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Semiclassical analysis of angular differential cross sections for single-electron capture
in 250-eV H+ + H collisions
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A classical model based on the resolution of Hamilton equations of motion is used to determine the angular
distribution of H projectiles following single-electron capture in H+ + H collisions at an incident projectile energy
of 250 eV. At such low energies, the experimental charge-exchange probability and angular differential cross
sections exhibit oscillatory structures that are classically related to the number of swaps the electron experiences
between the target and the projectile during the collision. These oscillations are well reproduced by models based
on quantum mechanics. In the present paper, the angular distribution of H projectiles is determined classically,
at angles varying from 0.1° up to 7°. The variation in intensity due to interferences caused by the indiscernibility
between different trajectories is calculated, and the role of these interferences is discussed.
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I. INTRODUCTION

For many decades, electron capture in ion-atom collisions
has been extensively studied. In particular, the collision system
H+ + H has received a great deal of attention, experimentally
[1–4] and theoretically [5–11], since it is the simplest resonant
system involving two centers and an active electron.

The process to study is written

H+ + H (1s) → H∗ (n) + H+ (1)

where the projectile is, after electron capture, mainly in the
fundamental state (n = 1), or in an excited state (n � 2).

Total capture cross sections σSC have been determined
experimentally with a relative uncertainty of less than 10%,
in a large range of projectile energies (1 keV–10 MeV). From
a theoretical point of view, various models based on quantum
mechanics reproduce the experiment very well [10,12]. Classi-
cal methods have also been used to calculate σSC. At projectile
energies larger than 30 keV, calculations agree well with exper-
iment [13]. At energies smaller than 30 keV, calculated cross
sections remain constant and are of the order of 3×10−16 cm2,
while experimental cross sections increase slowly with de-
creasing projectile energy, to reach ∼1.5×10−16 cm2 at 1 keV.
The discrepancy observed at low energies is due to several
effects, despite improved calculations that describe the quan-
tum electronic density by means of phase-space distributions,
such as the well-known Wigner distribution [14]. One of the
most important effects has been discussed in detail a few
years ago [11]. At very low energies, oscillatory structures
have been evidenced in the impact velocity distribution of
the capture probability [4]. Similar oscillations also appear in
the impact parameter distribution, as well as in the projectile
scattering angle distribution. On a quantum point of view, these
oscillations have been interpreted in terms of interferences
between the main capture and the elastic scattering channels.
Classically, these oscillations were interpreted in terms of
swaps of the electron between the target and the projectile
nuclear centers [11]. When calculations are performed in
one dimension, the classical trajectory Monte Carlo (CTMC)
calculations are able to reproduce the quantum oscillatory

*francois.fremont@ensicaen.fr

behavior of the probability. However, three-dimensional (3D)
CTMC calculations fail to reproduce the quantum calculations.
Indeed, the classical probability is of the order of 0.5 in the
projectile energy range 0.05–1 keV, and the small deviations of
the probability are due, according to the authors, to statistical
uncertainties rather than collisional effects [11].

In the present work, the H+ + H collision system is revisited
for an impact energy of 250 eV. Instead of capture probability,
that has been already studied, we focus attention on the
angular distribution of H atoms after electron capture. First,
in addition to Coulomb potentials between the electron and
the nuclei, a phenomenological potential VH is included, in
order to simulate the Heisenberg uncertainty principle. This
potential, introduced many years ago in nuclear physics [15],
and then in atomic physics [16–18], has been used to mimic
the shell structure of many-electron atoms or molecules and
to avoid either the electrons collapsing onto the nucleus, or
autoionizing. Second, since interferences play a major role at
low impact energy, interferences caused by H atoms that reach
the detector at a given detection angle θd are taken into account
in the calculation. Very recently, a model was constructed,
based on the corpuscular aspect and then on the wave behavior
of electrons, to describe interferences phenomena observed
experimentally in the angular distribution of Auger electrons
following double electron capture in 30-keV He2+ + H2

collisions [19]. The model was able to reproduce, qualitatively
and quantitatively, the experimental results.

In Sec. II, the model is presented. The method used to
represent the collision itself is first described. Since the way to
determine interference contributions has been written in detail
previously, only a brief description is made here. In Sec. III,
calculated angular distributions are shown, and compared,
after normalization, with previous experimental and calculated
results. The role of interferences is discussed.

II. SEMICLASSICAL MODEL

A. Description of the collision

The total Hamiltonian is written (atomic units are used)

H =
2∑

i=1

p2
i

2M
+ p2

e

2
−

2∑
i=1

1
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F. FRÉMONT PHYSICAL REVIEW A 91, 052709 (2015)

In the above expression, �pi and �pe are the momenta of
the protons and the electron, respectively, M is the proton
mass, and �ri and �re characterize the respective positions of the
protons and the electron in the laboratory frame. The repulsive
potential VHi between the electron and one proton is of the
form [20]

VHi = ξ 2
H

4αμr2
ie

exp

{
α

[
1 −

(
riepie

ξH

)4]}
. (3)

In this expression, i refers to the H+ target or projectile, ξH

and α are adjustable parameters, and μ is the reduced mass of
the electron-proton system. The quantities rie and pie are the
relative positions and momenta [20]. The parameters ξH and
α are chosen [16] so that the final electron energy on the H
atom is close to 0.5 a.u. Values for ξH and α are found to be
0.9582 and 4, respectively [20]. Due to this constraint, final
momentum and position distributions of the bound electron do
not resemble the quantum distributions.

The time evolution of the system is given by the following
coupled equations:

dpiα

dt
= − ∂H

driα

,
driα

dt
= ∂H

dpiα

, (4)

where i refers to the three moving particles, and α indicates
the three components of the vectors along the three coordinate
axes.

At t = 0, the projectile is at a distance zp = −500 a.u.
[the (Oz) axis is parallel to the incident beam direction],
and the orientation of the electron around the target is
randomly chosen. The impact parameter b varies from 0 to
8 a.u., and the angle ϕp which characterizes the position
of the projectile in the (xOy) plane, perpendicular to (Oz),
is also randomly chosen. From the initial conditions, the
Hamiltonian equations (4) are numerically solved using the
Runge-Kutta method of order 4, with an adaptive step defined
and described in Ref. [6]. At the end of the collision, the
number of H projectiles that have captured the target electron
is determined as a function of the scattering angle θp. To
obtain good statistics, the number of calculated trajectories
was fixed to 500 000. Integration time was chosen as follows:
Let us call θv

P and θr
P the angles between the incident

beam direction and the final atom velocity �VP and position
�rP , respectively; calculation was ended when the condition
θv
P − θr

P < 0.1◦ was fulfilled (see Fig. 4 of Ref. [19]).
This condition corresponds to an integration time tmax of the
order of 3000 a.u.

B. Determination of the phase shift

The method to calculate phase shifts due to interferences
between different trajectories is similar to that described in
Ref. [18], so that only a brief description is given here. Suppose
two H atoms reach the detector at times t1 and t2 (t1 < t2). The
latter is therefore delayed compared to the first atom, and the
missing distance for the second atom to reach the detector is
δ12, which is easily calculated as a function of the coordinates
and the final angles [18].

The probability that a electron is emitted by Auger effect is
equal to unity. Thus, the amplitude associated with a H atom i

is

Ai (θP ) = e
−iEi

(
tmax− δ1i

vi

)
, (5)

where Ei is the electron kinetic energy, vi is the projectile
velocity at the end of the collision, and δ1i/vi is the phase shift
induced by the delay. The total amplitude A(θd ) at a fixed angle
θP ± 	θP , where 	θP ∼ 0.1 deg is the experimental angular
resolution [4], is the sum of the individual amplitudes Ai .
Finally, the intensity is determined using I (θP ) = |A(θP )|2 =
|∑i Ai(θP )|2.

III. ANGULAR DISTRIBUTION OF H ATOMS

A. Results of the calculation

Figure 1 shows the impact parameter distribution dσC/db

of H atoms after electron capture. This distribution is defined
by

dσC

db
= 2πbPc (b) , (6)

where Pc(b) is the capture probability at a given impact
parameter. The distribution is maximum at b ∼ 3 a.u., which
is coherent with previous calculations performed at higher
projectile energies [21], but smaller than the value of ∼4 a.u.
obtained at 500 eV [22]. As expected [11], no oscillation is
seen.

The total capture cross section σC , obtained by integration
of dσC/db over all the range of impact parameters, is
∼8.9×10−16 cm2, which is smaller than the expected cross
section of about 3×10−15 cm2 evaluated by extrapolation of
previous experimental cross sections [2].

To determine the differential cross section dσC/d�, where
d� is the solid angle as viewed by the detector, it is necessary
to know d�, defined by d� = 2π sin θP dθP as a function of
the impact parameter. Figure 2 shows the dependence of b with
θP , resulting from the present calculation.

In contrast with what happens in a two-body problem,
there is no biunivocal relation between the two quantities

FIG. 1. Calculated differential cross section dσC/db as a function
of the impact parameter b following electron capture in 250-eV H+ +
H collisions. The total capture cross section is obtained by integration
of dσC/db over b.
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FIG. 2. (Color online) Impact parameter b as a function of
projectile scattering angle θP (open circles), calculated for 250-eV
H+ + H collisions. The red dashed curve is the result of the
calculation in two-body collisions.

(a biunivocal relation would give rise to the red dashed curve
shown in Fig. 2). As an example, for θP = 4 deg, b varies from
0.63 a.u. up to 1.6 a.u. Therefore, the well-known formula
dσC

d�
= b

sin θP
| db
dθP

| cannot be used, because the quantity db/d�

is not defined.
Hence b has to be replaced, at a given detection angle θd , by

an impact parameter distribution f (b) = NC(b)/Ntot(b), where
NC(b) is the number of captured electrons and Ntot(b) is the
total number of electrons involved in the collision. Finally, the
differential cross section becomes

dσC

d�
= 1

sin θP dθP

∫
bf (b) db. (7)

In this expression, for a given value of θP , b varies from bmin

to bmax.
The classical results for dσC/d� are presented in Fig. 3 for

scattering angles varying from 0.05° up to 7°. In Figs. 3(a)
and 3(b), the dashed black curve is the result of the calculation
if the relation dσC

d�
= b

sin θP
| db
dθP

| is used. The blue squares in
Fig. 3(a) result from the classical calculation using relation (7).
In contrast with the previous curve, series of maxima, depicted
by blue arrows, and minima are visible, and located at
scattering angles of about 1°, 2.4°, 4°, and 5°. It is noted
that the presence of maxima and minima is not due to a
lack of statistics, except at angles larger than ∼5.5°. As a
first conclusion, to get evidence for oscillations, observed by
smoothing the calculation (blue curve), taking into account the
impact parameter distribution is found to be necessary.

When interferences between capture pathways are intro-
duced, by applying the method described in Sec. II B and
also in details in Ref. [19], the oscillations are also observed
[red squares in Fig. 3(b)], with a larger amplitude than that
observed in Fig. 3(a). Series of maxima and minima are now
clearly evidenced [red arrows in Fig. 3(b)]. In addition to
maxima located at 1°, 2°, 4°, and 5°, an additional maximum is
seen at ∼0.5°.

FIG. 3. (Color online) Differential cross section dσC/d� as a
function of the scattering angle θP calculated with the present model.
Dashed line: calculation using the simple formula dσC

d�
= b

sin θP
| db

dθP
|;

blue curve and open squares: calculation using relation (7), without
inclusion of interferences; red curve and open squares: calculation
using relation (7) including interferences.

B. Comparison with previous experimental
and theoretical results

To go further in the details of the present analysis, our
results have to be compared with existing experimental and
theoretical results. In Figs. 4(a) and 4(c), experimental angular
distribution is represented (full black circles and short-dashed
curve) for angles ranging from 1.5° to 7° [4]. The cross
section oscillates, and maxima are located at ∼2.5° and 4.2°.
Theoretical angular distributions originating from quantum
mechanics [23] are shown in Figs. 4(b) and 4(d) (empty circles
and dashed curves). The theory gives evidence for strong series
of maxima and minima. It is noted that the blue curve is
normalized to experiment at the arbitrary angle of 1.5°.

We first focus our attention on the present calculation that
neglects the interferences between the capture pathways (blue
curve on the left side of Fig. 4). The slope of the curve is in good
agreement with experiment. Moreover, the position of the max-
ima (2.5°, 4.2°), as well as the amplitude of the oscillations,
are coherent with that found experimentally. In contrast, the
oscillation amplitude originating from the classical calculation
is much smaller than that found with the quantum mechanics
model. This result is not surprising since the latter model takes
into account the interferences. Despite the dramatic difference
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FIG. 4. (Color online) Differential cross section dσC/d� as a function of the scattering angle θP . Blue curve and open squares: calculation
using relation (7), without inclusion of interferences (a, b); red curve and open squares: calculation using relation (7) including interferences
(c, d). The present results are compared to previous experiment [4] and quantum calculation [23].

FIG. 5. (Color online) Differential cross section dσC/d� as a
function of the scattering angle θP , calculated with the present model,
for electron capture (black curve) and elastic scattering (blue curve).
The angular range is 0°–7°. The cross section for electron capture is
calculated with the simple formula dσC

d�
= b

sin θP
| db

dθP
|.

between both calculations, the position of the maxima is found
to be similar in both cases, except when θd is larger than 4.5°.

When interferences are included in our calculations, sur-
prisingly, the agreement is better when comparing with the
quantum calculation [Fig. 4(d)]. Again, the slopes of both
curves are close to each other. In addition, some maxima and
minima coincide remarkably well, especially at angles smaller
than 1° and between 2.5° and 4.5°. While discrepancies exist,
the amplitudes of the oscillations are of the same order of
magnitude, except at angles larger than 5°.

At present, only capture transitions have been taken into
account to determine interference pattern. In principle, one
would have to also incorporate direct scattering. However,
as seen in Fig. 5, the number of events that contribute to
direct scattering is maximum at angles close to 80° (inset in
Fig. 5), but much smaller than that to electron capture at angles
smaller than 7°. Therefore, the role of direct scattering on the
interference pattern is expected to be negligible.

IV. CONCLUSION

A three-body classical model has been developed and
applied to discuss the role of interferences in 250-eV H+ +
H collisions. First, total capture cross section has been
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determined, and is found to be smaller than the recommended
cross section by a factor of ∼3. Then, differential cross section
dσC/d� for electron capture has been calculated, including (or
not) interferences, and compared with previous experiment [4]
and theoretical results based on quantum mechanics [23]. In
contrast with impact parameter distribution, angular distribu-
tion clearly exhibits oscillations, whose amplitude increases
when interferences are taken into account. Surprisingly, while
the absence of interferences in the calculations gives rise
to cross sections that are very similar to that found experi-
mentally, the inclusion of interferences fails to reproduce the
experiment, but is in qualitative agreement with the quantum
theory.

Therefore, the interpretation of oscillations in the angu-
lar distribution of H atoms following electron capture is
questionable. Classically, the oscillations are related to the

number of swaps the electron experiences between the target
and the projectile centers during the collision. In quantum
mechanics, the oscillations originate from the interference of
two different collisional paths. Both interpretations, in view of
our calculations, are reasonable.

For a deeper understanding of the phenomenon, more
calculations would be necessary. In particular, analysis of the
evolution of the angular distribution with the projectile velocity
is required.

ACKNOWLEDGMENTS

The author is grateful to Professor C. Dufour (CIMAP,
Caen) and Professor O. Juillet (LPC, Caen) for helpful
discussions about analogies between classical and quantum
interpretations.

[1] C. F. Barnett and H. K. Reynolds, Phys. Rev. 109, 355 (1958).
[2] W. L. Fite, R. F. Stebbings, D. G. Hummerp, and R. T.

Brackmann, Phys. Rev. 119, 663 (1960).
[3] G. W. McClure, Phys. Rev. 148, 47 (1966).
[4] J. C. Houver, J. Fayeton, and M. Barat, J. Phys. B: At. Mol.

Phys. 7, 1358 (1974).
[5] I. M. Cheshire, Phys. Rev. 138, A992 (1965).
[6] R. Abrines and I. Percival, Proc. Phys. Soc. 88, 861 (1966).
[7] S. K. Knudson and W. R. Thorson, Can. J. Phys. 48, 313

(1970).
[8] R. McCarroll and R. D. Piacentini, J. Phys. B: At. Mol. Phys. 3,

1336 (1970).
[9] D. J. W. Hardie and R. E. Olson, J. Phys. B: At. Mol. Phys. 16,

1983 (1983).
[10] L. F. Errea, C. Harel, C. Illescas, H. Jouin, L. Mendez, B. Pons,

and A Riera, J. Phys. B: At. Mol. Phys. 31, 3199 (1998).
[11] P. Botheron and B. Pons, Phys. Rev. A 83, 062704 (2011)
[12] E. O. Alt, A. S. Kadyrov, and A. M. Mukhamedzhanov,

Phys. Rev. A 60, 314 (1999).

[13] R. E. Olson and A. Salop, Phys. Rev. A 16, 531 (1977).
[14] E. P. Wigner, Phys. Rev. 40, 749 (1932).
[15] L. Wilets, E. M. Henley, M. Kraft, and A. D. Mackellar,

Nucl. Phys. A 282, 341 (1977).
[16] C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980).
[17] J. S. Cohen, Phys. Rev. A 51, 266 (1995).
[18] A. Dubois, J. Caillat, J. P. Hansen, I. Sundvor, F. Frémont, P.

Sobocinski, J.-Y. Chesnel, R. Gayet, J. Fu, M. J. Fitzpatrick,
W. F. Smith, and J. F. Reading, Nucl. Instrum. Methods Phys.
Res., Sect. B 241, 48 (2005).
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