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Ionization modulation of H by two time-delayed strong IR pulses
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The ionization modulation of the hydrogen atom is investigated theoretically by the numerical solution to the
time-dependent Schrödinger equation and the strong-field-approximation method. Considering a pair of identical
but time-delayed one-cycle infrared laser pulses, we find that the total ionization yield is modulated by the time
delay between the two pulses. We show that the modulation is mainly due to the interference of electron wave
packets in the continuum states respectively generated by each of the two pulses. In this tunneling regime, we
identify some similarities to and differences from the usual quantum control of electron transition that is in the
perturbation regime. Finally, we also extend our study of ionization modulation to the one-multicycle-laser-pulse
case with different wavelengths in the tunneling regime.
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I. INTRODUCTION

Techniques of generating various shaped laser pulses have
enabled us to control atomic and molecular dynamics, which
is of great importance in physics, chemistry, and biology
[1–6]. Optical and quantum control have been studied using
pulse-shaping technology in the weak-field regime based on
second-order time-dependent perturbation theory. Resonant
and nonresonant multiphoton absorptions are manipulated
by two time-delayed laser pulses, which lead to interference
fringes in the photoelectron spectra and controllable steering
quantum systems from an initial state to a desired final state.
Experimentalists have combined the phase-locked interfer-
ometrically generated pulses with pulse-shaping techniques
to study the interplay of optical and quantum-mechanical
phases in the multiphoton transition [7–11]. The application
of pulse-shaping techniques widely expands the range of
quantum control achievements [12].

The ionization and transition processes are significantly
affected by the temporal profile of the electric field of the
pulse. Therefore, the interference of electron wave packets
in the continuum states generated by the two time-delayed
laser pulses can also be used as a tool to control the excited-
state population and the emitted electron spectrum [13]. The
information about the shaped laser pulse can be extracted from
the electron spectrum [14]. The interference fringes and the
fringe spacing in the photoelectron spectrum are determined by
the time delay of the two laser pulses. In Ref. [10], the phase
effects in a quantum control experiment on the two-photon
transition were studied in detail.

As in strong-field ionization, perturbation theory cannot
provide a useful solution [15]. We can study this part with
the help of the Keldysh theory. When the photon energy is
much smaller than the ionization potential Ip, it can be roughly
divided into multiphoton ionization (γ � 1) and tunneling
ionization (γ � 1) [16], where the Keldysh parameter γ =√

Ip/2Up, with Up being the ponderomotive energy of an
electron in the laser field. In this paper we investigate ionization
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modulation by varying the time delay between two laser pulses
and extend this quantum control to the tunneling regime.
Our results show that the modulation mode is quite similar
to that in the weak field, but the underlying mechanism is
different. The ionization yield is modulated by the interference
of electron wave packets generated by the time-delayed laser
pulses. The modulation amplitude is controlled by the time
delay and the relative carrier-envelope phase between the
two laser pulses and the modulation period is determined
by the ionization potential and the relative carrier-envelope
phase. In our time-dependent Schrödinger equation (TDSE)
calculations, we use both the Coulomb potential and the
Yukawa potential to identify the main modulation mechanism
and to find the roles played by the Coulomb potential. For
shorter wavelengths, we find the effects of the excited states in
the Coulomb potential case [17,18]. We find that the ionization
modulation also exists in the one-multicycle-laser-pulse case
by varying the wavelength in the tunneling regime. The
modulation can be explained by the interference between the
electron wave packets generated in different cycles.

The organization of the rest of this paper is as follows. In
Sec. II the numerical and analytical method are described in
brief. In Sec. III we present our main results and a discussion.
Section IV is a short summary.

II. THEORETICAL METHODS

The method is based on the numerical solution to the TDSE,
whose details can be found in previous work [19–21]. In
this work, the hydrogen in its ground 1s state is exposed to
two time-delayed linearly polarized short laser pulses, with a
combined vector potential given by

AL(t) = ẑAL1(t) + ẑAL2(t − Td)

= ẑA0{fL(t) sin(ωt) + fL(t − Td)

× sin[ω(t − Td) + �CEP]}, (1)

where A0 is the peak value of the vector potential of each pulse,
ω is the carrier frequency, and Td and �CEP are, respectively,
the time delay and the relative carrier-envelope phase between
the two laser pulses. The corresponding electric field is given
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FIG. 1. (Color online) The two time-delayed laser pulses adopted
in this work. As an example, both the vector potential and the electric-
field strength (multiplied by a factor of 10) are shown for two 800-nm
laser pulses at the peak intensity of I0 = 2 × 1014 W/cm2 with a time
delay of 55.3 a.u.

by EL(t) = −∂AL(t)/∂t . The pulse envelope is given by

fL(t) = cos2

(
π

τ
t

)
, (2)

with τ the duration of each pulse, which is taken to be one
optical cycle. In Fig. 1 we show the vector potential and the
electric field for 800-nm laser pulses with a time delay of
55.3 a.u. In the rest of the present work, the peak laser intensity
is taken to be 2 × 1014 W/cm2.

In brief, the TDSE

i
∂

∂t
�(r,t) =

[
−1

2
∇2 + V (r) + p · AL(t)

]
�(r,t) (3)

is numerically solved in spherical coordinates with the
finite-difference method. Two types of atomic potentials are
considered, i.e., V (r) = −1/r for the Coulomb potential
case and V (r) = −Z e−λr

r
for the Yukawa potential case with

Z = 1.91 and λ = 1 to reproduce the ground state energy of
the H atom. The differential ionization probability is calculated
in the same way as in our previous work [21]; the probability
of a photoelectron with an asymptotic momentum k can be
obtained by a projection of the final wave function �(tf ) onto
the scattering states of the field-free Hamiltonian, i.e.,

P (k) = P (k,θ,ϕ) = |〈�−
k |�(tf )〉|2. (4)

For the linearly polarized pulse considered in the present work,
P (k) has an azimuthal symmetry about ϕ. The total ionization
probability can be then calculated by integrating in momentum
space, i.e.,

Ptotal = 2π

∫
P (k,θ,ϕ = 0)k dk dθ. (5)

For the purpose of comparison, we also present the results of
the strong-field approximation (SFA) [22,23], which neglects
the Coulomb potential effects on the electron’s motion after
its tunneling. Within the first order of the SFA, the ionization

amplitude can be given by

MSFA(p) = −i

∫ ∞

−∞
dt

〈
�V

p (t)
∣∣r · EL(t)|�0(t)〉, (6)

where

�V
p (t) = (2π )−3/2 exp

(
i[p + AL(t)] · r

− i

2

∫ t

−∞
[p + AL(t ′)]2

dt ′
)

(7)

is the Volkov state and |�0(t)〉 is the atomic ground state.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we calculate the ionization probability as a
function of the time delay for wavelengths of 600, 800, 1200,
and 1800 nm at the same intensity of 2 × 1014 W/cm2. We
first carry out the calculations for the Coulomb potential case.
To identify the main reasons for the ionization modulation and
to find out the effects of the Coulomb potential, we also carry
out similar calculations using the Yukawa potential, which
only has one bound state. The key point of this paper is to
investigate quantum coherent control using two time-delayed
laser pulses, so we keep the time delay greater than the
laser period to avoid optical interference. Therefore, in the
following, the modulation is shown as a function of the time
delay Td subtracted by the duration of the single pulse τ , i.e.,
Td − τ .

A. Coulomb potential case

We first consider the modulation of the ionization prob-
ability by varying the time delay between two laser pulses
for wavelengths of 600, 800, 1200, and 1800 nm. As the
intensity we use is the same for the four wavelengths, the
Keldysh parameter γ varies from 1 to 0.3. Figure 2 shows that
the ionization probability varies as a function of the shifted
time delay Td − τ . The ionization probability increases with
increasing the wavelength, which is a common feature in
the tunneling regime. For all the cases, the total ionization
probability oscillates as a function of the time delay. For
Figs. 2(a) and 2(b), in which the Keldysh parameters are
larger, the relative modulation is larger and also the shape
is more irregular, which may be due to multiphoton effects.
As we can see, the modulation becomes more regular and
the oscillation period is also more uniform with an increase
of the wavelength. The period of modulation for 1200 and
1800 nm is quite uniform and almost at the same value, which
is about 2π/Ip. The modulation amplitude decreases with an
increase of the wavelength. To get a quantitative comparison
of the constructive or destructive modulation in the two-pulse
case, in each panel of Fig. 2 we show a dash-dotted line
indicating two times of the ionization probability for a single
pulse case. For 600 and 800 nm, we find that the center of
the oscillating modulation is above the blue dash-dotted line,
while it is below the blue dash-dotted line for the cases of
1200 and 1800 nm. These phenomena can be attributed to
the population of Rydberg states in the final states, which is
verified in Sec. III B.
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FIG. 2. (Color online) Modulation of the ionization probability
as a function of the time delay (shifted by τ ), calculated by the
TDSE for the case of the Coulomb potential at a fixed peak intensity
I0 = 2 × 1014 W/cm2 for different wavelengths: (a) 600 nm, γ = 1.0,
(b) 800 nm, γ = 0.75, (c) 1200 nm, γ = 0.50, and (d) 1800 nm,
γ = 0.34.

B. Yukawa potential case and SFA simulations

For a Yukawa potential with the parameters we choose,
there is only one bound state and there are no effects of excited
states or the long-range effects of the Coulomb potential. We
can compare with the Coulomb potential to see the effects
of the excited states in the ionization modulation. With the
same ground state energy, the ionization probability of the
Yukawa potential is much smaller than that of the Coulomb
potential [24]. We repeat the calculations with the same laser
parameters as those in Fig. 2, but for the Yukawa potential case.
In Fig. 3(a) we show the ionization modulation as a function of
the time delay for the 1800-nm case. We notice that the position
of twice the one-pulse ionization probability is just in the center
of the oscillation for the two-pulse case. Comparing this with
Fig. 2, we conclude that the Rydberg states’ population in the
final states impacts the constructive or destructive modulation
globally. In Fig. 3(b) we show the normalized ionization yield
of three wavelengths for the Yukawa potential. We find that, for
all three wavelengths, the modulation periods are the same as
that in the tunneling regime for the Coulomb potential, which
equals 2π/Ip. The modulation shapes of the three wavelength
are all very regular, which tells us that the excited states
affect the modulation in shorter wavelengths for the Coulomb
potential case.
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FIG. 3. (Color online) Ionization modulation for the case of the
Yukawa potential as a function of the time delay between two laser
pulses. (a) The ionization probability (in 10-4) of 1800 nm; (b) The
normalized ionization yield of three wavelength. The laser parameters
are the same as those in Fig. 2.

There is another similarity to the case of the Coulomb
potential, i.e., the modulation amplitude decreases with an
increase of the wavelength. For various time delays, we
show in Fig. 4 the photoelectron energy spectra along the
negative direction of the laser polarization at three different
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FIG. 4. (Color online) Photoelectron energy distribution along
the laser negative polarization direction as a function of time delay
between two laser pulses for the Yukawa potential case for (a)
800 nm, (b) 1200 nm, and (c) 1800 nm.
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wavelengths (the main signal is in this direction [21]).
We notice that the interference fringes become denser with
increasing wavelength and time delay. The modulation ampli-
tude decays with an increase of the time delay and wavelength.
This shows the general relationship between the modulation
amplitude and the density of interference fringes, which has
also been discussed in the context of double ionization of He
by two time-delayed attosecond pulses [25]. The ionization
probability is the integral result of the photoelectron energy
spectra and the amplitude of oscillation is smaller when the
interference fringes become denser. Note that, in our case,
we use the shifted time delay, which is related to the laser
wavelength. Therefore, the dependence of the modulation
amplitude on the wavelength actually comes from different
absolute time delays Td for different wavelengths.

The above conclusion is quite similar to the case of
control of the two-photon absorption induced by two time-
delayed laser pulses using the second-order time-dependent
perturbation theory. In the weak-field regime, the two-photon
transition probability S2 from the ground state |g〉 to the final
excited state |f 〉 can be described as [26,27]

S2 ∝ |aopt(Td) + aQM(Td)|2, (8)

with

aopt(Td) = 2 exp
( − T 2

d /2τ 2
)

exp[−i(ωfgTd/2 + �CEP)] (9)

and

aQM(Td) = 1 + exp[−i(ωfgTd/2 + 2�CEP)], (10)

where ωfg is the transition frequency from the ground state
|g〉 to the final excited state |f 〉 and aopt(Td) and aQM(Td) rep-
resent the optical and the quantum-mechanical contributions,
respectively. In our case, there is only the quantum-mechanical
contribution since we have chosen the time delay Td to be
greater than the single-pulse duration τ , so the optical terms
does not exist. Thus the two-photon transition probability is
periodically modulated by the time delay and the relative
carrier-envelope phase �CEP as described in Eq. (10). For a
given relative carrier-envelope phase, the modulation period is
simply 2π/ωfg.

If we take the continuum state as the final state, the
modulation period of the ionization can be explained by
Eq. (10). However, in the tunneling regime where the laser
field we use is rather strong, the time-dependent perturbation
theory cannot be applied. Nevertheless, the modulation of the
ionization yield is the result of interference of free-electron
wave packets generated by the two time-delayed laser pulses.
If we change the relative carrier-envelope phase �CEP to π ,
the two electron wave packets will have different momentum
distributions at the peak intensity of the laser field and the
time intervals of interference will be different from the case
of �CEP = 0. In this way, the amplitude of the modulation
should be decreased and the period can be changed if we
change the relative carrier-envelope phase by π . For N -photon
ionization in the weak-field case, the phase part in Eq. (10)
should be changed as N�CEP, so the amplitude and period of
the modulation should be the same with �CEP = π . In Fig. 5 we
show the ionization modulation of two relative phases �CEP =
0 and π , taking 1200 nm as an example. The comparison shows
that in the strong-field case, the phenomenon is different from
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FIG. 5. (Color online) Ionization probability modulation for the
Yukawa potential case at two different relative carrier envelope phases
for 1200 nm.

the expectation in the weak-field case, although there are some
similarities.

To seek a qualitative understanding of the interference,
we turn to the SFA. According to the SFA theory, once the
electron has entered the continuum it experiences only the
laser field and not the atomic binding potential anymore. For
the short-range-potential case, it is supposed that the SFA can
give results qualitatively similar to those of TDSE calculations.
We can achieve a physical picture according to the SFA theory.
The electrons generated during the first and second pulses will
have different phases,

eiIpt1e−[iEk(t−t1)+ϕ1] (freed at t1), (11)

eiIpt2e−i[Ek(t−t2)+ϕ2] (freed at t2), (12)

where Ek is the final kinetic energy of the electron and ϕ1 and
ϕ2 represent the phase. When the two electron wave packets
have the same momentum, the total ionization probability I

can be written as

I ∝ |eiIpt1eiEkt1+eiIpt2ei[Ekt2−�ϕ]|2, (13)

where �ϕ = ϕ1 − ϕ2. According to Eq. (13), the ionization
yield is modulated by both the ionization potential and the
electron momentum. The laser field we use is one-cycle
pulses, so the electrons are mainly emitted at the peak of the
laser field where A(t) ≈ 0. According to the purely classical
model [22], the influence of the atomic potential is neglected,
so p = −A(ti). When the relative phase between the pulses is
0, we can assume that the two electrons wave packets that can
interference are generated at the same vector potential of the
two pulses, so t2 = t1 + Td. We choose a representative case
where Ek ≈ 0 to examine. Equation (13) can then be simplified
as

I ∝ |eiIpt1+ei[Ipt2−�ϕ]|2 = 2 + 2 cos(IpTd − �ϕ), (14)

which explicitly indicates that the modulation period of the
ionization yield is 2π/Ip.

When the relative phase is π in Fig. 6(b), the modulation
period is nearly the same for the results of the SFA and TDSE,
but the envelope of the amplitude variation is quite different.
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FIG. 6. (Color online) Comparison of normalized ionization
yields for the Yukawa potential at 1200 nm, calculated respectively
by the TDSE and SFA methods. The total ionization yield is shown,
with the relative phase being (a) �CEP = 0 and (b) �CEP = π .

In this case, the interference time interval is not equal to Td.
The modulation becomes more complex, which is beyond our
model.

C. Ionization modulation in the one-multicycle-pulse case

As the ionization modulation is the result of interference of
electron wave packets generated by two time-delayed pulses,
we can extend the electron wave packet interference from two
single-cycle pulses to one multicycle pulse. For a multicycle
pulse, the electron wave packets generated at each cycle of
the laser field can interference with each other. We expect
that the ionization yield can be modulated by varying the
wavelength.

To verify our assumption, we use an eight-cycle IR pulse
with the wavelength varying from 980 to 1068 nm at a peak
intensity of 2 × 1014 W/cm2. The corresponding Keldysh
parameter varies from 0.62 to 0.56. For comparison, we
have done the calculations for both the Yukawa potential
and the Coulomb potential. The results are shown in Fig. 7.
The ionization probability oscillates as a function of the
wavelength and there are five identifiable peaks in the range
of our calculations. The peak positions are quite close
to each other for the Yukawa potential and the Coulomb
potential.

We can also attribute the modulation to the result of wave
packet interferences between the subpeaks of the laser pulse.
However, the difference from the two-pulse time-delay case is
that there exists an electric field during the time delay between
the two-subpeak ionization. Due to the Stark shift [28], the
ionization potential is changed to I ′

p. According to Eq. (13),
the ionization probability should be changed to

I ∝ |eiI ′
pt1eiEkt1 + eiI ′

pt2ei[Ekt2−�ϕ(λ)]|2, (15)

where �ϕ is a function of the wavelength; for a different
wavelength the shift is also different. If we consider the
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FIG. 7. (Color online) Modulation of the ionization yield as a
function of the wavelength for an eight-cycle sin2 laser pulse
calculated by the TDSE with the Coulomb potential and the Yukawa
potential, respectively. The peak intensity of laser pulse is fixed at
2 × 1014 W/cm2. Results are shown for the (a) Yukawa potential
and (b) Coulomb potential. (c) Also shown is the very-low-energy
(0.01–0.02 a.u.) yield for the Coulomb potential case.

ponderomotive potential Up, where Up = E2
0/4ω2 and E0 is

the field amplitude, the ionization potential with a Stark shift
(I ′

p = Ip + Up) increases with the wavelength. We find that
when I ′

p/ω is an integer, a maximum of the ionization yield
will appear if we neglect the term of �ϕ(λ) in Eq. (15). The
integer numbers at this laser peak intensity for the range of
our calculated wavelength are 25, 26, 27, 28, 29, and 30 and
the corresponding wavelengths are 982, 1000, 1018, 1034,
1050, and 1067 nm. The peak positions are roughly at the
corresponding wavelengths in Fig. 7, but there are still some
discrepancies. Equation (15) shows that the modulation period
is also affected by Ek and �ϕ(λ) in addition to I ′

p. In Fig. 7(c)
we calculate the very-low-energy ionization yield, which is
from 0.01 to 0.02 a.u., and the peak positions are the same
as those of the total ionization yield in Fig. 7(b). In this
way, we can attribute this gap to �ϕ, which stems from
the phase change of the electron wave packet in the laser
field.

In brief, the ionization modulation can also be achieved
by varying the wavelength in one laser pulse in the tunneling
regime. The underlying physical mechanism is related to the
electron wave packet interferences generated in the subcycles
and to the Stark shifted ionization potential changing with the
wavelength.
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IV. SUMMARY

We have theoretically investigated the ionization modula-
tion of H using a pair of identical time-delayed one-cycle IR
pulses in the tunneling regime. The TDSE results using the
Coulomb potential show more complexity than those of the
Yukawa potential because of the existence of the Rydberg state
excitation. As we increase the wavelength, the modulation of
ionization yield with the Coulomb potential is more regular and
gradually approaches the modulation pattern of the Yukawa
potential case. Our numerical results and analysis show that
the ionization modulation is due to the interference of electron
wave packets in the continuum states. We also extend the
modulation of ionization yield to the one-multicycle-pulse

case by varying the wavelength and find that the ionization
modulation also exists due to the interference of electron wave
packets generated in different subcycles of the laser pulse.
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Paulus, and H. Walther, Adv. At. Mol. Opt. Phys. 48, 35
(2002).
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