10.1007/s003400050373
http://dx.doi.org/10.1007/s003400050373
http://dx.doi.org/10.1007/s003400050373



