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Shortcut to adiabatic passage in a waveguide coupler with a complex-hyperbolic-secant scheme
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We propose a directional coupler exploiting the framework of adiabatic passage for two-level atomic systems
with a configuration-dependent complex-hyperbolic-secant scheme. A recently developed Shortcut to Adiabatic
passage method (STA), which uses a transitionless quantum driving algorithm, is applied to the coupler. The
study shows that it is possible to reduce the device length significantly using STA, keeping the efficiency of
power transfer at 100%. This shortcut approach shows much superiority in terms of robustness and fidelity in
power switching compared to the adiabatic approach.
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I. INTRODUCTION

Among the various popular methods in the field of coherent
atomic manipulation, techniques that are based on adiabatic
dynamics, such as rapid adiabatic passage (RAP), stimulated
Raman adiabatic passage (STIRAP), Stark chirped rapid
adiabatic passage (SCRAP), etc., have been studied over a wide
range of issues in contemporary physics [1–3]. These methods
mainly focus on the transfer of population among the atomic
and molecular states efficiently. Many different processes, such
as controlling chemical reactions, laser cooling, and nuclear
magnetic resonance (NMR), were realized both theoretically
and experimentally in the recent past based on adiabatic
dynamics [4–6]. Another set of theories in atomic physics,
namely, transitionless quantum driving [7] and the counter-
diabatic field paradigm [8], has been introduced recently, ac-
cording to which adiabatic processes can be driven beyond the
adiabatic limit without changing the initial and the final states.
These theories enable one to drive a quantum system in in-
finitely short time without losing the robustness of the process.
It is worthwhile to mention that Chen et al. [9] have proposed
a method to speed up the adiabatic passage techniques in the
context of two- and three-level atoms. This method is now
widely termed as Shortcuts to Adiabatic passage (STA).

Past experiences show that many quantum physics concepts
when applied in optics settings can be tested experimentally.
To cite some recent examples include parity-time symmetry
[10], supersymmetry [11], Anderson localization [12], and so
on [13]. Recently, based on the analogies between quantum
mechanics and wave optics, many techniques have been
proposed to manipulate light in various waveguide structures
[13–19]. In this regard, waveguide directional couplers in
integrated optics are particularly interesting owing to its
tremendous practical applications [20,21]. In general, the
function of a waveguide coupler is to split coherently an
optical field incident on one of the input ports and direct
the two parts to the output ports. As the output is directed
in two different directions, couplers are also referred to as
directional couplers [20]. Adiabatic following is applied in
such devices to study the eigenmode evolution of optical power
through the waveguides [22]. For a sufficiently long coupler,
where adiabaticity is satisfied, the system follows its initial
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eigenmode, causing power transfer from one waveguide to the
other. Mode-evolution-based studies of directional couplers
show robust optical power switching between two, three, or
even among an array of waveguides [22–25]. On the flip
side, large device length causes higher transmission loss and
makes designing practical devices difficult. However, there are
significant opportunities to make couplers more efficient and
small in dimension using STA [9,26]. Several new studies in
this regard have been reported recently [27–33]. In this work
we have studied a directional coupler made of two evanescently
coupled waveguides. We propose that these waveguides are
designed in such a way that the waveguide mismatch parameter
� and the coupling parameter κ , defined later in the article,
follows the so-called Allen-Eberly (AE) scheme. It should
be noted that the Allen-Eberly scheme for a pulse-detuning
combination is well established and widely used in atomic
physics [9]. In fact, the AE scheme is better known as the
complex-hyperbolic-secant (CHS) scheme, first proposed by
Lamb, Jr. [34,35]. CHS was applied to NMR before it was used
in the optical domain [36,37]. Later, the scheme was applied to
two-level quantum systems [38,39]. For various adiabatic pro-
cesses the AE scheme is much faster compared to other model
schemes, such as the Landau-Zener scheme [40,41]. This
article is organized as follows. Section II discusses adiabaticity
in the coupler, while in Sec. III we discuss how to apply the
shortcut technique to the proposed coupler. Section IV contains
results and discussions followed by conclusions in Sec. V.

II. ADIABATICITY IN DIRECTIONAL COUPLER

We consider a directional coupler of length 2L consisting
of two single-mode waveguides placed in proximity with
propagation constants β1 and β2. Since we have chosen the
guides in close proximity, coupled mode theory can be used
to predict the power propagation in the coupler. In fact, it
turns out that the prediction of coupled mode theory very
much resembles the Schrodinger equation for two-level atomic
systems [13]. The coupled equation for the modal amplitudes
a1 and a2 of the two waveguides can be written as follows:

i
da1(z)

dz
= �a1(z) + κa2(z), (1)

i
da2(z)

dz
= − �a2(z) + κa1(z). (2)
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Here � = (β1 − β2)/2 represents the mismatch between the
propagation constants and κ is the coupling between the guides
and can be taken to be real without loss of generality. It is easy
to see that in the diabatic basis {aj }, there exists an operator
similar to the Hamiltonian in quantum physics which can be
written as

H =
(

� κ

κ −�

)
. (3)

This Hamiltonian can be diagonalized using unitary trans-
formation to a new basis {Aj}, which is basically the adiabatic
basis, given by

(
A1

A2

)
= U−1

0

(
a1

a2

)
, (4)

where U0 is two-dimensional unitary matrix and can be taken
as

U0 =
(

cos (θ/2) −sin (θ/2)
sin (θ/2) cos (θ/2)

)
. (5)

Here θ is the angle of mixing and is defined as tan θ =
κ(z)/�(z). The transformed Hamiltonian will be

H ′(z) = U−1
0 H (z)U0 − iU−1

0 U̇0, (6)

where the overdot represents the derivative with respect to
z. The second term is regarded as a nonadiabatic correction,
owing to fact that the first term is diagonal itself and can drive
the system adiabatically alone. When the adiabatic criterion,
which can be written as θ̇/2 �

√
(�2 + κ2), is satisfied,

nonadiabatic corrections generally go to zero. For adiabatic
evolution we have followed a coupling-mismatch scheme that
is very similar to the famous Allen-Eberly scheme [9] by

FIG. 1. Schematic for adiabatic directional coupler with Allen-
Eberly scheme. β1 and β2 are propagation constants for waveguide
one and two, respectively. Coupler length is 2L. Maximum of the
coupling occurs at L = 0.

choosing

�(z) = �0 tanh (2πz/L) , (7)

κ(z) = κ0 sech(2πz/L). (8)

The coupling parameter κ (z) changes with the coupler
length 2L and also the mismatch coefficient varies from
−�0 to +�0. With both � and κ being z dependent, the
coupler design results in a tapered structure of the waveguides.
Moreover, the variation of �(z) should be slow enough
to accomplish adiabatic evolution. Also, for the choices in
Eqs. (7) and (8), the adiabatic condition is given by κ0L � π

and hence it demands the coupler length to be large. The
schematic of the proposed coupler is shown in Fig. 1.

III. REALIZING SHORTCUT

For shortcuts, we followed Berry’s algorithm of transi-
tionless quantum driving [7]. Under the circumstances when
the adiabatic criterion cannot be fulfilled, complete power
switching does not occur due to the effect of the nonadiabatic
term in the Hamiltonian. To overcome this we derive a driving
Hamiltonian. The Hamiltonian relevant to our system is simply
given by Ha = i

∑
j |∂zAj 〉〈Aj |, which when transformed

back to the basis {aj }, eventually turns out to be

Ha =
(

0 −iθ̇/2
iθ̇/2 0

)
. (9)

This additional Hamiltonian should be added back to
our original Hamiltonian in order to undo the effects of
nonadiabatic terms, which leads to

Heff =
(

�(z) κ(z) − iκa(z)
κ(z) + iκa(z) −�(z)

)
. (10)

This induces an additional coupling, κa = θ̇/2, with
some phase difference with the original. Also κa should be
comparable with κ because the dynamics with H does not need
to follow the adiabatic condition. However, we can describe it
as a combination of an effective coupling and a phase term:

Heff =
(

�(z) κeff(z)e−iφ

κeff(z)eiφ −�(z)

)
, (11)

where κeff = √
κ2 + κ2

a . Using the following transformation
one can eliminate the phase dependence,

U1 =
(

e−iφ/2 0
0 eiφ/2

)
, (12)

which again provides a new set of basis {A′
j }, and now the

resulting Hamiltonian becomes

Heff =
(

�eff(z) κeff(z)
κeff(z) −�eff(z)

)
. (13)

Here �eff = �(z) − φ̇/2. It is useful to note that {A′
j } is

related with the adiabatic basis {Aj } by two transformations
U0 and U1 via the parameters θ and φ. However, to keep these
bases consistent in terms of the initial and the final states,
certain conditions need to be imposed. θ and φ have to be
adjusted in such a way that {Aj } and {A′

j } become equivalent
at the boundary, which leads to the boundary condition
θ̇ (−L) = θ̇(L) = 0.

053406-2



SHORTCUT TO ADIABATIC PASSAGE IN A WAVEGUIDE . . . PHYSICAL REVIEW A 91, 053406 (2015)

IV. RESULTS AND DISCUSSION

In order to study the power evolution in the coupler we have
numerically solved the master equation [1],

ρ̇ = −i [H,ρ] , (14)

for both Hamiltonians in Eqs. (3) and (13). ρ is the density
matrix with matrix elements ρij = aia

∗
j . Diagonal elements

ρii = |ai(z)|2 represent the power in the ith waveguide, while
the off-diagonal elements refer to the coherence between
the waveguides. Here the dephasing rate 
 has not been
considered, as we have considered the waveguides to be
lossless.

For the adiabatic coupler forms of κ and � are taken as in
Eqs. (7) and (8). The shortcut approach has been achieved by
choosing κa as follows:

κa = κ0 exp
(−z2

/
z2

0

)
. (15)

Here z0 is the width of the Gaussian and is well adjusted with
the varying coupler length so that the boundary conditions for
θ are satisfied at the boundary. Figures 2(a) and 2(b) depict
the spatial variation of the mismatch and coupling parameters
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FIG. 2. (Color online) Spatial variation of (a) mismatch coeffi-
cient � and �eff . � varies from −�0 to +�0, but �eff is greater
towards the ends. (b) Coupling coefficients κ and κeff . Amplitude of
κeff is greater than κ .

FIG. 3. (Color online) Contour plots for output power with vary-
ing κ0 and device length L. Shortcut (left) shows high fidelity over
adiabatic coupler (right).

for the adiabatic and the STA coupler. The geometry of the
coupler depends on the coupling between the waveguides
and mismatch coefficient. Stronger coupling refers to larger
separation distances between the waveguides towards the ends
of the coupler, which indicates a significant decrement in
device length. On the other hand, the extent of tapering of
the coupler is controlled by the mismatch coefficient.

As � goes higher, β1 and β2 tend to change more rapidly
throughout the length 2L. As far as adiabaticity is concerned,
larger κ (z) is preferable for power transfer as it is required
to satisfy the condition κ0L � π . However, that does not
contribute to shortening of the coupler length, whereas in
STA couplers, a significant amount of coupling length can be
reduced with little enhanced coupling. These facts can readily
be seen in Fig. 3, where we have plotted final power output
as a function of device length and the coupling amplitude.
With a particular choice of �0 = 1 mm−1, contours reveals
that for large variation of κ0 a shortcut approach shows
much superiority in terms of robustness and fidelity in power
switching. For any given value of κ0, the minimum distance
required to transfer power between the waveguides with an
adiabatic coupler is much greater, at least two times, than that
of the STA coupler. Figure 4 depicts the spatial evolution of
fractional power, defined as P2(z)/P1(−L), in the coupler. In
our simulation, the input power in the first waveguide is taken
to be unity, i.e., P1(−L) = 1, while the input power in the
second waveguide is kept empty. Other parameters are chosen
as �0 = κ0 = 1 mm−1.

For smaller propagation distance, say z < 4 mm or so, the
fractional power at the second waveguide, using adiabatic
dynamics, never reaches unity. It only shows high transfer
probability at large propagation distances, say z > 10 mm or
so. However, one can achieve nearly 100% power transfer to
the second waveguide using the shortcut approach. Coupling
efficiency calculation also supports our previous results.
Figure 5 illustrates the efficiency of both the adiabatic and
the STA coupler with respect to device length. It is quite
clear from the plot that the STA coupler achieves 100% ef-
ficiency with much shorter distance compared to the adiabatic
coupler. With regard to the practical implementation of the
scheme, one may design or fabricate a silica (SiO2)-based
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FIG. 4. (Color online) Fractional power output vs propagation
distance for �0 = κ0 = 1 (a) for 2L = 4 mm and (b) for 2L =
10 mm.

fiber coupler [20] using the proposed scheme. The effective
coupling coefficient (κeff), which is the most critical parameter
in realizing the proposed waveguide, could be manipulated
with judicious choice of core radius, center-to-center sep-
aration between the waveguides, and the refractive index
difference between the two waveguides. One may choose
the parameter z0 to obtain the effective κeff theoretically.
And then, applying the appropriate mathematical relation
between κeff and the coupler parameters, derivable using the
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FIG. 5. (Color online) Coupling efficiency for adiabatic and STA
coupler with varying device lengths. Parameters are the same as in
Fig. 4.

coupled mode theory, one can decide upon the other coupler
parameters [42].

V. CONCLUSION

In conclusion, drawing inspiration from quantum optics,
we have proposed a directional coupler based on the complex-
hyperbolic-secant scheme. The variation in propagation con-
stants β1(z) and β2(z) (and thereby �) can be achieved by
varying the cross-sectional area of the waveguides along the
direction of propagation. On the other hand, the coupling
parameter κ can be adjusted by controlling the adjacent
distance between the waveguides. The coupler is studied
in the adiabatic regime followed by application of recently
developed shortcuts to the adiabatic passage technique to the
coupler. It turns out that by using shortcuts one can reduce the
length of the coupler significantly, keeping the power transfer
efficiency nearly 100%. This study may open new possibilities
of exploiting the STA and AE schemes for various applications
in integrated optics, specifically within the context of photonic
circuits.
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