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Influence of a surface in the nonretarded interaction between two atoms
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In this work we obtain analytical expressions for the nonadditivity effects in the dispersive interaction between
two atoms and a perfectly conducting surface of arbitrary shape in the nonretarded regime. We show that this
three-body quantum-mechanical problem can be solved by mapping it onto a two-body electrostatic one. We
apply the general formulas developed in this paper in several examples. First we rederive the London interaction
as a particular case of our formalism. Then we investigate other interesting examples, such as the setup where
two atoms lie inside a plane capacitor. Here we show that the nonadditivity is strikingly manifest since the planes
lead to an exponential suppression of the interaction of the atoms. As a last example we deal with two atoms
in the presence of a sphere, both grounded and isolated. We show that for realistic experimental parameters the
nonadditivity may be relevant for the force in each atom.
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I. INTRODUCTION

One of the most interesting features of the van der Waals
dispersive interactions is their nonadditivity [1–5], pointed out
for the first time in [6] (for a pedagogical exposition see [7]).
It means that the interaction between three bodies does not
follow from the superposition principle or, equivalently, that
the presence of a body influences the interaction of others.
Although such effects have been known for many decades,
their consequences are not yet fully uncovered. One of the
fertile subjects that is being explored is the so-called Efimov
quantum state [8], in which a resonant two-body force between
identical bosons can produce bound states in a three-body
system even if there is not any corresponding two-body bound
state. The utilization of Feshbach resonances in ultracold-atom
systems has allowed for an experimental probe of the Efimov
states [9–11]. These are part of a larger program dedicated
to the study of universal properties of few-body systems with
a large scattering length [12–15]. It is also well known that
the interaction between two Rydberg atoms can inhibit all
but a single collective Rydberg excitation, a phenomenon
called dipole blockade [16,17]. It has recently been shown
that the inclusion of a third Rydberg atom can break the dipole
blockade [18] due to nonadditivity effects.

Another very interesting consequence of nonadditivity is
the (possibly strong) modification of the dispersion interac-
tions between two or more atoms in the vicinities of macro-
scopic bodies. In [19] it was shown that the dispersive force
between two atoms is greatly enhanced in the vicinity of a one-
dimensional transmission line, while in [20–22] the influence
of a magnetodielectric body in the interaction between atoms
was studied. Moreover, there are numerous papers in the lit-
erature dedicated to the investigation of nonadditivity [23–26]
in simple systems, with the three-atom problem actually being
present in some textbooks [4,5]. Unfortunately, due to major
calculational difficulties, the setups involving macroscopic
bodies are rarely analyzed. A method developed by Eberlein
and Zietal [27] enables us to evaluate the nonretarded disper-
sive interaction between one atom and a perfectly conducting
surface of arbitrary shape, requiring only the knowledge of a
classical Green’s function that can be obtained from an elec-
trostatic problem. This method has been applied in a variety of

interesting problems [28–32] and in this paper we generalize
it in order to obtain an analytic expression for the influence of
a perfectly conducting surface on the nonretarded dispersive
interaction between two atoms. As a particular case we show
that in the absence of surfaces we recover the well-known
interaction between two atoms, namely, London’s formula.

This paper is organized as follows. In the next section
we generalize Eberlein and Zietal’s method to include a
second atom in the system. We then identify the general
expression for the nonadditivity term and show how it is
related to an electrostatic problem of a single charge in the
presence of the conducting body. In Sec. III we evaluate the
influence of a surface on the interatomic interaction and in
Sec. IV we analyze some examples. First we reobtain the
interaction energy for two atoms in the presence of an infinite
conducting plane. Then we investigate nonadditivity effects in
the dispersive interaction between two atoms placed inside a
parallel mirror cavity. This example is relevant experimentally
[33] and we show that the nonadditivity effects are readily
perceivable, leading to an exponential suppression of the van
der Waals force between the atoms, provided they are kept
apart by distances of the order of the separation between the
plates or larger. A similar exponential attenuation was also
obtained in [34] in the retarded regime for atoms inside a
rectangular box. As a last example we present the calculation
of two atoms in the presence of a conducting sphere, both
grounded and isolated. We summarize in Sec. V.

II. INTERACTION ENERGY FOR TWO ATOMS AND
A CONDUCTING SURFACE

In the nonretarded regime the electromagnetic field does
not have to be quantized. Therefore, the interaction of an atom
and a surface, which is usually dealt with within a quantum
electrodynamics framework, can instead be approached by
standard quantum-mechanics techniques, where the interac-
tion Hamiltonian to be used in perturbation calculations is
given by the instantaneous Coulomb interaction [35]. The
convenience of the Eberlein-Zietal procedure consists in the
mapping of a quantum-mechanical problem onto an electro-
static one, allowing us to solve the nonretarded interaction in
the simpler electrostatic domain.
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Let us begin by considering two atoms A and B at
positions rA and rB , respectively, in the presence of a grounded
perfectly conducting surface S. The electrostatic energy of the
configuration is given by

U = 1

2

∫
ρ(r)�(r)d3r, (1)

where ρ(r) is the charge distribution and �(r) is the electro-
static potential, which satisfies the Poisson equation

∇2�(r) = −ρ(r)

ε0
(2)

and vanishes at surface S. The solution of Eq. (2) can be
written in terms of the Green’s function

�(r) = 1

ε0

∫
G(r,r′)ρ(r′)d3r′, (3)

where G(r,r′) is the solution of the differential equation

∇2G(r,r′) = −δ(r − r′), (4)

subjected to the boundary condition

G(r,r′)|r∈S = 0. (5)

By substituting Eq. (3) into Eq. (1), we write the electrostatic
energy as

U = 1

2ε0

∫
d3r d3r′ρ(r)G(r,r′)ρ(r′). (6)

An immediate particular solution of Eq. (4) is 1/4π |r − r′|
which, however, does not obey the boundary condition (5).
This suggests a decomposition of our Green’s function in the
form

G(r,r′) = 1

4π |r − r′| + GH (r,r′), (7)

where GH satisfies the Laplace equation ∇2GH = 0 with the
boundary condition[

1

4π |r − r′| + GH (r,r′)
]

r∈S

= 0. (8)

The equations obeyed by GH are analogous to those satisfied
by the potential �i(r) generated by the appropriate image
charges in the electrostatic problem of a charge q at position r′
in the presence of a perfectly conducting surface S. If we solve
this electrostatic problem we will get GH from the relation

GH (r,r′) = ε0�i(r)

q
. (9)

The variable r′ is implicitly present in �i(r) since the image
charges depend upon the position r′ of the source charge.
As it will become clear, GH is the only function that must
be calculated in order to evaluate the nonadditivity effects of
our problem. Therefore, this method enables us to effectively
replace a quantum-mechanical problem of two atoms in the
presence of a conducting body by an electrostatic one of
a single charge in the presence of the conducting body.
To proceed further we must specify the charge distribution
ρ(r) appearing in Eq. (6). We model each atom, in a first
approximation, as an electric point dipole, which we denote

by d. Hence, the charge distribution is given by

ρ(r) = lim
hA→0

qhA=dA

q[δ(r − (rA + hA)) − δ(r − rA)]

+ lim
hB →0

qhB =dB

q[δ(r − (rB + hB)) − δ(r − rB)]

=: ρA(r) + ρB(r), (10)

where the limit hA(B) → 0 must be taken while keeping
qA(B)hA(B) constant and equal to dA(B). Note that the surface
charges induced on the conductor do not contribute to the
electrostatic energy (6) since G vanishes at the surface [36].
In the following we write the electrostatic energy of two
point dipoles in the presence of a conducting surface. This
allows us to write the quantum Hamiltonian interaction for two
atoms and a conducting surface by promoting d to a quantum
operator. Substituting the decomposition (7) and Eq. (10) into
Eq. (6) we obtain

U = 1

2ε0

∫
[ρA(r) + ρB(r)]G(r,r′)[ρA(r′) + ρB(r′)]d3r′d3r

=: UA + UB + Ucrossed, (11)

where

Ui = 1

2ε0

∫
ρi(r)G(r,r′)ρi(r′)d3r′d3r, (12)

with i = A,B, and

Ucrossed = 1

ε0

∫
ρA(r)G(r,r′)ρB(r′)d3r′d3r. (13)

To obtain this last equation we used that G(r,r′) = G(r′,r),
whose validity follows from Green’s identity [37]. Since the
Green’s function is the same in the case of one atom or two
atoms, Ui represents the interaction energy between point
dipole i and the surface S in the absence of the other dipole
[38]. To unveil the physical meaning of UAB let us employ the
decomposition (7)

Ucrossed = 1

ε0

∫
ρA(r)ρB(r′)
4π |r − r′| d3r′d3r︸ ︷︷ ︸

UAB

+ 1

ε0

∫
ρA(r)GH (r,r′)ρB(r′)d3r′d3r︸ ︷︷ ︸

UABS

. (14)

The first term on the right-hand side of Eq. (14), UAB , does
not depend on the surface. It describes the interaction between
two point dipoles in vacuum. The last term UABS depends
conjointly on both dipoles and the surface. Therefore, the
complete interaction energy can be written as

U = UA + UB + UAB + UABS. (15)

We see at once one positive aspect of this formalism: It enables
us to study separately the so-called nonadditivity of dispersive
forces, which is totally contained in the last term. Substituting
Eq. (10) into Eq. (12), performing a Taylor expansion, and
discarding divergent self-interaction terms, we obtain

UA = 1

2ε0
(dA · ∇′)(dA · ∇)GH (r,r′)|r=r′=rA

,

UB = 1

2ε0
(dB · ∇′)(dB · ∇)GH (r,r′)|r=r′=rB

,

(16)
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which in turn allows us to retrieve the Eberlein-Zietal formula
for the interaction of a single atom with a conducting surface
[27] as a particular case. Similarly, UAB and UABS are given
by

UAB = 1

ε0
(dB · ∇′)(dA · ∇)

1

4π |r − r′|
∣∣∣∣
r=rA,r′=rB

,

(17)

UABS = 1

ε0
(dB · ∇′)(dA · ∇)GH (r,r′)

∣∣∣∣
r=rA,r′=rB

.

Until now, we have been working within classical electrostat-
ics. The passage to the corresponding quantum-mechanical
problem is made by promoting d to an operator in
Eqs. (12) and (17) in order to obtain the quantum interaction
Hamiltonian for two atoms and a conducting surface. There-
fore, the previous decomposition (15) can be recast into the
form

Ĥint = ĤA + ĤB + ĤAB + ĤABS, (18)

where the operators on the right-hand side are obtained from
UA, UB , UAB , and UABS by changing d to the quantum-
mechanical operator d̂. Note that, as mentioned before, the
interaction Hamiltonian does not involve field operators since
we are in the nonretarded regime. To obtain the interaction
energy for the dispersive interaction between the atoms
(assumed to be in the ground state) and the surface we proceed
perturbatively. In first order of perturbation theory we have
E(1)

nr := 〈Ĥint〉, where 〈· · · 〉 denotes the expectation value of
the operator inside the brackets in the ground state |0A,0B〉 of
the atoms. In this order only the first two terms in Eq. (18)
contribute, since for atoms with no permanent dipole moment
we have

〈0A,0B |d̂A
i d̂B

j |0A,0B〉 = 〈0A|d̂A
i |0A〉〈0B |d̂B

j |0B〉 = 0. (19)

From now on we omit the carets to denote quantum operators
in order to not overburden the notation. Evaluating 〈HA〉 and
〈HB〉 we obtain

E(1)
nr (rA,rB ) = 1

2ε0

∑
m

〈(
dA

m

)2〉∇m∇′
mGH (r,r′)

∣∣∣∣
r=r′=rA

+ 1

2ε0

∑
m

〈(
dB

m

)2〉∇m∇′
mGH (r,r′)

∣∣∣∣
r=r′=rB

,

(20)

where we employed 〈dmdn〉 = δmn〈d2
m〉, valid for the orthonor-

mal basis, which are used throughout this paper. In other words,
in this approximation the atoms do not perceive each other
and the interaction of the system is the direct superposition
of the interaction between each atom and the surface S. The
nonadditivity effects we are looking for appear only at second
order

E(2)
nr (rA,rB ) = −

∑
I

′ 〈0A,0B |Hint|I 〉〈I |Hint|0A,0B〉
EI − (

EA
0 + EB

0

) , (21)

where the prime indicates that we must sum over all possible
states |I 〉 �= |0A,0B〉. Here EA

0 and EB
0 are the ground-state

energies of the atoms A and B, respectively. Denoting the
possible states of atom A by |r〉 and the possible states of atom

B by |s〉, we may write the previous formula as

E(2)
nr (rA,rB) = −

∑
r,s

′ 〈0A,0B |Hint|r,s〉〈r,s|Hint|0A,0B〉
EA

0r + EB
0s

, (22)

where EA
0r = EA

r − EA
0 and EB

0s = EB
s − EB

0 . Equation (18)
shows that we would have, in principle, 16 terms to deal with
in Eq. (22). Fortunately, as we shall see, most of them either
vanish or are irrelevant for our purposes. For the sake of clarity,
let us analyze the terms separately. We begin by the term
quadratic in HA, to wit

E
(2)
A (rA) = −

∑
r,s

′ 〈0A,0B |HA|r,s〉〈r,s|HA|0A,0B〉
EA

0r + EB
0s

= −
∑

r

′ 〈0A|HA|r〉〈n|HA|0A〉
EA

0r

, (23)

where we used the fact that only intermediate states with |s〉 =
|0B〉 survive in the summation. This term depends only on
atom A and stands for the second-order contribution to the
interaction between atom A and the surface. It is clear that
such a term does not contribute to the interatomic force and
is then irrelevant for nonadditivity effects. For this reason we
shall neglect E

(2)
A (rA) henceforth, along with the analogous

term for atom B.
All the other ten terms involving Hi vanish. Indeed, the

crossed term involving HA and HB

−
∑
r,s

′ 〈0,0|HA|r,s〉〈r,s|HB |0,0〉
EA

0r + EB
0s

= 0 (24)

because the term 〈0,0|HA|r,s〉 is not zero only for intermediate
states with s = 0, while 〈r,s|HB |0,0〉 vanishes in such cases.
From Eq. (17) we see that the same argument applies to the
crossed term

−
∑
r,s

′ 〈0,0|HA|r,s〉〈r,s|HABS |0,0〉
EA

0r + EB
0s

= − 1

ε0

∑
r,s

′ 〈0,0|HA|r,s〉〈r,s|dA
i dB

j |0,0〉
EA

0r + EB
0s

×∇i∇′
jGH (r,r′)

∣∣
r=rA,r′=rB

, (25)

so the summation in Eq. (22) becomes

E(2)
nr (rA,rB) = E

(2)
A (rA) + E

(2)
B (rB)

+ELon(rA,rB ) + Ena(rA,rB), (26)

where

ELon = −
∑
r,s

′ 〈0,0|HAB |r,s〉〈r,s|HAB |0,0〉
EA

0r + EB
0s

(27)

and

Ena = −
∑
r,s

′ 〈0,0|HAB |r,s〉〈r,s|HABS |0,0〉
EA

0r + EB
0s

−
∑
r,s

′ 〈0,0|HABS |r,s〉〈r,s|HAB |0,0〉
EA

0r + EB
0s

−
∑
r,s

′ 〈0,0|HABS |r,s〉〈r,s|HABS |0,0〉
EA

0r + EB
0s

. (28)
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Finally, we are left with just four terms to analyze. The one
contained in ELon is independent of the surface, so it accounts
for the interaction between the atoms in the vacuum. The other
three terms, expressed in Ena , are the key elements in this paper
and contain the nonadditivity effects. Before delving deeper in
this contribution, though, let us turn to ELon in order to rewrite
it in a more familiar way. From Eq. (17) we see that

HAB = 1

4πε0

(
dA

i dB
j

)∇′
j∇i

1

|r − r′|
∣∣∣∣
r=rA,r′=rB

= dA
i dB

j

4πε0R
3
AB

[δij − 3(R̂AB)i(R̂AB)j ], (29)

where RAB := rA − rB . Substituting (29) into (27) we get

ELon = −
∑
r,s

′ 〈0,0|dA
i dB

j |r,s〉〈r,s|dA
mdA

n |0,0〉
(4πε0)2R6

AB

(
EA

0r + EB
0s

)
×[δij − 3(R̂AB)i(R̂AB)j ][δmn − 3(R̂AB)m(R̂AB)n].

(30)

As usual, we adopt the notation 〈0|dA
i |r〉 = d0r

i and, for the
atom B, 〈0|dB

j |s〉 = d0s
j . Therefore, we write

〈0,0|dA
i dB

j |r,s〉〈r,s|dA
mdA

n |0,0〉 = d0r
i dr0

m d0s
j ds0

n . (31)

As we are dealing with freely rotating atoms, the above
transition elements must be averaged over all directions.
Furthermore, assuming isotropy of the atoms, we have

d0r
i dr0

m = δim

|d0r
A |2
3

, (32)

where the overline denotes the average over all directions.
An analogous equation holds for atom B. So, combining the
Eqs. (31) and (32) and substituting them into (30), we obtain
London’s result in its most common form [39]

ELon = − 1

24π2ε2
0R

6
AB

∑
r,s

′
∣∣d0r

A

∣∣2∣∣d0s
B

∣∣2(
EA

0r + EB
0s

) . (33)

Having reobtained this important expression as a particular
case of our general expressions, we turn to the nonadditive
terms in next section.

III. THE NONADDITIVITY TERM

Let us now focus on the nonadditive effects. Equation (28)
is the only one that depends simultaneously on both atoms and
the surface; it reflects and contains the nonadditivity effects
that are inherent to the van der Waals dispersive interaction.
The mathematical treatment of this term is completely analo-
gous to that given to ELon in the preceding section. In such a
way, the first two terms on the right-hand side of Eq. (28) are
equal and are given by

−
∑
r,s

′ 〈0,0|HAB |r,s〉〈r,s|HABS |0,0〉
EA

0r + EB
0s

= −
∑
r,s

′ 〈0,0|HABS |r,s〉〈r,s|HAB |0,0〉
EA

0r + EB
0s

= − 1

36πε2
0R

3
AB

∑
r,s

′ |d0r
A |2|d0s

B |2(
EA

0r + EB
0s

){
GH

ii (rA,rB)

− 3(R̂AB)i(R̂AB)jGH
ij (rA,rB)

}
, (34)

while the last term on the right-hand side of Eq. (28) is

−
∑
r,s

′ 〈0,0|HABS |r,s〉〈r,s|HABS |0,0〉
EA

0r + EB
0s

= − 1

9ε2
0

∑
r,s,i,j

′
∣∣d0r

A

∣∣2∣∣d0s
B

∣∣2(
EA

0r + EB
0s

) [
GH

ij (rA,rB)
]2

, (35)

where we defined

GH
ij (r1,r2) = ∇i∇′

jGH (r,r′)|r=r1,r′=r2 . (36)

Substituting Eqs. (34) and (35) into Eq. (28) we obtain

Ena = E(1)
na + E(2)

na , (37)

with

E(1)
na = − �AB

18πε2
0R

3

[
TrGH (rA,rB)

−3(R̂AB)i(R̂AB)jGH
ij (rA,rB )

]
, (38)

E(2)
na = −�AB

9ε2
0

∑
i,j

[
GH

ij (rA,rB)
]2

, (39)

where

�AB =
∑
r,s

′
∣∣d0r

A

∣∣2∣∣d0s
B

∣∣2(
EA

0r + EB
0s

) . (40)

Equations (38) and (39) constitute the main result of this
paper. We now proceed to evaluate the influence exerted by the
surface on the interatomic interaction by analyzing the ratio

Ena

ELon
= 4πR3

AB

3

[
TrGH (rA,rB )−3(R̂AB)i(R̂AB)jGH

ij (rA,rB)
]

+ 8π2R6
AB

3

∑
i,j

[
GH

ij (rA,rB)
]2

. (41)

The influence of the surface on the atomic interaction, in this
order of perturbation theory, is a purely geometrical effect
since it does not depend on the internal structure of the atoms.
The formulas developed in this section show that in order to
calculate the nonadditivity effects all we need is GH , which
we can get by mapping our problem onto an electrostatic one,
according to Eq. (9). In the next section we will illustrate this
method by treating some examples.

IV. APPLICATIONS

A. Two atoms and a conducting infinite plane

As a first example let us consider two atoms in front of an
infinite conducting plane as illustrated in Fig. 1. We choose
our coordinate axes so as to have the conducting plane at z = 0
and both atoms in the XZ plane. From Eq. (9) we get

GH (r,r′) = − 1

4π
√

(x − x ′)2 + (y − y ′)2 + (z + z′)2
. (42)
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FIG. 1. Two atoms A and B in the presence of an infinite
conducting plane. Here Ā is the image of A and the image of B

is not represented; RAB is the distance between the atoms and R̄AB is
the distance between B and the image of A, denoted by Ā.

Employing Eq. (36), we see that the only nonvanishing terms
are

Gxx = 3 sin2 θ̄ − 1

4πR̄3
AB

, (43)

Gyy = − 1

4πR̄3
AB

, (44)

Gzz = 1 − 3 cos2 θ̄

4πR̄3
AB

, (45)

Gxz = 3 sin θ̄ cos θ̄

4πR̄3
AB

= −Gzx, (46)

where we used RAB sin θ = R̄AB sin θ̄ . Substituting these
expressions into Eq. (39) we arrive at

E(2)
na = − �AB

24π2ε2
0R̄

6
AB

= ELon(R̄), (47)

where we used Eq. (33). This term stands for the London
interactions between either of the two atoms and the image of
the other. To evaluate the next term, note that R̂x = sin θ and
R̂z = cos θ , while the y component vanishes. Hence Eq. (38)
yields

E(1)
na = − �AB

72π2ε2
0R

3
ABR̄3

AB

(2 − 3 sin2 θ − 3 sin2 θ̄ ). (48)

We have now the complete expression for the nonaddi-
tivity terms up to second order in perturbation theory for
the two-atom–conducting-plane case. The sum E(1)

na + E(2)
na

coincides precisely with the result obtained by Power and
Thirunamachandran [40].

B. Two atoms inside a plane capacitor

This constitutes the main example of this paper. As we
presently show, the nonadditivity effects are noticeable even
at large interatomic separations as they strongly suppress the
interatomic interaction.

Let us consider two atoms A and B between two infinite
perfectly conducting planes parallel to each other. It is
convenient to choose our coordinates in such a way as to

FIG. 2. Two atoms A and B inside a perfectly conducting plate
conductor. We choose the plane z = 0 midway between the plates.
Without any loss of generality, atom A is put at (0,0,zA) and B at
(xB,0,zB ).

have the planes at z = −D/2 and z = D/2 and both atoms
in the XZ plane as illustrated in Fig. 2. The GH is obtained
through the solution of the electrostatic problem of one charge
in the presence of a plane capacitor, which can be done again
by employing the image method. In this case, however, we
must deal with an infinite series of images and the potential
generated by this series is very slowly convergent. It is
therefore more convenient to write GH in another form. We
follow Ref. [41] to find that for this geometry the Green’s
function may be written as

G(r,r′) = 1

πD

∞∑
n=1

cos
nπz

D
cos

nπz′

D
K0

(
nπ |ρ − ρ′|

D

)
,

(49)

where ρ = xx̂ + yŷ, ρ′ = x ′x̂ + y ′ŷ, and K0 is a modified
Bessel function of the second kind [42]. Note that in Eq. (49)
we have the complete Green’s function [see Eq. (7)] instead
of GH . It turns out, however, that in this example it pays off to
work directly with G and in the end we isolate GH in order to
get the nonadditivity contribution.

The asymptotic expansion of Eq. (49), valid in the region
|ρ − ρ′| � D, is given by

G(r,r′) = 1

4π

√
8

|ρ − ρ′|D cos
πz

D
cos

πz′

D
e−π |ρ−ρ′|/D.

(50)

Working directly with G, the four terms depicted in Eqs. (30),
(34), and (35) can be naturally assembled in just one term

ELon + Ena = −�AB

9ε2
0

∑
i,j

[Gij (rA,rB)]2, (51)

where

Gij (rA,rB ) = 1

4π
∇i∇′

j

{
cos

πz

D
cos

πz′

D
e−π |ρ−ρ′|/D

×
√

8

|ρ − ρ′|D
}∣∣∣∣

r=rA,r′=rB

. (52)

Hence, when the atoms are separated by a distance of the order
of D or larger, the nonadditivity effects shield the atoms’
interaction exponentially. This is a remarkable result and it
is particularly interesting when both atoms are equidistant
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FIG. 3. (Color online) Nonadditive part of the interaction energy
(normalized by the London interaction energy) as a function of the
distance between atoms A and B. The atoms are both equidistant to
the plates. Here RAB is measured in units of D. The blue dashed curve
shows the asymptotic behavior obtained via Eq. (50) while the red
solid curve presents the exact result obtained through (49).

from the plates. In this case, we see immediately by symmetry
that the force exerted by the surfaces in each atom separately
vanishes. In spite of that, the plates leave their mark on the
interatomic force by suppressing exponentially an interaction
that would fall with 1/R6

AB in their absence (with no plates
we would have only the London interaction). The results
displayed here remain valid when several atoms are present,
because up to second order there are no terms in the interaction
energy that can couple more than two atoms. This can be
seen by employing a reasoning similar to the one used to
show that the terms in Eqs. (24) and (25) vanish. Hence, if
a gas is rarefied enough so that its atoms are separated on
average by a distance D or more, then up to second order
of perturbation the capacitor strongly shields the interatomic
interaction, effectively producing an ideal gas behavior. Even
when this condition is not strictly satisfied our results show
that the atoms interact only with the atoms that are closer than
D, leading us to the expectation that a gas put between parallel
conducting plates behaves more ideally than otherwise. Since
the interatomic interaction is the main feature responsible for
the gas-liquid phase transition, we conjecture that putting a
gas between conducting plates could lower the liquefaction
temperature.

Finally, we isolate the nonadditivity effects through
Eqs. (38) and (39). In order to obtain GH we must subtract
1/|r − r′| from Eq. (49). In Fig. 3 we plot the nonadditivity
effects normalized by the London energy for both the complete
expression and the asymptotic expansion [obtained using
Eq. (50) for GH ] in the situation where both atoms are at
z = 0 (equidistant from the conducting planes). As expected
from our previous discussion, for large distances the ratio
goes to −1, showing that the nonadditivity cancels out the
London interaction between the atoms. Finally, for illustration
purposes, in Fig. 4 we show the plot for the ρ component of
the force on atom A.

C. Two atoms and a conducting grounded sphere

In this section we analyze the nonretarded interaction
between two atoms and a grounded perfectly conducting
sphere. Since the application of the image method to the sphere
is well known, we shall use it to obtain GH . Placing the origin

FIG. 4. (Color online) Nonadditive part of the force (normalized
by the force between the atoms in vacuum) as a function of the
distance between atom A and atom B. The atoms are both equidistant
to the plates. Here RAB is measured in units of D. The blue dashed
curve shows the asymptotic behavior obtained via Eq. (50) while the
red solid curve presents the exact result obtained through (49).

of our coordinates at the center of the sphere of radius a and
setting r′ as the position of the physical charge, we have to
put an image charge qi = − a

r ′ q at position r′
i = a2

r ′2 r′ [43].
Therefore, from Eq. (9) we have

GH (r,r′) = − a

4πr ′|r − r′
i |

= − a

4π
√

r2r ′2 − 2r · r′a2 + a4
.

(53)

Following the same scheme outlined in the preceding sections,
we now use this function to evaluate the quantum dispersive
interaction between the atoms and the sphere. Calculating Gij

from Eq. (36), we obtain after some algebra

GH
ij = −3a

(
xA

i r2
B − xB

i a2
)(

xB
j r2

A − xA
j a2

)
4π

[
r2
Ar2

B − 2rA · rBa2 + a4
]5/2

+ a
(
2xA

i xB
j − δij a

2
)

4π
[
r2
Ar2

B − 2rA · rBa2 + a4
]3/2 , (54)

where xA
i stands for the ith Cartesian coordinate of rA, rA =

|rA|, with analogous notation for the coordinates of B. It is
convenient to orient the axis in order to have atom A at (0,0,rA)
and atom B at (0,rB sin θ,rB cos θ ). Employing Eq. (39) we
get the complete expression for the nonadditivity terms for
any configuration of the atoms, but for the sake of clarity we
write explicitly only two particular cases. When the two atoms
are aligned with the center of the sphere, we see from (54) that
G is diagonal. We have then θ = 0 (θ = π ) when the atoms
are on the same side (opposite sides) of the sphere and the
nonadditivity terms are given by

E(1)
na = ± �AB

36π2ε2
0R

3
AB

arArB

(rArB ± a2)3
, (55)

E(2)
na = − �AB

144π2ε2
0

3a6 ∓ 2a4rArB + a2r2
Ar2

B

(rArB ± a2)6
, (56)

where the upper (lower) sign refers to the θ = π (θ = 0) case.
Note that both terms are bigger for θ = 0. Since, by symmetry,
we expect the same behavior when we change θ by 2π − θ , we
conclude that θ = π will be a minimum for the nonadditivity
interaction energy.
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FIG. 5. Two atoms near a conducting sphere. Here RAB is parallel
to the Y axis.

In this case, in contrast with the capacitor example,
nonadditivity effects are practically unnoticeable since the
dominant contribution by far comes from the attraction of
each atom with the sphere, which contributes in first order of
perturbation theory. However, since symmetry considerations
ensure that the force exerted by the sphere on each atom is
radial, nonadditivity may be relevant for components of the
force perpendicular to that direction. Let us then consider the
situation where the atom A is at the Z axis and RAB is parallel
to the Y direction, as illustrated in Fig. 5.

In this setup, only the London interaction and nonadditivity
terms contribute to the y component of the force on atom B.
In Fig. 6 we plot this component of the force as a function of
the distance from atom B to the center of the sphere, keeping
the vector RAB fixed. We see that the nonadditivity parcel
may indeed be comparable to the London interaction for close
distances. For a sphere 1 μm in radius and atom B at a distance
of 1 nm from the surface of the sphere and separated by a
distance 2 nm from atom A, the nonadditivity force is 30%
from the London force between the atoms.

FIG. 6. (Color online) Nonadditive part of the x component of
the force exerted on atom B (normalized by the London force) as a
function of the distance between atom B and the center of the sphere.
Here RAB remains always perpendicular to rB . The red solid curve is
for two atoms separated by dA = 0.002a and the blue dashed curve
is for dA = 0.003a.

We finish this example with some remarks. First, we recall
that the setup of two atoms in the presence of a plane E(2)

na ,
given in Eq. (47), could readily be identified as the London
interaction between each atom and the image of the other. In
this example, E(2)

na does not have such a simple interpretation.
This is related to the fact that to solve the electrostatic problem
of a dipole in the presence of a grounded conducting sphere we
must have not only an image dipole but two point charges as
well [44]. In addition, as a particular case of our results we may
obtain, by substituting Eq. (53) into Eq. (12), the dispersive
interaction between one atom and a conducting sphere. In so
doing we arrive at the same result obtained in Ref. [45].

D. Two atoms and a conducting isolated neutral sphere

We need only minor modifications to tackle the case where
the two atoms are in the presence of an isolated sphere, instead
of a grounded one. In the electrostatic case, the isolated sphere
interacts more weakly with a charge since in the grounded case
the sphere is supplied by the earth with additional charges. Let
us see what happens to the nonadditivity effects in this quantum
problem.

In this case, GH may be obtained from (53) by simply
adding one term [31], yielding

GH (r,r′) = − a

4π
√

r2r ′2 − 2r · r′a2 + a4
+ a

4πrr ′ . (57)

Substituting Eq. (57) into Eq. (36) and using Eq. (54), we
obtain

GH
ij = −3a

(
xA

i r2
B − xB

i a2
)(

xB
j r2

A − xA
j a2

)
4π

[
r2
Ar2

B − 2rA · rBa2 + a4
]5/2

+ a
(
2xA

i xB
j − δij a

2
)

4π
[
r2
Ar2

B − 2rA · rBa2 + a4
]3/2 + axA

i xB
j

4πr3
Ar3

B

. (58)

Once more, we may evaluate the nonadditivity contribution to
the interaction energy of the system in any of its configurations.
As before, we write explicitly only the case when the atoms
are collinear with the center of the sphere. Using Eq. (56) we
obtain

E(1)
na = ± �AB

36π2ε2
0R

3
AB

[
arArB

(rArB ± a2)3
− a

r2
Ar2

B

]
, (59)

E(2)
na = − �AB

144π2ε2
0

[(
arArB ∓ a3

(rArB ± a2)3
− a

r2
Ar2

B

)2

+ 2a6

(rArB ± a2)6

]
. (60)

It can be seen in Fig. 7 that the nonadditivity effects are greatly
diminished in comparison with the previous case, where the
sphere was grounded. Letting a → 0 in Eqs. (59) and (60),
we see that the first contribution to E(1)

na (E(2)
na ) is of third

(fourth) order in a. Therefore, keeping only the lowest-order
contribution, we may write for the nonadditivity term of two
atoms plus a very small sphere the expression

Ena = − K�AB

R3
ABr3

Ar3
B

a3 + O(a4), (61)
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FIG. 7. (Color online) Ratio between the isolated sphere’s and
the grounded sphere’s nonadditive contributions for the interaction
energy. The horizontal axis stands for the distance of atom A to the
center of the sphere (in units of the radius of the sphere). Atom B is
farther from the sphere, separated by a distance RAB = 0.002a from
atom A and collinear with it and the center of the sphere.

where K is a positive constant. In this limit we may identify the
shrunk sphere as an atom with polarizability α(C) proportional
to a3. Also, rA and rB become the respective distances from
atoms A and B to atom C. Therefore, we see that our result is
compatible with the well-known Axilrod-Teller potential for
three atoms, with the expected negative sign [6]. Note that
such compatibility follows from the absence of the powers a0,
a, and a2 in the above expansion, which did not happen for
the grounded sphere in the previous section. This could be
expected, since this limit on the grounded sphere can by no
means be thought of as an atom. We may recast Eq. (61) into
a more familiar form in the particular case of two-level atoms,
where [39] �AB is proportional to α(A)α(B), leaving Eq. (61)
as

Ena = −Kα(A)α(B)α(C)

R3r3
Ar3

B

+ O(a4). (62)

V. CONCLUSION

We have dealt with two atoms in the presence of a
conducting surface of an arbitrary shape. In systems composed
of three bodies it is well known that nonadditivity effects must
be taken into account. In the case of three atoms the effects

are rather small since they are of third order in perturbation
theory while the additivity terms are of second order. When a
conducting surface is present, however, the nonadditivity term
is also of second order and may be relevant to the interaction
between the atoms.

By mapping our quantum two-atom problems onto simpler
electrostatic problems involving only one charge, we have
obtained explicit analytical expressions for the influence of a
conducting surface in the dispersion interaction of two atoms.
We checked the self-consistency of our results by reobtaining
London formula. In addition, for the case of two atoms and
a conducting plane we also reobtained the result displayed in
literature. Then we discussed our most important example of
two atoms inside a plate capacitor, where the nonadditivity
cannot be neglected. We showed that the nonadditivity shields
one atom from the other, making the interaction between them
fall exponentially with the distance. This effect is present
also for N atoms between two infinite planes up to second
order in perturbation theory. In such a way we concluded that
a gas is closer to an ideal one between conducting planes,
leading us to conjecture that the gas-liquid transition takes
place at lower temperatures inside a plate capacitor than inside
nonconducting plates. As a last example we treated two atoms
in the presence of a conducting sphere, both grounded and
isolated. We demonstrated that when the sphere is isolated the
nonadditivity is much smaller than in the grounded case. The
isolated case, however, has a nice particular limit, namely, the
three-atom configuration, obtained when we let the radius of
the sphere go to zero. We expect that the general and simple
nature of the results enlisted in this paper allows for a broader
understanding of nonadditivity effects in situations where
the distances involved are small enough for a nonretarded
treatment to be appropriate.
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