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Charge transfer and association of Li+ colliding with Na from very low to intermediate energies
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The nonradiative charge-transfer processes of Li+ + Na(3s) collisions have been investigated by using the fully
quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling
method for the energy range of 10−4–2 keV/u and 0.2–10 keV/u, respectively. The radiative charge-transfer,
radiative decay, and radiative-association processes have been studied by employing the fully quantum, optical-
potential, and semiclassical methods for the energy range of 2 × 10−10–110 eV/u. The nonradiative charge-
transfer processes dominate the collisions for energies above 0.2 eV/u while radiative decay processes dominate
in the lower-energy region. Especially, we found that the radiative-association process is more important than the
radiative charge-transfer process when E < 2 × 10−2 eV/u. The rate coefficients of nonradiative and radiative
processes are also given for the temperature range of 3 × 104 − 2 × 109 K and 10−6 − 103 K, respectively.
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I. INTRODUCTION

Collisions at cold and ultracold temperatures have been
given an important strategic position in the intersectional
field of many meaningful research topics in chemical, atomic,
molecular, and optical physics, and even in condensed-matter
physics [1]. Alkali-metal ion-atom collision systems as main
research objects in these areas have recently received con-
siderable attention [2–7]. The charge-transfer and association
processes during the collisions are very important for the
investigation of charge transport and cold plasmas, because
they significantly influence the populations of alkali-metal
ions or atoms and their characteristic emission spectra. These
spectra are very useful in diagnosing the density of cold
laboratory plasmas.

The experimental measurement of electron capture cross
sections by Daley and Perel [8] was a stimulating study of the
NaLi+ system, which presents a standard quasi-one-electron
object to investigate the mechanisms of nonresonant charge-
transfer processes. Since then, a number of theoretical studies
have been performed [9–22]. However, most of them deal with
the direct charge-transfer process, and the Li+-Na collision
system is only studied at the level of total and differential cross
sections, whereas investigations of radiative decay processes
in the extremely-low-energy (cold) regime are sparse and the
information for state-resolved charge-transfer cross sections
for the Li+-Na collision system is quite rare.

In the present work, we revisit the Li+-Na collision system
to study both the nonradiative and radiative processes in the
energy region from 10−13 to 10 keV/u. Several reactions are
included in our investigation, namely, the nonradiative charge-
transfer process,

Li+ + Na(3s) → Li(2s,2p,3s) + Na+, (1)

*yzqu@ucas.ac.cn

radiative charge-transfer process,

Li+ + Na (3s) → Li (2s) + Na+ + hν, (2)

and radiative-association process,

Li+ + Na(3s) → NaLi+(X 2�+) + hν. (3)

The nonradiative charge-transfer cross sections are calcu-
lated by using the fully quantum-mechanical molecular-orbital
close-coupling (QMOCC) and the two-center atomic-orbital
close-coupling (TC-AOCC) method in the energy range of
10−4–2 and 0.2–10 keV/u, respectively. The radiative-decay
cross sections are calculated by using the optical-potential
and semiclassical methods, respectively, for the energy range
of 2 × 10−10 to 110 eV/u. The radiative charge-transfer cross
sections are calculated by using the fully quantum method for
the energy range of 2 × 10−10–4 × 10−4 eV/u. The radiative-
association cross sections are obtained by taking differences
between radiative-decay and radiative charge-transfer cross
sections and by using the fully quantum-mechanical approach
for the energy range of 2 × 10−10–4 × 10−4 eV/u and 2 ×
10−5–2 × 10−2 eV/u, respectively. The molecular structure
data (potential curves, radial and rotational couplings, and
dipole transition matrix elements) required in the scattering
calculations have been calculated using the ab initio multiref-
erence single- and double-excitation configuration interaction
(MRD-CI) method [23,24]. In many application fields, such
as astrophysics, the rate coefficients are needed, so we also
present the rate coefficients including both radiative and
nonradiative processes in this paper.

The present article is organized as follows. In Sec. II we
describe the molecular potential and coupling data. In Secs. III
and IV we briefly outline the theoretical methods, the results,
and discussions of the scattering calculations. A brief summary
is given in Sec. V. Atomic units will be used in the remaining
part of this article, unless explicitly indicated otherwise.
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TABLE I. Asymptotic separated-atom energies of NaLi+.

Energy (eV)

Molecular state Asymptotic atomic states This work Experiment [27] Error

1 2�+ Na+ + Li(2s) 0.252620 0.252638 −1.85[–5]a

2 2�+ Na(3s) + Li+ 0 0 0
3 2�+ Na+ + Li(2pσ ) –1.546527 –1.595208 4.87[–2]
1 2� Na+ + Li(2pπ ) –1.545511 –1.595208 4.97[–2]
4 2�+ Na(3pσ ) + Li+ –2.107886 –2.103718 –4.17[–3]
2 2� Na(3pπ ) + Li+ –2.107341 –2.103718 –3.62[–3]
5 2�+ Na+ + Li(3s) –3.059119 –3.120490 6.14[–2]
6 2�+ Na(4s) + Li+ –3.139746 –3.191351 5.16[–2]

aNumbers in parentheses are powers, i.e., A[B] = A × 10B .

II. ELECTRONIC STRUCTURE CALCULATIONS

In the present study, ab initio multireference configu-
ration interaction calculations are carried out for adiabatic
potential energies of six 2�+ electronic states in A1 (C2v)
symmetry and two 2� electronic states in B1 symme-
try of the NaLi+ molecule using the MRD-CI package
[23,24]. For lithium, the cc-pVQZ correlation-consistent,
polarization valence, quadruple-zeta Gaussian basis set [25]
(12s, 6p, 3d)/[5s, 4p, 3d] is used. In addition to the above
basis set, (3s3p3d) diffuse functions are added. For sodium
atom, an effective core potential (ECP) [26] is employed
to describe the two inner-shell electrons, and the remaining
inner-shell (2s and 2p) and valence electrons (3s) are con-
sidered explicitly in the ab initio SCF and CI calculations.
The ECP-adapted (6s4p) Gaussian basis set [26] without
contraction is employed for the 2s, 2p, and 3s subshells.
A diffuse (1s3p3d2f ) basis is employed for describing its
Rydberg states. A threshold of 1.36 × 10−6 eV (5 × 10−8

hartrees) is used to select the configuration wave functions
[23] of which the electronic wave functions are composed. As
shown in Table I, the errors in our calculated energies for the
considered electronic states with respect to the experimental
atomic energies [27] are within 0.0614 eV (491 cm−1) in the
asymptotic region. This accuracy level should be adequate
for the present scattering calculations [28]. The obtained
electronic wave functions are then employed to calculate radial
and rotational couplings by using finite differentiation and
analytical approaches, respectively [29].

In present QMOCC calculations, allowance for the trans-
lation effects was made by introducing appropriate reaction
coordinates [30,31], in which the radial and rotational coupling
matrix elements between the states ψK and ψL (Ar

KL =
〈ψK | ∂

∂R
|ψL〉 and Aθ

KL = 〈ψK |iLy |ψL〉) are transformed into
formulas (4) and (5) [32] respectively, where εK and εL are
the electronic energies of states ψK and ψL, and z2 and zx

are the components of the quadrupole moment tensor. The
modification is similar in form to that resulting from the
application of the common electron translation factor (ETF)
method [33]:

〈ψK | ∂/∂R − (εK − εL) z2/2R |ψL〉 , (4)

〈ψK | iLy + (εK − εL) zx |ψL〉 . (5)

The calculated adiabatic potentials for the considered six
2�+ and two 2� molecular states of NaLi+ are shown in Fig. 1
for this internuclear distance R = 1.0–30.0 a.u. The 2 2�+
state represents the initial channel for this collision system.
The energy gap between the two lowest states is only about
0.25 eV, which is much smaller than those between 2 2�+
and other higher states. Avoided crossings can be observed
around 4.0 a.u. between 5 2�+ and 6 2�+ states and at about
7.5 a.u. between 4 2�+ and 5 2�+ states. When R is smaller
than 10.0 a.u., the potential curves of the 1 2� state and the
2 2�+ state tend to approach each other and become degenerate
around R = 6.0 a.u., where the rotational coupling between
these two states will become important to some extent.

Figures 2 and 3 display some important radial and rotational
coupling matrix elements for the NaLi+ system with the
ETF effects included. Obviously, the positions of the peaks
in radial coupling matrix elements are consistent with the
corresponding avoided crossings of the adiabatic potential
curves observed in Fig. 1. The primary gateway to the
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FIG. 1. (Color online) Adiabatic potential curves for NaLi+

as a function of internuclear distance R. Solid lines de-
note the 2�+ states; dashed lines denote the 2� states.
The 1 2�+, 2 2�+, 3 2�+, 4 2�+, 5 2�+, 6 2�+, 1 2�, and
2 2� states correspond to Na+ + Li(2s), Na(3s) + Li+, Na+ +
Li(2pσ ), Na(3pσ ) + Li+, Na+ + Li(3s), Na(4s) + Li+, Na+ +
Li(2pπ ), and Na(3pπ ) + Li+ channels in the asymptotic region,
respectively.
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FIG. 2. (Color online) Major radial coupling matrix elements for
NaLi+.

charge exchange will be the 1 2�+ − 2 2�+ and 2 2�+ − 1 2�

couplings as due to the close encounters in the associated
potential curves. The importance of the 1 2�+ − 2 2�+ and
2 2�+ − 1 2� transitions has also been observed by the
previous work of Melius and Goddard [12,15]. In Fig. 4, the
dipole transition moment between the 1 2�+ and 2 2�+ states
is distributed in the range of internuclear distances between
∼1.0 and 30.0 a.u. and a broad peak can be observed around
R = 12.5 a.u. which corresponds to the position of the avoided
crossing between these two states. The dipole transition
moment is responsible for the radiative-decay processes in
this collision system.

III. THEORIES IN SCATTERING CALCULATIONS

Usually, for the nonradiative charge-transfer process, when
the collisional energy E is below several keV/u, the QMOCC
method can be applied [31,34], and when E is larger than
several hundreds of eV/u, the AOCC method can be used, in
which the nuclear motion is treated semiclassically [35].
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FIG. 3. (Color online) Major rotational coupling matrix elements
for NaLi+.
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FIG. 4. Dipole matrix element between 1 2�+ and 2 2�+ for
NaLi+.

A. QMOCC method for nonradiative charge transfer

The QMOCC method to describe nonradiative charge
transfer in ion-atom collisions is described in detail in the
literature [31,34], and will be only briefly outlined here.
In the QMOCC method, the collision system composed of
ion and an atom or molecule is treated as a quasimolecule,
the internuclear distance of which varies with the collision
time. Besides, a close-coupled quantum-mechanical method
is employed for the motion of the system. It involves solution
of a coupled set of second-order differential equations using
the log-derivative method of Johnson [36]. In the adiabatic
representation, transitions between channels are driven by
radial and rotational (Ar and Aθ ) coupling elements of the

vector potential A(
⇀

R), where
⇀

R is the internuclear distance
vector. Since the adiabatic description contains first- and
second-order derivatives, it is numerically convenient to make
a unitary transformation [34,37] to a diabatic representation,

U (R) = W (R) [V (R) − P (R)] , (6)

where U (R) is the diabatic potential matrix, V (R) is the
diagonal adiabatic potential, W (R) is a unitary transformation
matrix that obeys the equation

dW (R)/dR + Ar (R)W (R) = 0, (7)

and P (R) is the rotational coupling matrix of the vector

potential A(
⇀

R) whose elements are given by [31,38]

Pij = ∓ 1

μR2
[(J ∓ �i) (J ± �i + 1)]1/2Aθ

ij δ(�i,�j ± 1).

(8)

The coupled set of second-order differential equations is
solved by employing the diabatic potential and couplings. The
charge-capture cross section from initial channel i to the final
channel j is given by

σ(i→j ) = π

k2
i

∑
J

(2J + 1) |SJ |2i,j ; (9)
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here ki denotes the initial momentum, J is the total angular
momentum, and S the scattering matrix,

SJ = [I + iKJ ]−1[I − iKJ ], (10)

where I is the identity matrix, and the K matrix is obtained
from the scattering amplitude after a partial-wave decomposi-
tion [39].

B. TC-AOCC method for nonradiative charge transfer

The AOCC method is a semiclassical theoretical method, in
which the motion of the nucleus meets the classical law. The
motion of electrons is obtained by solving the Schrödinger
equation of the collision system. The TC-AOCC equations are
obtained by expanding the total electron wave function � in
terms of atomic orbitals of the two centers (φA

i , φB
j ) multiplied

by plane-wave electron translational factors (ETFs) [35],

�(�r,t) =
∑

i

ai(t)φ
A
i (�r,t) +

∑
j

bj (t)φB
j (�r,t), (11)

and its insertion in the time-dependent Schrödinger equation
(TDSE) (H − i ∂

∂t
)�(�r,t) = 0. Here,H = − 1

2∇2
r + VA(rA) +

VB(rB) and VA,B(rA,B) are electron interactions with the
projectile (Li+) and target (Na+) cores, respectively. The
straight-line approximation is adopted for the relative nuclear
motion in this collision system. For the Li+ and Na+ ions, the
frozen core approximation is employed. The interaction of the
active electron with the ionic cores can be expressed by model
potentials as [40] (for Li+) and as [4] (for Na+),

VLi+ (r) = −1

r
− 1

r
(2 + 3.310r)e−3.310r , (12)

VNa+ (r) = −1

r
− 1

r
(10 + 17.9635r)e−3.5927r . (13)

The resulting first-order coupled equations for the ampli-
tude ai(t) and bj (t) are

i(Ȧ + SḂ) = HA + KB, (14a)

i(Ḃ + S†Ȧ) = K̄A + H̄B, (14b)

where A and B are the vectors of the amplitudes ai(t)(i =
1,2, . . . ,NA) and bj (t)(j = 1,2, . . . ,NB), respectively. S is
the overlap matrix (S† is its transposed form). H and H̄

are direct coupling matrices, and K and K̄ are the electron
exchange matrices. The cross section for 1 → j electron
capture transitions is calculated as

σcx,j = 2π

∫ ∞

0
|bj (+∞)|2bdb, (15)

where b is the impact parameter.
The sum of σcx,j over j gives the corresponding total

charge-transfer cross section. The expansion basis used in
present TC-AOCC calculations includes all states centered
on Li+ having principal quantum number n � 5 and all states
on Na having principal quantum number n � 5, without the
4f, 5f , and 5g orbitals. To check the convergence, we have
calculated the total cross section and the state-selective cross
section with the bound states up to n = 5 and 6 for Li+.
For the collision energies from 0.3 to 5.0 keV/u, the relative
discrepancies between the results of these two calculations for

the total cross sections and the state-selective cross sections
for electron capture to Li(2s) and Li(2p) are within 1%,
1%, and 3%, respectively. To check the influence of the
pseudocontinuum states, we also calculated the total cross
section and the state-selective cross section of each state
with the bound states up to n = 5 and the pseudocontinuum
states 6s∗, 6p∗

|m|, 6d∗
|m|, 6f ∗

|m|, 6g∗
|m| for Li+. For the collision

energies E from 0.3 to 5.0 keV/u, the relative discrepancies be-
tween the results with and without the pseudocontinuum states
of the total cross sections and the state-selective cross sections
for electron capture to Li(2s) and Li(2p) are within 5%, 15%,
and 7%, respectively. So, the 6s∗, 6p∗

|m|, 6d∗
|m|, 6f ∗

|m|, 6g∗
|m|

pseudostates which lie in the continuum of the lithium atom
are also included in the basis.

For systems that do not have strong radial couplings,
radiative processes such as radiative charge-transfer and ra-
diative association play important roles at the very-low-energy
region. The quantum-mechanical method and the semiclassical
method were used for calculations of the radiative processes
for the energy range of 2 × 10−10–110 eV/u.

C. Fully quantum method for radiative charge transfer

In the present work, the fully quantum-mechanical method
[41–43] is used to investigate the radiative charge-transfer
process. The radiative charge-transfer cross section can be
given by

σ =
∫ ωmax

ωmin

dσ

dω
dω, (16)

with

dσ

dω
= 8

3

(
π

kA

)2
ω3

c3

∑
J

[
JM2

J,J−1(kA,kX)

+ (J + 1) M2
J,J+1(kA,kX)

]
, (17)

where ω is the angular frequency of the emitted photon and c

is the speed of light. The subscripts A and X denote the upper
and the lower states, respectively, and

MJ,J ′ (kA,kX) =
∫ ∞

0
dRf A

J (kAR)D(R)f X
J ′ (kXR), (18)

where D(R) is the transition dipole moment connecting the
two electronic states, kA and kX are the entrance and exit
momenta,

kA =
√

2μ[E − VA(∞)], (19a)

kX =
√

2μ[E − VX(∞)] − �ω, (19b)

with E the relative collision energy in the center-of-mass
frame, and VA and VX are the adiabatic potential energies of
the entrance and exit channels, respectively. The partial wave
f i

J (kiR) (i = A,X) is the regular solution of the homogeneous
radial equation{

d2

dR2
− J (J + 1)

R2
− 2μ [Vi(R) − Vi(∞)] + k2

i

}

f i
J (kiR) = 0, (20)
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and normalized asymptotically according to

f i
J (kiR) =

√
2μ

πki

sin

(
kiR − Jπ

2
+ δi

J

)
, (21)

with δi
J ,(i = A,X) the phase shifts.

D. Optical-potential and semiclassical methods
for radiative decay

The optical-potential approach [41,42,44] is adopted to
obtain the total cross sections for radiative decay, including
both the radiative charge transfer and the radiative association.
During the ion-atom collisions, the transition probability is
represented by the imaginary part of a complex optical poten-
tial. The scattering wave FA( �R), where R is the internuclear
distance and the subscript A denotes the initial upper molecular
state (A 2�+), is obtained by solving the Schrödinger equation,[

− 1

2μ
∇2

�R + VA(R) − E

]
FA( �R) = i

2
A(R)FA( �R). (22)

Here E is the collision energy of the entrance channel, μ is the
reduced mass, and A(R) is the transition probability for the
radiative transition given by

A(R) = 4

3
D2(R)

|VA(R) − VX(R)|3
c3

, (23)

where VA(R) and VX(R) are the adiabatic potential energies
for the upper A 2�+ and the lower X 2�+ states, respectively.
D(R) is the transition dipole matrix element between the
A 2�+ and X 2�+ states.

The collision-induced radiative decay cross sections can be
written as

σ (E) = π

k2
A

∞∑
J

(2J + 1)[1 − exp(−4ηJ )], (24)

where ηJ is the imaginary part of the phase shift for the J th
partial wave of the radial Schrödinger equation which is given
in the distorted-wave approximation by

ηJ = π

2

∫ ∞

0
dR

∣∣f A
J (kAR)

∣∣2
A(R). (25)

The optical-potential method provides an adequate descrip-
tion of the radiative decay process only at low (below ∼0.1 eV)
collision energies. In order to extend our radiative decay
calculations to higher energies, replacing the summation in
Eq. (24) and applying the Jeffreys-Wentzel-Kramers-Brillouin
(JWKB) approximation, one obtains an expression for the
semiclassical cross section,

σ (E) = 2π

√
2μ

E

∫
pdp

∫ ∞

R
ctp
A

dR
A(R)√

1 − VA(R)/E − p2/R2
,

(26)

where p is the impact parameter and R
ctp
A is the classical

turning point in the incoming channel [41,45]. For large
energies (E � VA), the double integral is nearly energy
independent, and therefore σ (E) varies as 1/E1/2 [42,44].
By subtracting the radiative charge-transfer part from the

FIG. 5. (Color online) The total nonradiative charge-transfer
cross sections of the present calculation and other results for
Na(3s) + Li+ collision. Theoretical results: present QMOCC cal-
culation (solid line with filled circles), present AOCC calculation
(solid line with filled diamond), Melius et al. [11,12,15] (solid line
with filled downward triangle), Allan et al. [19] (solid line with filled
pentagon), Machholm et al. [22] (solid line with filled right triangle),
Shingal et al. [20] (solid line with filled upward triangle), Rapp et al.
[14] (solid line with star).

total radiative-decay cross sections, one obtains the radiative-
association cross sections.

IV. RESULTS AND DISCUSSION

A. Nonradiative charge transfer

The total nonradiative charge-transfer cross sections in
collisions of Li+ with ground state atomic Na are inves-
tigated by using the QMOCC method in the energy range
10−3–1.8 keV/u, and the TC-AOCC method is also used for
comparison and to extent the calculation to the higher-energy
region (0.2–104 keV/u), which are displayed in Fig. 5, along
with the experimental results of Daley and Perel [8] and other
theoretical works [11,12,15,19,20,22]. The present QMOCC
and AOCC results are in good agreement in the overlapping
energy range around 1 keV/u, where both of the two theoretical
methods are reliable. Our QMOCC results agree well with
the SMOCC (semiclassical molecular-orbital close-coupling)
results of Machholm [22] and Allan [19] in the energy region
below 1 keV/u. Our AOCC results agree well with those of
Shingal et al. [20] only for energy around 420 and 1560 eV/u,
but obvious discrepancy can be found for other energies; the
probable reason is that their results are not fully converged, as
they themselves claimed in Ref. [20]. The calculation of total
cross section carried out by Melius and Goddard [11,12,15]
was considered to be the best theoretical prediction [17], since
they find excellent agreement with the experimental results
of Daley and Perel [8]. However, our present calculated total
charge-transfer cross sections are about 20% higher than those
of Melius and Goddard. A possible reason is because of the
difference of the potential curves; e.g., their error of energy
in the asymptotic region is about 0.1 eV [14], which is larger
than ours compared to the experimental data from NIST [27]
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FIG. 6. (Color online) (a) State-selective nonradiative charge-
transfer cross sections for the Na(3s) + Li+ collision. Shown are
present QMOCC results (solid line with symbols); present AOCC
results (solid lines); AOCC results of Shingal et al. (open symbols);
(b) state-selective cross sections for electron capture to the 3 2�+ and
1 2� states of NaLi+.

(see Table I). Also, from Fig. 5, there is good agreement in
the positions and amplitude of oscillatory structures between
the experimental cross sections [8] and ours. However, for
the value of total cross section, our QMOCC and AOCC
results are higher than that of experiment [8]. For energy
around 274 eV/u, our results are near the upper limit of the
experimental error bar. For energy around 905 and 2600 eV/u,
they exceed the upper limit. In view of the fact that the
experiment of Daley and Perel [8] is rather old, the difference in
the amplitude of total cross section between their measurement
and our calculation may be due to the calibration of the
experiment, so new experimental measurements are needed.

To obtain more detailed information, the state-selective
cross sections are shown in Fig. 6. The results of electron
capture to Li(2s) and Li(2p) states are presented in Fig. 6(a),
which agree with Shingal’s AOCC calculations [20] in the
energy region of 200–2000 eV/u for Li(2p) states, and also
around 420 and 1560 eV/u for Li(2s). However, in other
energy regions, obvious discrepancy exits. As in Fig. 5, the
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FIG. 7. The total nonradiative charge-transfer cross sections
using two-state (1 2�+, 2 2�+) approximation for collisions of
Na(3s) + Li+.

probable reason is that their calculation is not converged
[20]. The charge transfer to the Li(2s) state dominates the
magnitude and detailed structure of the total cross sections
because of the small energy gap between the 2 2�+ and
1 2�+ potential curve (see Fig. 1). The electron capture to the
Li(2p) state becomes important for energies below 10 eV/u.
State-selective cross sections to the 3 2�+ and 1 2� channels
are presented in Fig. 6(b), which shows the 1 2� channel is
dominant in the lower-energy region (E < 1000 eV/u); above
that, the two channels are comparable. This is consistent with
the energy potential curves (see Fig. 1) and the magnitude of
the relevant couplings (see Figs. 2 and 3). In the higher-energy
region (E > 1000 eV/u), the electron capture processes are
mainly triggered by the radial and rotational couplings at
small internuclear distances, where potential curves for the
2 2�+, 3 2�+, and 1 2� are very close to each other. The
couplings between these states will influence the charge-
transfer processes, and the electron population in these three
states indicates competition between them. As the energy
decreases, the energy gap between the 22�+ and 32�+
states increases and also there is no strong radial coupling
between them. Therefore, the state-selective charge-transfer
cross section to 3 2�+ drops rapidly. As collision energies
decrease, the potential curves of the 2 2�+ and 1 2� states
are still close to each other and become degenerate around
R = 6.0 a.u. As a result, the strong and broad effect coming
from the rotational coupling between the 2 2�+ and 1 2� states
will cause the state-selective cross section to 1 2� to become
dominant in the lower-energy region. This is the reason why
the electron capture to the Li(2p) state becomes dominant
when the energy drops below 10 eV/u [see Fig. 6(a)].

Also from Figs. 5 and 6(a), there exists obvious oscillatory
stucture in the total and state-selective cross section. To check
if this is caused by the interference between final states
such as 1 2�+, 3 2�+, and 1 2�, we carried out a two-state
(1 2�+, 2 2�+) calculation, with only one final state 1 2�+ as
shown in Fig. 7, in which the oscillations still exist. This shows
that the origin of the oscillatory structure is not simply the
interference between the final states. Such oscillatory structure
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FIG. 8. Partial-wave cross sections of electron capture to the
Li(2s) state for collisions of Na(3s) + Li+.

may be interpreted as a type of Stueckelberg oscillation, which
is due to a nonrandom-phase contribution to the cross sections
caused by one or more extrema in the difference between the
potentials for the reactant and product states [9,13]. To get
more information about these oscillations, we calculated the
partial-wave cross sections of electron capture into the Li(2s)
state for nine different collision energies from 94 to 525 eV/u,
among which 94, 159, and 319 eV/u correspond to three
local minima in the charge-transfer cross sections to the Li(2s)
state, and 135, 227, and 525 eV/u correspond to three local
maxima. The resulting partial-wave cross sections are given
in Fig. 8, where the oscillatory structure in the charge-transfer
cross sections mainly depends on the partial waves with small
numbers which are very sensitive to the collision energy. As
the collision energy increases, peaks in the partial-wave cross
sections shift toward larger partial-wave numbers. The overall
magnitude of the cross sections depends primarily upon partial
waves with large numbers. This result is similar to that of Rapp
et al. [14], since the behaviors of partial-wave cross sections
with small or large numbers J in our quantum-mechanical
calculations correspond to those with small or large impact
parameters in their work. However, only the atomic-orbital
expansion is included in their calculation; it cannot adequately
account for collisions at small impact parameter [14]. As a
result, the detailed structure represented by their calculation
disagrees substantially with the experimental data of Daley
and Perel [8], as shown in Fig. 5.

B. Radiative decay, radiative charge transfer,
and radiative association

For radiative processes of Na + Li+, the upper A and the
lower X states in Eqs. (17)–(26) correspond to the 2 2�+ and
the 1 2�+ states of NaLi+, respectively. In this case, one only
need consider the radiative processes from the initial channel
of the 2 2�+ state to the lower 1 2�+ state, which is dominated
by the long-range polarization interaction. In our calculation,
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FIG. 9. Transition probability between the 1 2�+ and the 2 2�+

states as a function of internuclear distance.

the values of Rmax for matching the boundary conditions
are increased from 500 to 2000 a.u. for collision energies
varying from 110 to 2 × 10−10 eV/u. Beyond R = 15 a.u., the
potentials of the 1 2�+ and the 2 2�+ states are described by
the long-range form

VL(R) = −1

2

[
C4

R4
+ C6

R6
+ C8

R8

]
, (27)

where C4, C6, and C8 are the dipole, quadrupole, and oc-
tupole polarizabilities of Li(2s) and Na(3s) atom, respectively
[46]. Based on the potential energy obtained, the transition
probability A(R) is computed using Eq. (23), as shown in
Fig. 9. There are two peaks; one is a sharp peak near
R = 1.4 a.u. and the other is a broad peak near R = 5.0 a.u.
The transition probability approaches zero as the internuclear
distance increases beyond 15.0 a.u.

As shown in Fig. 10, the radiative-decay (including
radiative charge-transfer and radiative -association) cross
sections are calculated for collision energies from 2 × 10−10

to 3 × 10−2 eV/u by using the optical-potential method; the
computational cost increases rapidly for higher collision
energies. In order to extend the treatment to higher energies,
a semiclassical calculation has been performed using Eq. (26)
for collision energies of 2 × 10−6 − 110 eV/u. In the over-
lapping energy range of 2 × 10−6–3 × 10−2 eV/u, except for
the resonance behavior, the semiclassical cross sections are in
good agreement with the optical-potential results. The resonant
structures, appearing in the energy region of 2 × 10−10–2 ×
10−3 eV/u, are attributed to the presence of quasibound or
virtual rotational-vibrational levels in the entrance channel
[7,42–44,47–52]. In the semiclassical approach, no quasi-
bound or virtual rotational-vibrational levels exist; thus the
semiclassical approximation is believed to be able to give reli-
able cross sections in the higher-energy region. Apart from the
resonant structures, the radiative-decay cross sections increase
monotonically as the collision energies decrease. Significantly,
our cross sections have an energy dependence of 1/E1/2, which
is consistent with the classical Langevin cross-section formula
for a polarization potential. However, when the relative energy
increases continuously, the semiclassical cross sections ascend
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FIG. 10. (Color online) Comparison of the radiative-decay and
nonradiative charge-transfer cross sections for Na(3s) + Li+ colli-
sion. Radiative decay cross sections are obtained by the optical-
potential method (solid line) and the semiclassical method (solid
line with solid circles), respectively, and nonradiative charge-transfer
cross sections (solid line with open circles) are obtained by the
QMOCC method.

gradually until reaching a maximum at ∼0.75 eV/u and then
decrease as 1/E1/2. This behavior can be understood from
the potential curves and transition probabilities. For the initial
state 2 2�+, the corresponding classical turning point R

ctp
a

is less than 11.0 a.u. when the relative energy is more than
2 × 10−2 eV/u, as shown in Fig. 1. The transition probability
A(R) in Eq. (23), which is displayed in Fig. 9, increases rapidly
as R decreases, so that the integral in Eq. (26) increases faster
than the factor of 1/E1/2 as the collision energy increases and
the R

ctp
a decreases, resulting in an increasing tendency for the

cross section. When the relative energy is more than 0.9 eV/u,
the classical turning point R

ctp
a is less than 3.0 a.u. Thereafter,

the variation of A(R) tends to zero and the integral in Eq. (26)
does not increase further and σ (E) varies as 1/E1/2. We should
also note that the transition probability A(R) increases rapidly
once again as R decreases to less than 2.5 a.u., but the cross
sections do not show an obvious increasing tendency. This is
because, when R is less than 2.5 a.u., the collision energy E in
the denominator of the integral term in Eq. (26) dramatically
increases and thus the effect caused by the variation of the
transition probability A(R) is offset.

In Fig. 10, we also compare the present radiative-decay
cross sections with the present nonradiative charge-transfer
cross sections calculated by using the QMOCC method. For
energies less than 0.1 eV/u, the radiative-decay processes are
dominant and the nonradiative charge-transfer processes are
negligible, where the electronic transitions are driven through
the weak avoided crossing between 1 2�+ and the 2 2�+ states
at an internuclear distance of R = 12.5 a.u. As the collision
energy increases, the nonradiative charge-transfer cross sec-
tions increase rapidly. The nonradiative process becomes the
dominant charge-transfer mechanism for energies larger than
E > 0.2 eV/u, where the electronic transitions occur through
the rotational coupling between the 2 2�+ and the 1 2� states.
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FIG. 11. (Color online) Comparison of the radiative-decay (solid
line), radiative charge-transfer (dashed line with dot), and radiative-
association cross sections for collisions involving the 2 2�+ − 1 2�+

transition in the Na(3s) + Li+. Radiative-association cross sections
are obtained by the fully quantum-mechanical approach (dashed line)
and the subtracting method (dotted line), respectively.

The radiative charge-transfer and radiative-association
cross sections are presented along with the radiative-decay
cross sections for the energy range of 2 × 10−10–2 ×
10−2 eV/u in Fig. 11. In our present calculations, for the
energy region from 2 × 10−10 to 4 × 10−4 eV/u, the radiative
charge-transfer cross sections are obtained by using the fully
quantum-mechanical method and the radiative-association
cross sections are calculated by subtracting the radiative
charge-transfer part from the total radiative-decay cross sec-
tions. For collision energies from 2 × 10−5 to 2 × 10−2 eV/u,
the fully quantum-mechanical approach has been used again
to describe the radiative association in the Na(3s) + Li+
collisions. The inset illustration shows that the radiative-
association cross sections obtained by using the two different
methods are in excellent agreement with each other in the
overlapping energy range. In Fig. 11, the association process
is seen to be more important than the charge transfer:
The radiative charge-transfer cross sections are about two
orders of magnitude smaller than the radiative-association
cross sections. However, as the collision energy increases,
the difference between the radiative-association and charge-
transfer cross sections decreases. The radiative-association
cross sections decrease more rapidly than that of the radiative
charge transfer. This is because of the fact that the effective
angular momentum numbers increase with collision energy,
and this could result in a shallower well of the effective
potential V eff

J (R) = V (R) + J (J + 1)/2μR2 for the final state
of 1 2�+, causing the number of the quasibound vibrational
levels to become smaller.

C. Rate coefficients

Rate coefficients are very useful in many application
fields, such as astrophysics. The rate coefficients for to-
tal and state-selective nonradiative charge-transfer processes
of Na(3s) + Li+ collisions are calculated by averaging
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FIG. 12. (Color online) Rate coefficients as a function of tem-
perature for total and state-selective nonradiative charge-transfer
processes of Na(3s) + Li+ collisions.

the corresponding cross sections for collision energy from
0.001 to 1.8 keV/u over a Maxwellian velocity distribution
as a function of temperature T from 3 × 104 to 2 × 109 K,
as shown in Fig. 12. They are consistent with total and
state-selective cross sections. For T < 3 × 104 K, the rate
coefficients decrease rapidly and the radiative process will
become dominant. The rate coefficients are fitted to the form

α(T ) =
∑

i

ai

(
T

10,000

)bi

exp

(
−T

ci

)
, (28)

where α is the rate coefficient in cm3 s−1 and T is the
temperature in K. For convenience of application, the fitting
parameters of rate coefficients for temperatures between
3 × 104 and 2 × 109 K are given in Table II. The fitting
coefficients of determination are larger than 0.9996, which
indicates that our fit of Eq. (28) is accurate.

The total radiative decay, radiative-association, and ra-
diative charge-transfer rate coefficients are also obtained by
averaging the cross sections over a Maxwellian velocity

TABLE II. Fitting parameters of rate coefficients for total and
state-selective nonradiative charge-transfer processes. The units of
fitting parameters ai and ci are cm3 s−1 and K, respectively.

Value

Parameters 2s 2p Total

a1 8.2122[–7]a 2.7815[−13] −7.7871[−7]
a2 2.5727[−7] −4.9046[−6] −9.5556[−4]
a3 −1.0722[−6] 4.9062[−6] 9.5556[−4]
b1 −1.2530[−1] 1.5744 6.5474[−2]
b2 −1.3114[−1] −5.1020[−1] −9.1787[−1]
b3 −1.2170[−1] −5.1089[−1] −9.1774[−1]
c1 8.1222[7] 2.5442[7] 1.8604[7]
c2 4.8261[8] 4.8056[7] 1.3083[7]
c3 1.8456[7] 5.1758[8] 1.1136[9]

aNumbers in parentheses are powers, i.e., A[B] = A × 10B .
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FIG. 13. (Color online) Rate coefficients as a function of tem-
perature for radiative decay, radiative-association, and radiative
charge-transfer processes of Na(3s) + Li+ collisions.

distribution and then plotting them as a function of temperature
from 10−6 to 103 K, as shown in Fig. 13. It can be seen that,
in this range of temperature, the dominant radiative process is
radiative association and its rate coefficient is about two orders
of magnitude larger than that of radiative charge transfer, which
is consistent with the cross-section data (see Fig. 11). Above
10−6 K, each curve of the rate coefficient increases rapidly
with increasing temperature, and then approaches a constant
value between 10−4 and 10 K, which is caused by the fact that
the cross section behaves as 1/E1/2 (the Langevin behavior).
For T > 1000 K, the contribution from nonradiative processes
becomes dominant.

Also for convenience of application, the rate coefficients of
radiative processes are fitted into the same form as for Eq. (28).
The fitting parameters are provided in Table III in the entire

TABLE III. Fitting parameters of rate coefficients for total
radiative decay, radiative-association, and radiative charge-transfer
processes. The units of fitting parameters ai and ci are cm3 s−1 and
K, respectively.

Value

Radiative Radiative Radiative
Parameters decay association charge transfer

a1 1.8383[−15]a 1.9290[−13] 1.3554[−16]
a2 3.5888[−16] 1.7114[−15] 2.2523[−17]
a3 −1.2267[−12] 2.9669[−15] −5.1364[−17]
a4 −3.7277[−17] −2.8569[−15] −6.0105[−17]
b1 −4.0294[−2] 1.1626 1.5289[−3]
b2 −1.1029[−1] −4.6141[−3] −5.0903[−2]
b3 2.8292[−1] 1.8901[−2] −2.8502[−2]
b4 −2.3054[−1] −1.3399[−2] −2.4797[−2]
c1 2.6915[1] 5.3753[1] 2.7170[1]
c2 1.8443[−3] 1.5103[−3] 1.8553[−3]
c3 2.2683[−5] 1.8337[1] 3.6281[−1]
c4 5.0947[−1] 3.2601[−5] 3.3239[−5]

aNumbers in parentheses are powers, i.e., A[B] = A × 10B .
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temperature range from 10−6 to 103 K. The fitting coefficients
of determination are larger than 0.9971, so our fit of Eq. (28)
is also accurate.

V. CONCLUSION

In the present work, we present the charge-transfer cross
sections in a very wide energy range. Cross sections have
been calculated for the nonradiative charge-transfer processes
due to collisions of Li+ with neutral sodium in the energy
range of 10−4–2 keV/u and 0.2–10 keV/u by employing the
QMOCC and TC-AOCC methods, respectively. Our QMOCC
and AOCC results merge well in the overlapping energy
range. Good agreement has been found between the two
calculations for both the total and the state-resolved capture
cross sections. The rotational couplings play very important
roles in the low-energy region. The origin of the oscillatory
structure is not simply the interference between the final states.
Such oscillatory structure may be interpreted as a type of
Stueckelberg oscillation.

The radiative-decay process is investigated by using the
optical-potential and semiclassical methods in the colli-
sion energy range of 2 × 10−10–3 × 10−2 eV/u and 2 ×
10−6–110 eV/u, respectively, and the two calculations join

together smoothly in the energy range of 2 × 10−6–3 ×
10−2 eV/u. The radiative charge-transfer cross sections are
calculated by using the fully quantum method in the energy
range of 2 × 10−10–4 × 10−4 eV/u. The radiative-association
cross sections are obtained by subtracting the radiative charge-
transfer part from the radiative-decay cross sections and by
using the fully quantum-mechanical approach, respectively,
for the energy range of 2 × 10−10 − 4 × 10−4 eV/u and
2 × 10−5 − 2 × 10−2 eV/u. The radiative processes exceed
the nonradiative process as E < 0.11 eV/u. In particular, we
found that the radiative-association process is more important
than the radiative charge-transfer process at the very low
collision energies of 2 × 10−10 − 2 × 10−2 eV/u.

We also present the rate coefficients of nonradiative and
radiative processes for the temperature range of 3 × 104 − 2 ×
109 K and 10−6 − 103 K, respectively, which has important
application in astrophysics and plasma physics.
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